 |ISSN : 2349-6495(P) | 2456-1908(O)

 Advanced Engineering Research and Science

HOME
MISSION AND SCOPE
EDITORIAL BOARD
CURRENT ISSUE
ARCHIVE CONFERENCE
INDEXING SUBMIT MANUSCRIPT New
CONTACT US

FOR AUTHORS

Instruction to Author
Peer Review Process
Plagiarism Policy
llication Policies and ics

2n Access Policy
Review Guidelines
Correction, Retraction and Withdrawal Policy

How to publish Paper ?
Submit Manuscript Online Conference New FAQ

RSS Current Issuea
RSS Complete Issue
ARTICLES \& INDEXING
Current Issue
Archive
Complete Issue
Special Issues new
Special Issue Detail New
Indexing and Archiving
DOWNLOADS
Paper Format
Copyright Form
Certificate

STATISTICS

TWITTER

Editor in Chief

- Dr. Swapnesh Taterh (Chief-Editor), Amity University, Jaipur, India swapnesh@hotmail.com editor@ijaers.com

Cheif Executive Editor

- S. Suman Rajest, Vels Institute of Science, Technology \& Advanced Studies, India chief-executive-editor@ijaers.com

Associate Editors

- Dr. Ram Karan Singh , King Khalid University, Guraiger, Abha 62529, Saudi Arabia
- Dr. Shuai Li, University of Cambridge, England, Great Britain

Editorial Member

- Behrouz Takabi, PhD, Texas A\&M University, Texas, USA
- Dr. Gamal Abd El-Nasser Ahmed Mohamed Said, Port Training Institute (PTI), Arab Academy For Science, Technology and Maritime Transport, Egypt
- Dr. Hou, Cheng-I , Chung Hua University, Hsinchu Taiwan
- Dr. Ebrahim Nohani, Islamic Azad University, Dezful, IRAN.
- Dr. Ahmadad Nabih Zaki Rashed, Menoufia University, EGYPT
- Dr. Rabindra Kayastha , Kathmandu University, Nepal
- Dr. Dinh Tran Ngoc Huy, Banking and Finance, HCM, Viet Nam
- Dr. Engin NAS, Duzce University, Turkey
- Dr. A. Heidari, California South University (CSU), Irvine, California, USA
- Dr. Uma Choudhary, Mody University, Lakshmangarh, India
- Dr. Varun Gupta, National Informatic Center, Delhi, India
- Dr. Ahmed Kadhim Hussein, University of Babylon, Republic of Iraq
- Dr. Vibhash Yadav, Rajkiya Engineering College, Banda. UP, India
- Dr. M. Kannan, SCSVMV University, Kanchipuram, Tamil Nadu, India
- José G. Vargas-Hernández, University of Guadalajara Periférico Norte 799 Edif. G201-7, Núcleo Universitario Los Belenes, Zapopan, Jalisco, 45100, México
- Dr. Sambit Kumar Mishra, Gandhi Institute for Education and Technology, Baniatangi, Bhubaneswar, India
- DR. C. M. Velu, Datta Kala Group of Institutions, Pune, India
- Dr. Deependra Pandey, Amity University, Uttar Pradesh, India
- Dr. K Ashok Reddy, MLR Institute of Technology, Dundigal, Hyderabad, India
- Dr. S.R.Boselin Prabhu, SVS College of Engineering, Coimbatore, India
- N. Balakumar, Tamilnadu College of Engineering, Karumathampatti, Coimbatore, India
- R. Poorvadevi, SCSVMV University, Enathur, Kanchipuram, Tamil Nadu, India
- Dr. Subha Ganguly, Arawali Veterinary College, Sikar, India
- Dr. P. Murali Krishna Prasad, GVP College of Engineering for Women, Visakhapatnam, Andhra Pradesh, India
- Anshul Singhal, Bio Instrumentation Lab, MIT, USA
- Mr. Lusekelo Kibona, Ruaha Catholic University, Iringa, Tanzania
- Sina Mahdavi, Urmia Graduate Institute, Urmia, Iran
- Dr. N. S. Mohan, Manipal Institute of Technology, Manipal, India
- Dr. Zafer Omer Ozdemir, University of Health Sciences,Haydarpasa, Uskudar, Istanbul, TURKIYE
- Bingxu Wang, 2721 Patrick Henry St Apt 510, Auburn Hills, Michigan, United States

IJAERS : Editorial Board : AI Publications

Tweets by @ijaers

IJAERS IJAERS Journa

 @ijaersIJAERS: Bromeliads Supply Chain of Paraná State - Brazil ijaers.com/detail/bromeli..

Mar 9, 2019

IJAERS IJAERS Journal @ijaers

Engineering Journal Articles: Vol-6,Issue-2 February 2019 ijaers.com/issue-detail/v. \#nnnineeringJournal entIssue @ijaers

Qualis Indexed | NAAS: 3.18| Peer Reviewed Engineering Journal ijaers.com

- Dr. Jayashree Patil-Dake, KPB Hinduja College of Commerce, Mumbai, India
- Dr. Neel Kamal Purohit, S.S. Jain Subodh P.G. College, Rambagh, Jaipur, India
- Mohd Muntjir, Taif University, Kingdom of Saudi Arabia
- Xian Ming Meng, China Automotive Technology \& Research Center No.68, East Xianfeng Road, Dongli District, Tianjin, China
- Herlandi de Souza Andrade, FATEC Guaratingueta, State Center for Technological Education Paula Souza - CEETEPS
- Dr. Payal Chadha, University of Maryland University College Europe, Kuwait
- Ahmed Moustafa Abd El-hamid Elmahalawy, Menoufia University, Al Minufya, Egypt
- Prof. Mark H. Rummeli, University \& Head of the characterisation center, Soochow Institute for Energy Materials Innovasions (SIEMES), Suzhou, Jiangsu Province, China
- Dr. Eman Yaser Daraghmi, Ptuk, Tulkarm, Palestine
- Holmes Rajagukguk, State University of Medan, Lecturer in Sisingamangaraja University North Tapanuli, Indonesia
- Dr. Menderes KAM, Dr. Engin PAK Cumayeri Vocational School, DÜZCE UNIVERSITY (University in Turkey), Turkey
- Dr. Jatin Goyal, Punjabi University, Patiala, Punjab, India I International Collaborator of GEITEC / UNIR / CNPq, Brazil
- Ahmet iPEKÇi, Dr. Engin PAK Cumayeri Vocational School, DÜZCE UNIVERSITY, Turkey
- Baarimah Abdullah Omar, Universiti Malaysia Pahang (UMP), Gambang, 26300, Malaysia
- Sabri UZUNER, Dr. Engin PAK Cumayeri Vocational School Cumayeri/Duzce/Turkey
- Ümit AĞBULUT, Düzce University, Turkey
- Dr. Mustafa ÖZKAN, Trakya University, Edirne/ TURKEY
- Dr. Suat SARIDEMir, Düzce University, Faculty of Technology, Turkey
- Dr. Manvinder Singh Pahwa, Director, Alumni Relations at Manipal University Jaipur, India
- Omid Habibzadeh Bigdarvish, University of Texas at Arlington, Texas, USA
- Professor Dr. Ho Soon Min, INTI International University, JIn BBN 12/1, Bandar, Baru Nilai, 71800 Negeri Sembilan, Malaysia
- Xian Ming Meng (Ph.D), China Automotive Technology \& Research Center, No.68, East Xianfeng Road, Tianjin, China
- Ömer Erkan, Konuralp Campus, DÜZCE-TURKEY
- Dr. Yousef Daradkeh, Prince Sattam bin Abdulaziz University)PSAU), KSA

Menu
Home
FAQ

Editorial Board
Archive Issue
Submit An Article
Contact Us
\square

Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2016 AI Publications All Right Reserved. Designed by DVS Web infotech Pvt Ltd.

 Advanced Engineering Research and Science

HOME MISSION AND SCOPE EDITORIAL BOARD CURRENT ISSUE ARCHIVE CONFERENCE INDEXING SUBMIT MANUSCRIPT New CONTACT US

FOR AUTHORS
Instruction to Author
Peer Review Process
Plagiarism Policy
,lication Policies and
ics
-n Access Policy
Review Guidelines
Correction, Retraction and Withdrawal Policy

How to publish Paper?
Submit Manuscript Online
Conference New
FAQ
RSS Current Issuew
RSS Complete Issueむ
ARTICLES \& INDEXING
Current Issue
Archive
Complete Issue
Special Issues New
Special Issue Detail New
Indexing and Archiving
DOWNLOADS
Paper Format
Copyright Form
Certificate

STATISTICS

TWITTER

Vol-4, Issue-4, April 2017

Sr No.	Detail with DOI (CrossRef)		
1	M. Farhaoui cross ${ }^{\text {ref }}$ DOI: $10.22161 /$ ijaers.4.4.1		
2	OPEN ACCESS \\| JOURNAL ARTICLE \| General Science Transmission Line Fault Monitoring and Identification System by Using Internet of Things S.Suresh, R.Nagarajan, L.Sakthivel, V.Logesh, C.Mohandass, G.Tamilselvan DOI: 10.22161/ijaers.4.4.2 Page No: 009-014 \| Downloads : 156	Total View : 1198	
3	OPEN ACCESS \\| JOURNAL ARTICLE \| General Science Research on Multiple Complex Data Processing Methods Based on OpenStack Cloud Platform Huansong Yang, Mengyuan Wang, Jiaping Wu Crossef DOI: $10.22161 /$ ijaers.4.4.3		
4	OPEN ACCESS \\| JOURNAL ARTICLE \| General Science Power Quality Issues of Electric Arc Furnace and their Mitigations -A Review Amarjeet Singh, Ravindra Kumar Singh, Asheesh Kumar Singh crossef DOI: 10.22161/ijaers.4.4.4		
5	OPEN ACCESS \\| JOURNAL ARTICLE \| General Science Energy Audit for an educational building which operates in Middle East climatic conditions Salim R K, Dr Sudhir CV DOI: 10.22161/ijaers.4.4.5 Page No: 042-048 \| Downloads : 25	Total View : 447	

OPEN ACCESS \| JOURNAL ARTICLE \| General Science
Energy and Exergy Analysis on Si Engine by Blend of Ethanol with Petrol Kuntesh A Mithaiwal, Ashish J Modi, Dipak C Gosai
6
Crossef DOI: 10.22161/ijaers.4.4.6

Page No: 049-061 | Downloads : 36 | Total View : 632
downiond por
Detail..

7 OPEN ACCESS | JOURNAL ARTICLE | General Science
Seismic Risk Assessment of Existing School Buildings in Egypt
Islam M. Ezz El-Arab

Tweets by @ijaers

IJAERS IJAERS Journa

 @ijaersIJAERS: Bromeliads Supply Chain of Paraná State - Brazil ijaers.com/detail/bromeli...

IJAERS IJAERS Journa

 @ijaersEngineering Journal Articles: Vol-6,Issue-2 February 2019 ijaers.com/issue-detail/v.. \#nnnineeringJournal entlssue @ijaers

Qualis Indexed | NAAS: 3.18|
Peer Reviewed Engineering Journal ijaers.com

Embed View on Twitter

Page No: 062-070 | Downloads : 22 | Total View : 562 \&

| 8 | OPEN ACCESS \\| JOURNAL ARTICLE | General Science
 ITIL Implementation in a Moroccan Stat Organization: The case of incident management process Mourad EL Baz, Malik Motii Armand, Collins Anong, Belaissaoui Mustapha crossef DOI: 10.22161/ijaers.4.4.8 |
| :---: | :---: |
| 9 | OPEN ACCESS \\| JOURNAL ARTICLE \| General Science
 Design and Study of Swirl Injector of Pulse Detonation Engine
 Navdeep Banga, Kanika
 crossef DOI: 10.22161/ijaers.4.4.9
 Page No: 079-082 \| Downloads : 32| Total View : 766 |

OPEN ACCESS \| JOURNAL ARTICLE \| General Science
Performance Analysis of LEACH, SEP and ZSEP under the Influence of Energy
Sulekha Kumari
10
crossef DOI: 10.22161/ijaers.4.4.10

Page No: 083-088 | Downloads : 15 | Total View : 497
A Downiono por
Detail..
crossef

DOI:

Page No: 079-082 | Downloads: 32| Total View: 766 \& доwnion por | Detail...

OPEN ACCESS \| JOURNAL ARTICLE \| General Science
Smart Waste Management System using loT
Prof. S.A. Mahajan, Akshay Kokane, Apoorva Shewale, Mrunaya Shinde , Shivani Ingale,
12
crossef DOI: 10.22161/ijaers.4.4.12

Page No: 093-095 | Downloads : 50 | Total View : 810 \& oownono por | Detail..
OPEN ACCESS | JOURNAL ARTICLE | General Science
On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs
Arika Indah Kristiana, Dafik, M. Imam Utoyo, Ika Hesti Agustin
Crossef DOI: 10.22161 /ijaers.4.4.13

Page No: 096-101 | Downloads: 44 | Total View : 568
oowniono por
Detail..

OPEN ACCESS | JOURNAL ARTICLE | General Science
Determinants of Stock Prices of Joint - Stock Companies in Industrial Sector Listed On Hcm City
Stock Exchange
Vuong Quoc Duy, Le Long Hau, Nguyen Huu Dang
cross DOI: $10.22161 /$ ijaers. 4.4.14

Page No: 102-108 | Downloads : 21 | Total View : 607
Downono
Detail..

15 OPEN ACCESS | JOURNAL ARTICLE \| General Science
Efficiency and Performance analysis of routing protocols in WSN
Kaysar Ahmed Bhuiyan , Md Whaiduzzaman, Mostofa Kamal Nasir

On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs

Arika Indah Kristiana ${ }^{1,2}$, Dafik ${ }^{1,2}$, M. Imam Utoyo ${ }^{4}$, Ika Hesti Agustin ${ }^{1,3}$
${ }^{1}$ CGANT University of Jember Indonesia
${ }^{2}$ Mathematics Edu. Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Depart. University of Jember, Indonesia
${ }^{4}$ Mathematics Depart. University of Airlangga, Surabaya, Indonesia

Abstract

This study is a natural extension of k-proper coloring of any simple and connected graph G. By an r dynamic coloring of a graph G, we mean a proper k coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number, written as $\chi_{r}(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. In this paper we will study the r-dynamic chromatic number of the coronation of path and several graph. We denote the corona product of G and H by $G \odot H$. We will obtain the r dynamic chromatic number of $\chi_{r}\left(P_{n} \odot P_{m}\right), \chi_{r}\left(P_{n} \odot C_{m}\right)$ and $\chi_{r}\left(P_{n} \odot W_{m}\right)$ for $m, n \geq 3$.

Keyword-r-dynamic chromatic number, path, corona product.

I. INTRODUCTION

An r-dynamic coloring of a graph G is a proper k coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number, introducedby Montgomery [4] written as $\chi_{r}(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. The 1 -dynamic chromatic number of a graph G is $\chi_{1}(G)=\chi(G)$, well-known as the ordinary chromatic number of G. The 2-dynamic chromatic number is simply said to be a dynamic chromatic number, denoted by $\chi_{2}(G)=$ $\chi_{d}(G)$,see Montgomery [4]. The r-dynamic chromatic number has been studied by several authors, for instance in[1], [5], [6], [7], [8], [10], [11].
The following observations are useful for our study, proposed by Jahanbekam[11].
Observation 1.[10] Always $\chi(G)=\chi_{1}(G) \leq \cdots \leq$ $\chi_{\Delta(G)}(G)$. If $r \geq \Delta(G)$, then $\chi_{r}(G)=\chi_{\Delta(G)}(G)$
Observation 2.Let $\Delta(G)$ be the largest degree of graph G. It holds $\chi_{r}(G) \geq \min \{\Delta(G), r\}+1$.

Given two simple graphs G and H, the corona product of G and H, denoted by $G \odot H$, is a connected graph obtained by taking a number of vertices $|V(G)|$ copy of H, and making the $i^{\text {th }}$ of $V(G)$ adjacent to every vertex of the $i^{\text {th }}$ copy of $V(H)$, Furmanczyk[3]. The following example is $P_{3} \odot C_{3}$.

Fig.1: Graph $P_{3} \odot C_{3}$
There have been many results already found, The first one was showed by Akbari et.al [10]. They found that for every two natural number m and $n, m, n \geq 2$, the cartesian product of P_{m} and P_{n} is $\chi_{2}\left(P_{m} \square P_{n}\right)=4$ and if $3 \mid m n$, then $\chi_{2}\left(C_{m} \square C_{n}\right)=$ 3 and $\chi_{2}\left(C_{m} \square C_{n}\right)=4$. In [2], they then conjectured $\chi_{2}(\mathrm{G}) \leq$ $\chi(G)+2$ when G is regular, which remains open. Akbari et.al. [9] alsoproved Montgomery's conjecture for bipartite regular graphs, as well as Lai, et.al. [5] provedthat $\chi_{2}(\mathrm{G}) \leq$ $\Delta(G)+1$ for $\Delta(G) \geq 4$ when no component is the 5 -cycle. By a greedy coloring algorithm, Jahanbekama [11] proved that $\chi_{r}(\mathrm{G}) \leq r \Delta(\mathrm{G})+1$, and equality holds for $\Delta(G)>2$ if and only if G is r-regular with diameter 2 and girth 5 . They improved the bound to $\chi_{r}(\mathrm{G}) \leq \Delta(\mathrm{G})+2 r-2$ when $\delta(G)$ $>2 r \ln n$ and $\chi_{r}(G) \leq \Delta(G)+r$ when $\delta(G)>r^{2} \ln n$.

II. THE RESULTS

We are ready to show our main theorems. There are three theorems found in this study. Those deal with corona product of graph P_{n} with P_{m}, C_{m}, and W_{m}.
Theorem 1. Let $G=P_{n} \odot P_{m}$ be a corona graph of P_{n} and P_{m}. For $n, m \geq 2$, the r-dynamic chromatic number is:

$$
\chi_{r}(G)=\left\{\begin{array}{cc}
3 & , \quad r=1,2 \\
r+1, & 3 \leq r \leq \Delta-1 \\
m+3 & , \quad r \geq \Delta
\end{array} \quad c_{3}\left(y_{i}\right)=\left\{\begin{array}{cc}
1, & i=3 t+1, t \geq 0,1 \leq i \leq n \\
2, & i=3 t+2, t \geq 0,1 \leq i \leq n \\
3, & i=3 t, t \geq 1,1 \leq i \leq n
\end{array}\right.\right.
$$

Proof. The graph $P_{n} \odot P_{m}$ is a connected graph with vertex $\operatorname{set} V\left(P_{n} \odot P_{m}\right)=\left\{y_{i}, 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge $\operatorname{set} E\left(P_{n} \odot P_{m}\right)=\left\{y_{i} y_{(i+1)} ; 1 \leq i \leq n-\right.$ 1\} $\cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{x_{i j}, x_{i(j+1}\right) ; 1 \leq i \leq$ $n, 1 \leq j \leq m-1\}$. The order of graph $P_{n} \odot P_{m}$ is
$\left|V\left(P_{n} \odot P_{m}\right)\right|=n(m+1)$ and the size of graph $P_{n} \odot P_{m}$ is $\left|E\left(P_{n} \odot P_{m}\right)\right|=2 m n-1$. Thus, $\Delta\left(P_{n} \odot P_{m}\right)=m+2$.

$$
\text { By observation } \quad 2, \quad \chi_{r}\left(P_{n} \odot P_{m}\right) \geq
$$

$\min \left\{r, \Delta\left(P_{n} \odot P_{m}\right)\right\}+1=\min \{r, m+2\}+1$. To find the exact value of r-dynamic chromatic number of $P_{n} \odot P_{m}$, we define two cases, namely for $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)$ and $\chi_{r}\left(P_{n} \odot P_{m}\right)$.
Case 1. For $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)$, define $c_{1}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2$, $\ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\begin{gathered}
c_{1}\left(y_{i}\right)= \begin{cases}1, \quad i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{1}\left(x_{i j}\right)=\left\{\begin{aligned}
& 1, i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
& 2 \quad, i \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
& 3, \\
& j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}\right.
\end{gathered}
$$

It easy to see that c_{1} is map $c_{1}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2,3\}$, thus it gives $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)=3$.
Case 2.
Subcase 2.1 For $\chi_{r}\left(P_{n} \odot P_{m}\right), 3 \leq r \leq \Delta-1$, define c_{2} : $V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\left.\begin{array}{c}
c_{2}\left(y_{i}\right)=\left\{\begin{array}{l}
1, \quad i \text { odd, } 1 \leq i \leq n \\
2, \\
i \text { even, } 1 \leq i \leq n
\end{array}\right. \\
c_{2}\left(x_{11}, x_{12}, x_{13}\right)=2,3,4, \\
\text { for } m=3, r=3
\end{array}\right\} \begin{gathered}
c_{2}\left(x_{21}, x_{22}, x_{23}\right)=1,3,4, \\
\text { for } m=3, r=3 \\
c_{2}\left(x_{11}, x_{12}, x_{13}\right)=3,4,5, \\
\text { for } m=3, r=4 \\
c_{2}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=2,3,4,5, \\
\text { for } m=4, r=4 \\
c_{2}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=3,4,5,6, \\
\text { for } m=4, r=5
\end{gathered}
$$

It easy to see that c_{2} is a map $c_{2}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, thus it gives $\chi_{r}\left(P_{n} \odot P_{m}\right)=r+1,3 \leq r \leq \Delta-1$
Subcase 2.2 The last for $\chi_{r}\left(P_{n} \odot P_{m}\right), r \geq \Delta$, define c_{3} : $V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

Fig.2: $\chi_{6}\left(P_{3} \odot P_{4}\right)=7$ with $n=3, m=4, r=6$

$$
\begin{gathered}
c_{3}\left(x_{11}, x_{12}, x_{13}\right)=4,5,6, \text { for } m=3, r=5 \\
c_{3}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=3,4,5,6 \\
\text { for } m=4, r=6 \\
c_{3}\left(x_{21}, x_{22}, x_{23}, x_{24}\right)=4,5,6,7 \\
\text { for } m=4, r=6 \\
c_{3}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=4,5,6,7,8 \\
\text { for } m=5, r=7
\end{gathered}
$$

It easy to see that c_{3} is a map $c_{3}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots$, $m+3\}$, so it gives $\chi_{r}\left(P_{n} \odot P_{m}\right)=m+3, r \geq \Delta$. It concludes the proof

Theorem 2. Let $G=P_{n} \odot C_{m}$ be a corona graph of P_{n} and C_{m}. For $n \geq 3, m \geq 3$, the r-dynamic chromatic number is:

$$
\begin{gathered}
\chi_{r=1,2}(G)= \begin{cases}3, & m \text { even or } m=3 k, k \geq 1 \\
4, & m \text { odd or } m=5\end{cases} \\
\chi_{r=3}(G)=\left\{\begin{array}{ccc}
4, & m=3 k, k \geq 1 \\
5, & m \text { otherwise }
\end{array}\right. \\
\chi_{r}(G)=\left\{\begin{array}{cc}
r+1, & 4 \leq r \leq \Delta-1 \\
m+3, & r \geq \Delta
\end{array}\right.
\end{gathered}
$$

Proof. The graph $P_{n} \odot C_{m}$ is connected graph with vertex set $V\left(P_{n} \odot C_{m}\right)=\left\{y_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge set $E\left(P_{n} \odot C_{m}\right)=\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-\right.$ 1\} $\cup\left\{x_{i j} x_{i(j+1)} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\} \cup$ $\left\{x_{i 1} x_{i m} ; 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$. The order of graph $P_{n} \odot C_{m}$ is $\left|V\left(P_{n} \odot C_{m}\right)\right|=n(m+1)$ and the size of graph
$P_{n} \odot C_{m} \quad$ is $\quad\left|E\left(P_{n} \odot C_{m}\right)\right|=2 m n+n-1$, thus $\Delta\left(P_{n} \odot C_{m}\right)=m+2$. By Observation 2, we have $\chi_{r}\left(P_{n} \odot C_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \odot C_{m}\right)\right\}+1=\min \{r, m+$ $2\}+1$. To find the exact value of r-dynamic chromatic
number of $P_{n} \odot C_{m}$, we define three case, namely for $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right), \chi_{r=3}\left(P_{n} \odot C_{m}\right)$ and $\chi_{r}\left(P_{n} \odot C_{m}\right)$.

Case 1.
Subcase 1.1 For $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)$, define $c_{4} \quad$: $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ even or $m=$ $3 k, k \geq 1$, by the following:

$$
\begin{gathered}
c_{4}\left(y_{i}\right)=\left\{\begin{array}{c}
1, \quad i \text { odd, } 1 \leq i \leq n \\
2, \quad i \text { even, } 1 \leq i \leq n
\end{array}\right. \\
c_{4}\left(x_{i j}\right)=\left\{\begin{array}{c}
1 \quad, \quad i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
2 \quad, \quad i \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
3, \quad j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m \\
4, \quad i \text { even, } 1 \leq i \leq n, j=m
\end{array}\right.
\end{gathered}
$$

It easy to see that c_{4} is a map $c_{4}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3\}$, so it gives $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)=3, m$ even or $m=3 k, k \geq 1$
Subcase 1.2 For $\quad \chi_{r=1,2}\left(P_{n} \odot C_{m}\right)$ define c_{5} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3,, m$ odd or $m=5$,, by the following:

$$
\begin{gathered}
c_{5}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{5}\left(x_{i j}\right)= \begin{cases}1, & i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
2 & , \\
3 \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
3 & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
4, & 1 \leq i \leq n, j=m\end{cases}
\end{gathered}
$$

It easy to see that c_{5} is a map $c_{5}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)=4, m$ odd or $m=5$

Fig.3: $\chi_{2}\left(P_{3} \odot C_{5}\right)=4$ with $n=3, m=5, r=2$

Case 2.
Subcase 2.1 For $\chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define c_{6} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=3 k, k \geq 1$, by the following:

$$
c_{6}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\ 2, & i \text { even, } 1 \leq i \leq n\end{cases}
$$

$c_{6}\left(x_{i j}\right)$
$=\left\{\begin{array}{cc}1 & , \quad i \text { even, } j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 2 & , \quad i \text { odd, } j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 3 & , j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 4 & , j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\end{array}\right.$

It easy to see that c_{6} is map $c_{6}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=3}\left(P_{n} \odot C_{m}\right)=4, m=3 k, k \geq 1$.
Subcase 2.2 For $\quad \chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define c_{7} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=5$, by the following:

$$
\begin{gathered}
c_{7}\left(y_{i}\right)=\left\{\begin{array}{lc}
1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n
\end{array}\right. \\
c_{7}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=2,3,4,5,6 \\
c_{7}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=1,3,4,5,6
\end{gathered}
$$

It easy to see that c_{7} is a map $c_{7}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4,5$, 6\}.Thus it given $\chi_{r=3}\left(P_{n} \odot C_{5}\right)=6$
Subcase $\quad \mathbf{2 . 3} \quad$ For $\quad \chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define $\quad c_{8}$: $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ otherwise, by the following:

$$
\begin{gathered}
c_{8}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{8}\left(x_{i j}\right) \\
=\left\{\begin{array}{l}
1 \quad i \text { even, } j=4 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
2, \\
3 \quad, \quad j=4 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
4
\end{array}, \quad j=4 t+3, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\right. \\
5, \quad j=4 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m
\end{gathered}
$$

It easy to see that c_{8} is map $c_{8}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4,5\}$, so it gives $\chi_{r=3}\left(P_{n} \odot C_{m}\right)=5$

Case 3.

Subcase 3.1 For $\chi_{r}\left(P_{n} \odot C_{m}\right), 4 \leq r \leq \Delta-1$, define c_{9} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\begin{aligned}
& c_{9}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
& c_{9}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=3,4,5,3,4,5 \text {, } \\
& \text { for } m=6, r=4 \\
& c_{9}\left(x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}\right)=3,4,5,3,4,5 \text {, } \\
& \text { for } m=6, r=4 \\
& c_{9}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=3,4,5,6,3,5 \text {, } \\
& \text { for } m=6, r=5 \\
& c_{9}\left(x_{11}, x_{12}, x_{14}, x_{15}, x_{16}\right)=3,4,5,6,7,3 \text {, } \\
& \text { for } m=6, r=6 \\
& c_{9}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=3,4,5,6,7,8 \text {, } \\
& \text { for } m=6, r=7
\end{aligned}
$$

It easy to see that c_{9} is a map $c_{9}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, so it gives $\chi_{r}\left(P_{n} \odot C_{m}\right)=r+1,4 \leq r \leq \Delta-1$
Subcase 3.2The last for $\chi_{r}\left(P_{n} \odot C_{m}\right), r \geq \Delta$, define c_{10} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\begin{gathered}
c_{10}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=4,5,6,7,8,9
\end{gathered}
$$

$$
\begin{gathered}
\text { for } m=6, r=8 \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=4,5,6,7,8,9,10 \\
\text { for } m=7, r=9 \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}\right) \\
=4,5,6,7,8,9,10,11 \\
\text { for } m=8, r=10
\end{gathered}
$$

It easy to see that c_{10} is map $c_{10}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots$, $m+3\}$, so it given $\chi_{r}\left(P_{n} \odot C_{5}\right)=m+3, r \geq \Delta$.It concludes the proof.

Theorem 3. Let $G=P_{n} \odot W_{m}$ be a corona graph of P_{n} and W_{m}. For $n \geq 3, m \geq 3$, the r-dynamic chromatic number is:

$$
\begin{aligned}
& \chi_{r=1,2,3}(G)= \begin{cases}4, & m \text { even } \\
5, & m \text { odd }\end{cases} \\
& \chi_{r=4}(G)= \begin{cases}5, & m=3 k, k \geq 1 \\
& 7, \quad m=5 \\
6 & , \quad m \text { otherwise }\end{cases} \\
& \chi_{r}(G)=\left\{\begin{array}{c}
r+1, \quad 5 \leq r \leq \Delta-1 \\
m+4, \quad r \geq \Delta
\end{array}\right.
\end{aligned}
$$

Proof. The graph $P_{n} \odot W_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot W_{m}\right)=\left\{y_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\} \cup\left\{A_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n} \odot W_{m}\right)=$ $\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i j} x_{i(j+1)} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m-1\} \cup\left\{x_{i 1} x_{i m} ; 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{A_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{A_{i} y_{i} ; 1 \leq i \leq n\right\}$. The order of graph $P_{n} \odot W_{m}$ is $\left.\left|V\left(P_{n} \odot W_{m}\right)\right|=m n+2 n\right)$ and the size of graph $P_{n} \odot W_{m}$ is $\left|E\left(P_{n} \odot W_{m}\right)\right|=3 m n+$ $2 n-1$, thus $\Delta\left(P_{n} \odot W_{m}\right)=m+3$.
By observation 2, we have the following
$\chi_{r}\left(P_{n} \odot W_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \odot W_{m}\right)\right\}+1=\min \{r, m+$
$3\}+1$. To find the exact value of r-dynamic chromatic number of $P_{n} \odot W_{m}$, we define three case, namely for $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right), \chi_{r=4}\left(P_{n} \odot W_{m}\right)$ and $\chi_{r}\left(P_{n} \odot W_{m}\right)$.

Case 1

Subcase 1.1 For $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)$, define c_{11} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ even by the following:

$$
\begin{gathered}
c_{11}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{11}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{11}\left(x_{i j}\right)= \begin{cases}3 & j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
4 & , \\
j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m\end{cases}
\end{gathered}
$$

It easy to see that c_{11} is map $c_{11}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)=4, m$ even .

Subcase 1.2 For $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)$, define c_{12} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ odd by the following:

$$
\begin{gathered}
c_{12}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{12}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{12}\left(x_{i j}\right)=\left\{\begin{array}{cl}
3, & j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
4, & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
5, & j=m, 1 \leq i \leq n
\end{array}\right.
\end{gathered}
$$

It easy to see that c_{12} is a map $c_{12}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5\}$, so it gives $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)=5, m$ even.
Case 2
Subcase 2.1 For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{13}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=3 k, k \geq 1$ by the following:

$$
\begin{gathered}
c_{13}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{13}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
= \begin{cases}3 & , j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
4 & , j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
5 & , j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\end{cases}
\end{gathered}
$$

It easy to see that c_{13} is a map $c_{13}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, 5\}, so it given $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=5, m=3 k, k \geq 1$.
Subcase $\quad \mathbf{2 . 2}$ For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{14}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=5$ by the following:

$$
\begin{gathered}
c_{14}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{14}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{14}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=3,4,5,6,7
\end{gathered}
$$

It easy to see that c_{14} is a map $c_{14}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5,6,7\}$, so it gives $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=7, m=5$.
Subcase 2.3 For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define c_{15} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ otherwise by the following:

$$
\begin{gathered}
c_{15}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{15}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
= \begin{cases}3 & , j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m-1 \\
4 & j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m-1 \\
5 & j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m-1 \\
6, & j=m, 1 \leq i \leq n\end{cases}
\end{gathered}
$$

Fig.4: $\chi_{4}\left(P_{3} \odot W_{4}\right)=6$ withn $=3, \quad m=4, r=6$
It easy to see that c_{15} is map $c_{15}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5,6\}$, so it gives $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=6, m$ otherwise.
Case 3.
Subcase 3.1 For $\chi_{r}\left(P_{n} \odot W_{m}\right) 5 \leq r \leq \Delta-1$, define c_{16} $: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following:

$$
\left.\left.\left.\begin{array}{c}
c_{16}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{16}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,3,4,5,6, \\
\text { for } m=7, r=5
\end{array}\right\} \begin{array}{c}
c_{16}\left(x_{11}, x_{12}, x_{13} x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,4,5, \\
\text { for } m=7, r=6
\end{array}\right\} \begin{array}{c}
c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,8,5, \\
\text { for } m=7, r=7
\end{array}\right\} \begin{gathered}
c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,8,9, \\
\text { for } m=7, r=8
\end{gathered}
$$

It easy to see that c_{16} is a map $c_{16}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, so it gives $\chi_{r}\left(P_{n} \odot W_{m}\right)=r+1,5 \leq r \leq \Delta-1$.
Subcase 3.2 For $\chi_{r}\left(P_{n} \odot W_{m}\right), r \geq \Delta$, define c_{17} $: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following:

$$
\begin{aligned}
& c_{17}\left(y_{i}\right)=\left\{\begin{array}{cc}
1, & i=3 t+1, t \geq 0,1 \leq i \leq n \\
2, & i=3 t+2, t \geq 0,1 \leq i \leq n \\
3, & i=3 t, t \geq 1,1 \leq i \leq n
\end{array}\right. \\
& c_{17}\left(A_{i}\right)=\left\{\begin{array}{cc}
1, & i=4 t+3, t \geq 0,1 \leq i \leq n \\
2, & i=4 t, t \geq 1,1 \leq i \leq n \\
3, & i=4 t+1, t \geq 0,1 \leq i \leq n \\
4, & i=4 t+2, t \geq 0,1 \leq i \leq n
\end{array}\right. \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=4,5,6,7,8,9 \text {, } \\
& \text { for } m=6, r=9 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\right)=5,6,7,8,9,10 \text {, } \\
& \text { for } m=6, r=9 \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=4,5,6,7,8 \text {, } \\
& \text { for } m=5, r=8 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=5,6,7,8,9 \text {, } \\
& \text { for } m=5, r=8 \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=4,5,6,7 \text {, } \\
& \text { for } m=4, r=7 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}\right)=5,6,7,8 \text {, } \\
& \text { for } m=4, r=7
\end{aligned}
$$

It easy to see that c_{17} is map $c_{17}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots$,
$m+4\}$, so it gives $\chi_{r}\left(P_{n} \odot W_{m}\right)=m+4, r \geq \Delta$.
It concludes the proof.

III. CONCLUSION

We have found some r-dynamic chromatic number of corona product of graphs, namely $\chi_{r}\left(P_{n} \odot P_{m}\right)=$ $\chi_{r}\left(P_{n} \odot C_{m}\right)=\chi_{r}\left(P_{n} \odot W_{m}\right)=r+1$, for $4 \leq r \leq \Delta-1$. and $\chi_{r}\left(P_{n} \odot P_{m}\right)=\chi_{r}\left(P_{n} \odot C_{m}\right)=m+3$, for $r \geq \Delta$. All numbers attaina best lower bound. For the characterization of the lower bound of $\chi_{r}(G \odot H)$ for any connected graphs G and H, we have not found any result yet, thus we propose the following open problem.

Open Problem 1. Given that any connected graphs G and H. Determine the sharp lower bound of $\chi_{r}(G \odot H)$.

ACKNOWLEDGEMENT

We gratefully acknowledge to the support from CGANT University of Jember of year 2017.

REFERENCES

[1] Ali Taherkhani. On r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics 201 (2016) 222 - 227
[2] B. Montgomery, Dynamic Coloring of Graphs (Ph.D Dissertation), West Virginia University, 2001
[3] Hanna Furmanczyk, Marek Kubale. Equitable Coloring of Corona Products of Cubic Graphs is Harder Than Ordinary Coloring. Ars Mathematica Contemporanea 10 (2016) 333 - 347
[4] H.J. Lai, B. Montgomery. Dynamic Coloring of Graph. Department of Mathematics, West Virginia University, Mongantown WV 26506-6310. 2002
[5] H.J. Lai, B. Montgomery, H. Poon. Upper Bounds of Dynamic Chromatic Number. ArsCombinatoria. 68 (2003) 193 - 201
[6] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152-156.
[7] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012) 2098-2103.
[8] Ross Kang, Tobias Muller, Douglas B. West. On rDynamic Coloring of Grids. Discrete Applied Mathematics 186 (2015) 286 - 290
[9] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Chromatic Number of Graphs, Combinatorics and Graph, in: Contemporary

Mathematics - American Mathematical Society513
(2010) 11 - 18
[10] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Coloring of Cartesian Product Graphs, ArsCombinatoria 114 (2014) $161-167$
[11] SogolJahanbekam, Jaehoon Kim, Suil O, Douglas B. West. On r-Dynamic Coloring of Graph. Discrete

ijaers arika
 by ljaers Arika

Submission date: 01-Jun-2020 06:45PM (UTC+0700)
Submission ID: 1335850277
File name: IJAERS_arika_-_Copy.pdf (2.09M)
Word count: 4099
Character count: 13456

On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs

Arika Indah Kristiana ${ }^{1,2}$, Dafik ${ }^{1,2}$, M. Imam Utoyo ${ }^{4}$, Ika Hesti Agustin ${ }^{1,3}$
${ }^{1}$ CGANT University of Jember Indonesia
${ }^{2}$ Mathematics Edu. Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Depart. University of Jember, Indonesia
${ }^{4}$ Mathematics Depart. Univers ity of Airlangga, Surabaya, Indonesia

Abstract

This study is a natural extension of k-proper coloring of any simple and connected graph G. By an rdynamic coloring of a graph G, we mean a proper k coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number, written as $\chi_{r}(G)$, is the minimum k such that graph Ghas an r-dynamic k-coloring. In this paper we will study the r-dynamic chromatic number of the coronation of path and several graph. We denote the corona product of G and H by $G \odot H$. We will obtain the r dynamic chropatic number of $\chi_{r}\left(P_{n} \odot P_{m}\right), \chi_{r}\left(P_{n} \odot C_{m}\right)$ and $\chi_{r}\left(P_{n} \odot W_{m}\right)$ for $m, n \geq 3$.

Keyword-r-dynamic chromatic number, path, corona product.

I. INTRODUCTION

An r-dynamic coloring of a graph G is a proper k coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number, introducedby Montgomery [4] written as $\chi_{r}(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. The I-dynamic chromatic number of a graph G is $\chi_{1}(G)=\chi(G)$, well-known as the ordinary chromatic number of G. The 2 -dynamic chromatic number is simply said to be a dynamic chromatic 1 $_{\text {l }}$ umber, denoted by $\chi_{2}(G)=$ $\chi_{d}(G)$,see Montgomery [4]. The r-dynamic chromatic number has been studied by several authors, for instance 1 11], [5], [6], [7], [8], [10], [11].
The following observations are useful for our study, proposed by Jahanbekam[11].
Observation 1.[10] Always $\chi(G)=\chi_{1}(G) \leq \cdots \leq$ $\chi_{\Delta(G)}(G)$. If $r>\Delta(G)$, then $\chi_{r}(G)=\chi_{\Delta(G)}(G)$
Observation 2.Let $\Delta(G)$ be the largest degree of graph G. It holds $\chi_{r}(G) \geq \min \{\Delta(G), r\}+1$.

Given two simple graphs G and H, the corona product of G and H, denoted by $G \odot H$, is a connected graph obtained by taking a number of vertices $|V(G)|$ copy of H, and making the $i^{\text {th }}$ of $V(G)$ adjacent to every vertex of the $i^{\text {th }}$ copy of $V(H)$, Furmanczyk[3]. The following example is $P_{3} \odot C_{3}$.

Fig.1: Graph $P_{3} \odot C_{3}$
There have been many results already found, The first one was showed by Akbari et.al [10].They found that for every two natural number m and $n, m, n \geq 2$, the cartesian product of P_{m} and P_{n} is $\chi_{2}\left(P_{m} \square P_{n}\right)=4$ and if $31 m n$, then $\chi_{2}\left(C_{m} \square C_{2}=\right.$ 3 and $\chi_{2}\left(C_{m} \square C_{n}\right)=4$. In [2], they then conjectured $\chi_{2}(\mathrm{G}) \leq$ $\chi(G)+2$ when G is regular, which remains open. Akbari et.al. [9] alsoproved Montgomery's conjecture for bipaite regular graphs, as well as Lai, et.al. [5] provedthat $\chi_{2}(\mathrm{G}) \leqslant$
$\Delta(\mathrm{G})+1$ for $\Delta(G) \geq 4$ when no component is the 5 -cycle. ${ }^{2}$ y a 2 edy coloring algorithm, Jahanbekama [11] proved that $\chi_{r}(\mathrm{G}) \leq r \Delta(\mathrm{G})+1$, and equality holds for $\Delta(G)>2$ if and only if G is r-regular with diameter 2 and girth 5 . They improved the bewnd to $\chi_{r}(\mathrm{G}) \leq \Delta(\mathrm{G})+2 r-2$ when $\delta(G)$ $>2 r \ln n$ and $\chi_{r}(G) \leq \Delta(G)+r$ when $\delta(\mathrm{G})>r^{2} \ln n$.

II. THE RESULTS

We are ready to show our main theorems. There are three theorems found in this study. Those deal with corona product of graph P_{n} with P_{m}, Q_{1} and W_{m}.
Theorem 1. Let $G=P_{n} \odot P_{m}$ be a corona graph of P_{n} and P_{m}. For $n, m \geq 2$, the r-dynamic chromatic number is:

$$
\chi_{r}(G)=\left\{\begin{array}{cc}
3 & , r=1,2 \\
r+1, & 3 \leq r \leq \Delta-1 \\
m+3 & , r \geq \Delta
\end{array} \quad c_{3}\left(y_{i}\right)=\left\{\begin{array}{cl}
1, & i=3 t+1, t \geq 0,1 \leq i \leq n \\
2, & i=3 t+2, t \geq 0,1 \leq i \leq n \\
3, & i=3 t, t \geq 1,1 \leq i \leq n
\end{array}\right.\right.
$$

Proof. The graph $P_{n} \odot P_{m}$ is a connected graph with vertex $\operatorname{set} V\left(P_{n} \odot P_{m}\right)=\left\{y_{i}, 1 \leq i \leq n\right\} \cup\left\{x_{i j}\right\}_{5} \leq i \leq n, 1 \leq$ $j \leq m\}$ and edge set $E\left(P_{n} \odot P_{m}\right)=\left\{y_{i} y_{(i+1)} ; 1 \leq i \leq n-\right.$ 1\} $\cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{x_{i j}, x_{i(j+1)}\right) ; 1 \leq i \leq$ $n, 1 \leq j \leq m-1\}$. The order of graph $P_{n} \odot P_{m}$ is $\left|V\left(P_{n} \odot P_{m}\right)\right|=n(m+1)$ and the size of graph $P_{n} \odot P_{m}$ is $\left|E\left(P_{n} \odot P_{m}\right)\right|=2 m n-1$. Thus, $\Delta\left(P_{n} \odot P_{m}\right)=m+2$.

$$
\text { By observation } \quad 2, \quad{ }_{2}\left(P_{n} \odot P_{m}\right) \geq
$$ $\min \left\{r, \Delta\left(P_{n} \odot P_{m}\right)\right\}+1=\min \{r, m+2\}+1$. To find the exact value of r-dynamic chromatic number of $P_{n} \odot P_{m}$, we define two cases, namely for $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)$ and $\chi_{r}\left(P_{n} \odot P_{m}\right)$.

Case 1. For $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)$, define $c_{1}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2$, $\ldots, k\}$ where $n \geq 3, m \geq 3$, by the followi 7 :

$$
\begin{gathered}
c_{1}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & 7 \text { even, } 1 \leq i \leq n\end{cases} \\
c_{1}\left(x_{i j}\right)=\left\{\begin{aligned}
1 & , \quad i \text { even, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
2, & i \text { odd, } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
3, & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}\right.
\end{gathered}
$$

It easy to see that c_{1} is map $c_{1}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2,3\}$, thus it gives $\chi_{r=1,2}\left(P_{n} \odot P_{m}\right)=3$.

Case 2.

Subcase 2.1 $\mathrm{F}_{1 \mathrm{r}} \chi_{r}\left(P_{n} \odot P_{m}\right), 3 \leq r \leq \Delta-1$, define c_{2} : $V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:

$$
\left.\begin{array}{c}
c_{2}\left(y_{i}\right)=\left\{\begin{array}{l}
1, \quad i \text { odd, } 1 \leq i \leq n \\
2,
\end{array}, i \text { even, } 1 \leq i \leq n\right.
\end{array}\right\} \begin{gathered}
c_{2}\left(x_{11}, x_{12}, x_{13}\right)=2,3,4 \\
\text { for } m=3, r=3 \\
c_{2}\left(x_{21}, x_{22}, x_{23}\right)=1,3,4, \\
\text { for } m=3, r=3 \\
c_{2}\left(x_{11}, x_{12}, x_{13}\right)=3,4,5 \\
\text { for } m=3, r=4 \\
c_{2}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=2,3,4,5 \\
\text { for } m=4, r=4 \\
c_{2}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=3,4,5,6 \\
\text { for } m=4, r=5
\end{gathered}
$$

It easy to see that c_{2} is a map $c_{2}: V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, thus it gives $\chi_{r}\left(P_{n} \odot P_{m}\right)=r+1,3 \leq r \leq \Delta-1$
Subcase 2.2 The ${ }_{1}$ ast for $\chi_{r}\left(P_{n} \odot P_{m}\right), r \geq \Delta$, define c_{3} : $V\left(P_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$, by the following:
$P_{n} \odot C_{m} \quad$ is $\quad\left|E\left(P_{n} \odot C_{m}\right)\right|=2 m n+n-1$,
thus $\Delta\left(P_{n} \odot C_{m}\right)=m+2$. By Observation 2 , we have $\chi_{r}\left(P_{n} \odot{ }_{2 n}\right) \geq \min \left\{r, \Delta\left(P_{n} \odot C_{m}\right)\right\}+1=\min \{r, m+$ $2\}+1$. To find the exact value of r-dynamic chromatic
number of $P_{n} \odot C_{m}$, we define three case, namely for $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right), \chi_{r=3}\left(P_{n} \odot C_{m}\right)$ and $\chi_{r}\left(P_{n} \odot C_{m}\right)$.

Case 1.
Subcase 1.1 $\mathrm{F}_{1} \quad \chi_{r=1,2}\left(P_{n} \odot C_{m}\right)$, define $\quad c_{4} \quad$: $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ even or $m=$ $3 k, k \geq 1$, by the following:

$$
c_{4}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\ 2 & , i \text { even, } 1 \leq i \leq n\end{cases}
$$

$$
c_{4}\left(x_{i j}\right)=\left\{\begin{array}{cc}
\frac{7}{2}, \quad i \text { odd, }, j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
3, j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m
\end{array}\right.
$$

It easy to see that c_{4} is a map $c_{4}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3\}$,so it gives $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)=3, m$ even or $m=3 k, k \geq 1$
Subcase 1.2 For $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)$ define c_{5} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ odd or $m=5$,, by the following:

$$
c_{5}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\ 2, & i \text { even, } 1 \leq i \leq n\end{cases}
$$

It easy to see that c_{5} is a map $c_{5}: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=1,2}\left(P_{n} \odot C_{m}\right)=4, m$ odd or $m=5$

Fig.3: $\chi_{2}\left(P_{3} \odot C_{5}\right)=4$ with $n=3, m=5, r=2$
Case 2.
Subcase 2.1 For $\chi_{r=3}\left(P_{n} \odot C_{m}\right)$, define c_{6} : $V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=3 k, k \geq 1$, by the following:

$$
c_{6}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\ 2, & i \text { even, } 1 \leq i \leq n\end{cases}
$$

$c_{6}\left(x_{i j}\right)$
$=\left\{\begin{array}{cc}1 & , \quad i \text { even, } j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 2 & , \quad i \text { odd, } j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\ 3 & , \quad j=3 t+2, t 10,1 \leq i \leq n, 1 \leq j \leq m \\ 4 & , j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\end{array}\right.$
www.ijaers.com

$$
\begin{gathered}
\text { for } m=6, r=8 \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=4,5,6,7,8,9,10 \\
\text { for } m=7, r=9 \\
c_{10}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}\right) \\
=4,5,6,7,8,9,10,11
\end{gathered}
$$

$$
\text { for } m=8, r=10
$$ It easy to see that c_{10} is map $c_{10}: V\left(P_{n} \odot C_{m}\right\}\{1,2, \ldots$,

$m+3\}$, so it given $\chi_{r}\left(P_{n} \odot C_{5}\right)=m+3, r \geq \Delta$.It concludes the proof.

Theorem 3. Let $G=P_{n} \odot W_{m}$ be a corona graph of P_{n} and W_{m}. For $n \geq 3, m \geq 3$, the r -dynamic chromatic number is:

Proof. The graph $P_{n} \odot W_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot W_{m}\right)=\left\{y_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\} \cup\left\{A_{i} ; 1 \leq i \leq n\right\}$ and edge $5^{\text {et }} E\left(P_{n} \odot W_{m}\right)=$ $\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i j} x_{i(j+1)} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m-1\} \cup\left\{x_{i 1} x_{i m} ; 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{A_{i} x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{A_{i} y_{i} ; 1 \leq i \leq n\right\}$.
The order of graph $P_{n} \odot W_{m}$ is $\left.\left|V\left(P_{n} \odot W_{m}\right)\right|=m n+2 n\right)$ and the size of graph $P_{n} \odot W_{m}$ is $\left|E\left(P_{n} \odot W_{m}\right)\right|=3 m n+$ $2 n-1$, thus $\Delta\left(P_{n} \odot W_{m}\right)=m+3$.
By observation 2, we have the following
$\chi_{r}\left(P_{n} \odot 2_{n}\right) \geq \min \left\{r, \Delta\left(P_{n} \odot W_{m}\right)\right\}+1=\min \{r, m+$
$3\}+1$. To find the exact value of r-dynamic chromatic number of $P_{n} \odot W_{m}$, we define three case, namely for $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right), \chi_{r=4}\left(P_{n} \odot W_{m}\right)$ and $\chi_{r}\left(P_{n} \odot W_{m}\right)$.
Case 1
Subcase 1.1 $\quad \mathrm{F}_{1} \quad \chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{11}$ $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ even by the following:

$$
\begin{gathered}
c_{11}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{11}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd } 5 \leq i \leq n\end{cases} \\
c_{11}\left(x_{i j}\right)= \begin{cases}3 & j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
4, & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m\end{cases}
\end{gathered}
$$

It easy to see that c_{11} is map $c_{11}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4\}$, so it gives $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)=4, m$ even.

$$
\begin{aligned}
& \chi_{r=1,2,3}(G)= \begin{cases}4, & m \text { even } \\
5, & m \text { odd }\end{cases} \\
& \chi_{r=4}(G)= \begin{cases}5, & m=3 k, k \geq 1 \\
& 7, \quad m=5 \\
6, & m \text { otherwise }\end{cases} \\
& \chi_{r}(G)=\left\{\begin{aligned}
r+1, & 5 \leq r \leq \Delta-1 \\
m+4, & r \geq \Delta
\end{aligned}\right.
\end{aligned}
$$

Subcase 1.2 $\quad \mathrm{Foq}_{1} \quad \chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{12}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ odd by the

$$
\begin{aligned}
& \text { following: } \\
& \qquad c_{12}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
& c_{12}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
& c_{12}\left(x_{i j}\right)= \begin{cases}3, & j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
4, & j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
5, & j=m, 1 \leq i \leq n\end{cases}
\end{aligned}
$$

It easy to see that c_{12} is a map $c_{12}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, 5\}, so it gives $\chi_{r=1,2,3}\left(P_{n} \odot W_{m}\right)=5, m$ even.
Case 2
Subcase 2.1 For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define c_{13} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=3 k, k \geq 1$ by the following:

$$
\begin{gathered}
c_{13}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{13}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{13}\left(x_{i j}\right) \\
= \begin{cases}3, & j=3 t+1, t \geq 0,5 \leq i \leq n, 1 \leq j \leq m \\
4 & j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m \\
5 & j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m\end{cases}
\end{gathered}
$$

1
It easy to see that c_{13} is a map $c_{13}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, 5\}, so it given $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=5, m=3 k, k \geq 1$.
Subcase $2.2 \quad{ }_{1}$ For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define c_{14} : $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m=5$ by the following:

$$
\begin{gathered}
c_{14}\left(y_{i}\right)= \begin{cases}1, & , \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{14}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
c_{14}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=3,4,5,6,7
\end{gathered}
$$

1 easy to see that c_{14} is a map $c_{14}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5,6,7\}$, so it gives $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=7, m=5$.
Subcase $\quad 2.3 \quad 1$ For $\quad \chi_{r=4}\left(P_{n} \odot W_{m}\right)$, define $\quad c_{15}$: $V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m$ otherwise by the following:

$$
\begin{gathered}
c_{15}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
c_{15}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
= \begin{cases}3, & j=3 t+1, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m-1 \\
4, & j=3 t+2, t \geq 0,1 \leq i \leq n, 1 \leq j \leq m-1 \\
5 & j=3 t, t \geq 1,1 \leq i \leq n, 1 \leq j \leq m-1 \\
6, & j=m, 1 \leq i \leq n\end{cases}
\end{gathered}
$$

Fig.4: $: \chi_{4}\left(P_{3} \odot W_{4}\right)=6$ withn $=3, \quad m=4, r=6$ It easy to see that c_{15} is map $c_{15}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2,3,4$, $5,6\}$, so it gives $\chi_{r=4}\left(P_{n} \odot W_{m}\right)=6, m$ otherwise.
Case 3.
Subcase 3.1 For $1_{1}\left(P_{n} \odot W_{m}\right) 5 \leq r \leq \Delta-1$, define c_{16} $: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following:

$$
\begin{aligned}
& c_{16}\left(y_{i}\right)= \begin{cases}1, & i \text { odd, } 1 \leq i \leq n \\
2, & i \text { even, } 1 \leq i \leq n\end{cases} \\
& c_{16}\left(A_{i}\right)= \begin{cases}1, & i \text { even, } 1 \leq i \leq n \\
2, & i \text { odd, } 1 \leq i \leq n\end{cases} \\
& c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,3,4,5,6 \text {, } \\
& \text { for } m=7, r=5 \\
& c_{16}\left(x_{11}, x_{12}, x_{13} x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,4,5 \text {, } \\
& \text { for } m=7, r=6 \\
& c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,8,5 \text {, } \\
& \text { for } m=7, r=7 \\
& c_{16}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}\right)=3,4,5,6,7,8,9 \text {, } \\
& \text { for } m=7, r=8
\end{aligned}
$$

It easy to see that c_{16} is a map $c_{16}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots$, $r+1\}$, so it gives $\chi_{r}\left(P_{n} \odot W_{m}\right)=r+1,5 \leq r \leq \Delta-1$.
Subcase 3.2 For $\chi_{r}\left(P_{n} \odot W_{m}\right), r \geq \Delta$, define c_{17} $: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following:

$$
\begin{aligned}
& c_{17}\left(y_{i}\right)=\left\{\begin{array}{cc}
1, & i=3 t+1, t \geq 0,1 \leq i \leq n \\
2, & i=3 t+2, t \geq 0,1 \leq i \leq n \\
3, & i=3 t, t \geq 1,1 \leq i \leq n
\end{array}\right. \\
& c_{17}\left(A_{i}\right)=\left\{\begin{array}{cc}
1 \quad, \quad i=4 t+3, t \geq 0,1 \leq i \leq n \\
2, & i=4 t, t \geq 1,1 \leq i \leq n \\
3, & i=4 t+1, t \geq 0,1 \leq i \leq n \\
4, & i=4 t+2, t \geq 0,1 \leq i \leq n
\end{array}\right. \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right)=4,5,6,7,8,9 \text {, } \\
& \text { for } m=6, r=9 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}\right)=5,6,7,8,9,10 \text {, } \\
& \text { for } m=6, r=9 \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\right)=4,5,6,7,8, \\
& \text { for } m=5, r=8 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\right)=5,6,7,8,9 \text {, } \\
& \text { for } m=5, r=8 \\
& c_{17}\left(x_{11}, x_{12}, x_{13}, x_{14}\right)=4,5,6,7 \text {, } \\
& 4 \text { for } m=4, r=7 \\
& c_{17}\left(x_{21}, x_{22}, x_{23}, x_{24}\right)=5,6,7,8 \text {, } \\
& \text { for } m=4, r=7
\end{aligned}
$$

It easy to see that c_{17} is map $c_{17}: V\left(P_{n} \odot W_{m}\right) \rightarrow\{1,2, \ldots$, $m+4\}$, so it gives $\chi_{r}\left(P_{n} \odot W_{m}\right)=m+4, r \geq \Delta$.
It concludes the proof.

III. CONCLUSION

We have found some r-dynamic chromatic number of corona product of graphs, namely $\chi_{r}\left(P_{n} \odot P_{m}\right)=$ $\chi_{r}\left(P_{n} \odot C_{m}\right)=\chi_{r}\left(P_{n} \odot W_{m}\right)=r+1$, for $4 \leq r \leq \Delta-1$. and $\chi_{r}\left(P_{n} \odot P_{m}\right){ }_{2} \chi_{r}\left(P_{n} \odot C_{m}\right)=m+3$, for $r \geq \Delta$. All numbers attaina best lower bound. For the characterization of the lower bound of $\chi_{r}(G \odot H)$ for any connected graphs G and H, we have not found any result yet, thus we propose the following open problem.

Open Problem 1. Given that any connected graphs G and H. Determine the sharp lower bound of $\chi_{r}(G \odot H)$.

ACKNOWLEDGEMENT

We gratefully acknowledge to the support from CGANT Univers ity of Jember of year 2017.

REFERENCES

[1] Ali Taherkhani. On r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics 201 (2016) 222 -227
[2] B. Montgomery, Dynamic Coloring of Graphs (Ph.D Dissertation), West Virginia University, 2001
[3] Hanna Furmanczyk, Marek Kubale. Equitable Coloring of Corona Products of Cubic Graphs is Harder Than Ordinary Coloring. Ars Mathematica Contemporanea 10 (2016) $333-347$
[4] HJ. Lai, B. Montgomery. Dynamic Coloring of Graph. Department of Mathematics, West Virginia University, Mongantown WV 26506-6310. 2002
[5] HJ. Lai, B. Montgomery, H. Poon. Upper Bounds of Dynamic Chromatic Number. ArsCombinatoria. 68 (2003) 193-201
[6] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152-156.
[7] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012) 2098-2103.
[8] Ross Kang, Tobias Muller, Douglas B. West. On rDynamic Coloring of Grids. Discrete Applied Mathematics 186 (2015) $286-290$
[9] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Chromatic Number of Graphs,
Combinatorics and Graph, in: Contemporary

Mathematics - American Mathematical Society 513
(2010) 11 - 18
[10] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Coloring of Cartesian Product Graphs, ArsCombinatoria 114 (2014) 161 - 167
[11] SogolJahanbekam, Jaehoon Kim, Suil O, Douglas B. West. On r-Dynamic Coloring of Graph. Discrete Applied Mathematics 206 (2016) $65-72$

SIMILARITY INDEX

25\%
INTERNET SOURCES

26\%
PUBLICATIONS
\%
STUDENT PAPERS

Arika Indah Kristiana, M. Imam Utoyo, Dafik.
"On the r-dynamic chromatic number of the
corronation by complete graph", Journal of Physics: Conference Series, 2018
Publication

2
Dafik, D.E.W. Meganingtyas, K. Dwidja
Purnomo, M. Dicky Tarmidzi, Ika Hesti Agustin.
" Several classes of graphs and their -dynamic chromatic numbers ", Journal of Physics:
Conference Series, 2017
Publication

Exclude quotes	On \quad Exclude matches	$<3 \%$
Exclude bibliography	On	

