PAPER • OPEN ACCESS

Local antimagic *r*-dynamic coloring of graphs

To cite this article: A I Kristiana et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 243 012077

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

Local antimagic *r*-dynamic coloring of graphs

A I Kristiana^{1,2,3}, M I Utoyo³, Dafik^{1,2}, I H Agustin^{1,2}, R Alfarisi^{1,5}

¹CGANT-University of Jember, Jember, Indonesia ²University of Jember, Jember, Indonesia ³University of Airlangga, Surabaya, Indonesia

E-mail: arikakristiana@gmail.com

Abstract. Let G = (V, E) be a connected graph. A bijection function $f : E(G) \rightarrow \{1, 2, 3, \dots, E(G)\}$ is called a local antimagic labeling if for all $uv \in E(G)$ s, $w(u) \neq w(v)$, where $w(u) = \sum_{e \in E(u)} f(e)$. Such that, local antimagic labeling induces a proper vertex k-coloring of graph G that the neighbors of any vertex u receive at least min $\{r, d(v)\}$ different colors. The local antimagic r-dynamic chromatic number, denoted by $\chi_r^{la}(G)$ is the minimum k such that graph G has the local antimagic r-dynamic vertex k-coloring. In this paper, we will present the basic results namely the upper bound of the local antimagic r-dynamic chromatic number of some classes graph.

1. Introduction

In this paper, all graph is simple, connected and undirected, G = (V, E), on the vertex set V(G)and the set E(G). For vertex, v of G is denoted by N(v) and the degree of v is denoted by d(v). The maximum and minimum of graph G are denoted by $\Delta(G)$ and $\delta(G)$. Arumugam [4], introduced the concept of local antimagic chromatic number of graphs. Then it is followed by Albirri [2] which did some research of another graphs.

Definition 1.1 [4] Let G = (V(G), E(G) be a graph of order n and size m having no isolated vertices. A bijection $f : E(G) \to \{1, 2, 3, ..., m\}$ is called a local antimagic labeling if for all $uv \in E(G)$ we have $w(u) \neq w(v)$, where for $w(u) = \sum_{e \in E(u)} f(e)$. A graph G is local antimagic labeling.

Montgomery [8] introduced the concept of r-dynamic coloring, definition of r-dynamic coloring as follows,

Definition 1.2 [8] An r-dynamic coloring of a graph G is defined to be a map c from V to the set of colors such that

- If $uv \in E(G)$, then $c(u) \neq c(v)$, and
- For each vertex $v \in V(G)$, $|c(N(v))| \ge \min\{r, d(v)\}$.

The minimum k such that graph G with an r-dynamic k-coloring is called the r-dynamic chromatic number of graph G, $\chi_r(G)$. This concept was introduced by Montgomery [8]. He found lower bound of the r- dynamic chromatic number, $\chi_r(G) \ge \min\{\Delta(G), r\} + 1$.

In this paper, we introduce the new concept which the combination of local antimagic labeling [4] and r-dynamic chromatic number [3]. The local antimagic labeling induces a proper vertex k-coloring of graph G where the vertex v is assigned the color w(v) such that the neighbors of any vertex v receive at least min $\{r, d(v)\}$ different colors.

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

2. Main Result

In the paper, we have the new concept which combine of local antimagic labeling and *r*-dynamic chromatic number.

Definition 2.1 Let G = (V, E) be a graph of size m having no isolated vertices. A bijection $f: E(G) \rightarrow \{1, 2, 3, \dots, m\}$ is called local antimagic r-dynamic coloring, such that:

- If $uv \in E(G)$, then $w(u) \neq w(v)$, where $w(u) = \sum_{e \in E(u)} f(e)$ and
- For each vertex $v \in V(G)$, $|w(N(v))| \ge \min\{r, d(v)\}$.

Definition 2.2 The local antimagic r-dynamic chromatic number of graph G, denoted by $\chi_r^{la}(G)$ is the minimum k such that graph G has an local antimagic r-dynamic vertex k-coloring induced by local antimagic labelings.

We find the lower bound of local antimagic rdynamic chromatic number of G. We get the local antimagic r-dynamic chromatic number of some classes graphs namely path, cycle, path, star, and complete.

Lemma 2.1 Let G be a connected graph with order at least 3, then local antimagic r-dynamis chromatic number is $\chi_r^{la}(G) \geq 2$.

Theorem 2.1 Let P_n be a path graph with order n, for $n \ge 2$ then local antimagic r-dynamic chromatic number is

$$\chi_r^{la}(P_n) \leq \begin{cases} 3, & \text{if } r = 1\\ 4, & \text{if } r \ge 2 \text{ and } n = 5\\ n, & \text{if } r \ge 2 \text{ and } n = 3, 4\\ \frac{n+4}{3}, & \text{if } r \ge 2 \text{ and } n \equiv 5 \text{ mod } 6, n \neq 5\\ \frac{n+7}{3}, & \text{if } r \ge 2 \text{ and } n \equiv 2 \text{ mod } 6\\ \frac{n+8}{3}, & \text{if } r \ge 2 \text{ and } n \equiv 1 \text{ mod } 3, n \neq 4\\ \frac{n+9}{3}, & \text{if } r \ge 2 \text{ and } n \equiv 0 \text{ mod } 3, n \neq 3 \end{cases}$$

Proof 2.1 Case 1: For $n \equiv 5 \mod 6$, we define a bijection $f : E(P_n) \rightarrow \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n-i-1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+i-5}{3}, & \text{if } i \equiv 1 \mod 3\\ n-1, & \text{if } i = 1 \end{cases}$$

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n-1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{4n-5}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n+2i-5}{3}, & \text{if } i \equiv 2 \mod 3\\ n-1, & \text{if } i = 1\\ n-2, & \text{if } i = n\\ n, & \text{if } i = 2 \end{cases}$$

From the weight of vertex x_i in path P_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n - 1, n, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n+5}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n+17}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{4n-5}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{4n-5}$

 $|w(u)| \ge \min\{r, d(u)\}$. We obtain that $\chi_r^{la}(P_n) \le \frac{n+4}{3}$.

Case 2: For $n \equiv 2 \mod 6$, we define a bijection $f : E(P_n) \to \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n-i-1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+i-5}{3}, & \text{if } i \equiv 1 \mod 3\\ n-1, & \text{if } i = 1 \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n-1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{4n-5}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n+2i-5}{3}, & \text{if } i \equiv 2 \mod 3\\ n-1, & \text{if } i = 1\\ n-2, & \text{if } i = n\\ n, & \text{if } i = 2 \end{cases}$$

From the weight of vertex x_i in path P_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n - 1, n, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n+5}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n-1}{3}, \frac{2n-1}{$ $|w(u)| \ge min\{r, d(u)\}$. We obtain that $\chi_r^{la}(P_n) \le \frac{n+7}{3}$.

Case 3: For $n \equiv 1 \mod 3$, we define a bijection $f : E(P_n) \to \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n-i+1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+i-3}{3}, & \text{if } i \equiv 1 \mod 3\\ n-1, & \text{if } i = 1 \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{4n-1}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n+2i-3}{3}, & \text{if } i \equiv 2 \mod 3\\ n-1, & \text{if } i = 1\\ \frac{n+2}{3}, & \text{if } i = n\\ n, & \text{if } i = 2 \end{cases}$$

From the weight of vertex x_i in path P_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n - 1, n, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n+5}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{4n-5}{$

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

 $\frac{2n+11}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n+17}{3}, \dots, \frac{2n-1}{3}, \frac{4n-5}{3}, n-2.$ Furthermore, it shows that every vertex has $|w(u)| \ge \min\{r, d(u)\}$. We obtain that $\chi_r^{la}(P_n) \le \frac{n+8}{3}$.

Case 4: For $n \equiv 0 \mod 3$, we define a bijection $f: E(P_n) \to \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n-i}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+i-4}{3}, & \text{if } i \equiv 1 \mod 3\\ n-1, & \text{if } i = 1 \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

 $w(x_i) = \begin{cases} \frac{2n}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{4n-3}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n+2i-4}{3}, & \text{if } i \equiv 2 \mod 3\\ n-1, & \text{if } i \equiv 1\\ \frac{n}{3}, & \text{if } i = n\\ n, & \text{if } i = 2 \end{cases}$

From the weight of vertex x_i in path P_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n - 1, n, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n+5}{3}, \frac{2n-1}{3}, \frac{4n-5}{3}, \frac{2n-1}{3}, \frac{2n-1}{3},$

 $|w(u)| \ge \min\{r, d(u)\}$. We obtain that $\chi_r^{la}(P_n) \le \frac{n+9}{3}$.

Case 5: For n = 5, we define a bijection $f : E(P_5) \to \{1, 2, 3, ..., 4\}$. We have edge label of path P_5 , f(e): 1, 3, 2, 4 and vertex weight w(v): 1, 4, 5, 6, 4. Based on the vertex weight that for any two adjacent vertices have distict weight and satisfy $|w(u)| \ge \min\{r, d(u)\}$. Such that, we obtain that $\chi_2^{la}(P_5) \leq 4$.

Case 6: For n = 3, 4, we define a bijection $f : E(P_n) \to \{1, ..., n-1\}$. We have edge label of path P_3 , f(e): 1, 2 and vertex weight w(v): 1, 3, 2. We have edge label of path P_4 , f(e): 1, 3, 2and vertex weight w(v): 1, 4, 5, 2. Hence, we obtain that $\chi_r^{la}(P_n) \leq n$. The proof is complete.

Theorem 2.2 Let C_n be a cycle graph with order n, for $n \geq 3$ then local antimagic r-dynamic chromatic number is

$$\chi_r^{la}(C_n) \leq \begin{cases} 3, & \text{if } r = 1\\ n, & \text{if } r \ge 2 \text{ and } n = 3, 4, 5\\ \lceil \frac{n}{3} \rceil + 2, & \text{if } r \ge 2 \text{ and } n \equiv 1, 2, 3 \text{ mod } 6\\ \lceil \frac{n}{3} \rceil + 1, & \text{if } r \ge 2 \text{ and } n \equiv 0, 4, 5 \text{ mod } 6 \end{cases}$$

Proof 2.2 For r = 1 in [4], $\chi_{la}(C_n) = \chi_1^{la}(C_n) = 3$. For $r \ge 2$, we divide into some cases as follows.

Case 1: For $n \equiv 1 \mod 6$, we define a bijection $f : E(C_n) \longrightarrow \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+2}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n-i}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n+i-2}{3}, & \text{if } i \equiv 0 \mod 3\\ n, & \text{if } i = n \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{4n-1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+2i-5}{3}, & \text{if } i \equiv 1 \mod 3\\ n+1, & \text{if } i = 1\\ 2n-1, & \text{if } i = n \end{cases}$$

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

From the weight of vertex x_i in cycle C_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n + 1, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+3}{3}, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+1}{3}, \frac{2n+1}{3}$

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+2}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n-i+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n+i-1}{3}, & \text{if } i \equiv 0 \mod 3\\ n, & \text{if } i = n \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+2}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{4n+1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+2i}{3}, & \text{if } i \equiv 1 \mod 3\\ n+1, & \text{if } i = 1 \end{cases}$$

From the weight of vertex x_i in cycle C_n , we can see that for every two adjacent vertices have

 $\begin{array}{l} \text{distinct weight namely } w(v) = n + 1, \frac{2n+2}{3}, \frac{4n+1}{3}, \frac{2n+8}{3}, \frac{2n+2}{3}, \frac{4n+1}{3}, \frac{4n+1$

Case 3: For $n \equiv 3 \mod 6$, we define a bijection $f: E(C_n) \longrightarrow \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+2}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n-i+2}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n+i}{3}, & \text{if } i \equiv 0 \mod 3\\ n, & \text{if } i = n \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+3}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{4n+3}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+2i+1}{3}, & \text{if } i \equiv 1 \mod 3\\ n+1, & \text{if } i = 1 \end{cases}$$

From the weight of vertex x_i in cycle C_n , we can see that for every two adjacent vertices have distinct weight namely $w(v); n+1, \frac{2n+3}{3}, \frac{4n+3}{3}, \frac{2n+9}{3}, \frac{2n+3}{3}, \frac{4n+3}{3}, \frac{2n+3}{3}, \frac{4n+3}{3}, \frac{4n+3$

Case 4: For $n \equiv 4 \mod 6$, we define a bijection $f : E(C_n) \longrightarrow \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+2}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n-i}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n+i-2}{3}, & \text{if } i \equiv 0 \mod 3\\ n, & \text{if } i = n \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+1}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{4n-1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+2i-1}{3}, & \text{if } i \equiv 1 \mod 3\\ n+1, & \text{if } i = 1\\ 2n-1, & \text{if } i = n \end{cases}$$

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

From the weight of vertex x_i in cycle C_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n + 1, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+7}{3}, \frac{2n+1}{3}, \frac{4n-1}{3}, \frac{2n+1}{3}, \frac{2n+1}{3}$

 $|w(u)| \ge \min\{r, d(u)\}$. We obtain that $\chi_r^{la}(C_n) \le \frac{n+5}{3}$. **Case 5**: For $n \equiv 5 \mod 6$, we define a bijection $f: E(C_n) \to \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+2}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n-i+2}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n+i-1}{3}, & \text{if } i \equiv 0 \mod 3\\ n, & \text{if } i = n \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+2}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{4n+1}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+2i}{3}, & \text{if } i \equiv 1 \mod 3\\ n+1, & \text{if } i = 1 \end{cases}$$

From the weight of vertex x_i in cycle C_n , we can see that for every two adjacent vertices have distinct weight namely $w(v) = n + 1, \frac{2n+2}{3}, \frac{4n+1}{3}, \frac{4n+1}{3}$

 $\min\{r, \frac{d(u)\}}{2}$. We obtain that $\chi_r^{la}(C_n) \leq \frac{n+4}{3}$.

Case 6: For $n \equiv 0 \mod 6$, we define a bijection $f: E(C_n) \rightarrow \{1, 2, 3, ..., n\}$ as follows

$$f(x_i x_{i+1}) = \begin{cases} \frac{i+2}{3}, & \text{if } i \equiv 1 \mod 3\\ \frac{2n-i+2}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{2n+i}{3}, & \text{if } i \equiv 0 \mod 3 \end{cases}$$

From the labels f, we obtain the vertex weight $w(u) = \sum_{e \in E(u)} f(e)$ as follows.

$$w(x_i) = \begin{cases} \frac{2n+3}{3}, & \text{if } i \equiv 2 \mod 3\\ \frac{4n+3}{3}, & \text{if } i \equiv 0 \mod 3\\ \frac{2n+2i+1}{3}, & \text{if } i \equiv 1 \mod 3\\ n+1, & \text{if } i = 1 \end{cases}$$

From the weight of vertex x_i in cycle C_n , we can see that for every two adjacent vertices have distinct weight namely w(v); n + 1, $\frac{2n+3}{3}$, $\frac{4n+3}{3}$, $\frac{2n+9}{3}$, $\frac{2n+3}{3}$, $\frac{4n+3}{3}$, $\frac{4n+3}{3}$, $\frac{2n+3}{3}$, $\frac{4n+3}{3}$,

 $\min\{r, d(u)\}$. We obtain that $\chi_r^{la}(C_n) \leq \frac{n+3}{3}$.

Case 7: For n = 3, 4, 5, Define a bijection $f : E(C_n) \to \{1, 2, 3, ..., n\}$. We have edge label of cycle C_n as follows

- We have edge label of cycle C_3 , f(e): 1, 2, 3 and vertex weight w(v): 4, 3, 5
- We have edge label of cycle C_4 , f(e): 1, 3, 4, 2 and vertex weight w(v): 3, 4, 7, 6
- We have edge label of cycle C_5 , f(e): 1, 3, 5, 2, 4 and vertex weight w(v): 5, 4, 8, 7, 6

Hence, we obtain that $\chi_r^{la}(C_n) \leq n$.

From Case 1-7, we obtain that for $n \equiv 1, 2, 3 \pmod{6}$, $\chi_r^{la}(C_n) \leq \lfloor \frac{n}{3} \rfloor + 2$ and for $n \equiv 0, 4, 5$ (mod 6), $\chi_r^{la}(C_n) \leq \left\lceil \frac{n}{3} \right\rceil + 1$. The proof is complete.

Theorem 2.3 Let S_n be a star graph with order n+1, for $n \ge 3$ then local antimagic r-dynamic chromatic number is $\chi_r^{la}(S_n) = n + 1.$

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

Figure 2. $\chi_r^{la}(S_9) = 10$

Proof 2.3 Consider the star graph, S_n with central vertex v_0 , $d(v_0) = n$ and vertices v_i , $d(v_i) = 1$, $1 \le i \le n$. The order of star graph is n+1 and the size of star graph is $|E(S_n)| = n$, namely $e_i = v_0v_i, 1 \le i \le n$. Define a bijection $f: E(S_n) \to \{1, 2, 3, ..., n\}$ as, $f(e_i) = i, 1 \le i \le n$ such that $w(v_0) = \sum_{k=1}k, 1 \le k \le n$ and $w(v_i) = i, 1 \le i \le n$. Hence, it shows $|w(N(v_0))| = n \ge \min\{r, d(v_0)\}$ and $|w(N(v_i))| = 1 \ge \min\{r, d(v_i)\}$. We obtain that $\chi_r^{la}(S_n) = n + 1$.

Theorem 2.4 Let K_n be a complete graph with order n, for $n \geq 3$ then local antimagic rdynamic chromatic number is $\chi_r^{la}(K_n) = n$.

Proof 2.4 Consider the complete graph, K_n vertices v_i , $d(v_i) = n - 1, 1 \leq i \leq n$. The order of complete graph is n and the size of star graph is $|E(K_n)| = \frac{n(n-1)}{2}$, namely $e_j = v_i v_{i+k}, 1 \leq i \leq n, 1 \leq k \leq n-i$. Define a bijection $f : E(K_n) \to \{1, 2, 3, ..., \frac{n(n-1)}{2}\}$ as, $f(e_j) = j, 1 \leq j \leq \frac{n(n-1)}{2}$ such that $w(v) \neq w(u)$ every $e = uv, e \in E(K_n)$. Hence, for every $v \in V(G)$, it shows $|w(N(v))| = n - 1 \geq \min\{r, d(v)\}$. We obtain that $\chi_r^{la}(K_n) = n$.

3. Conclusion

We have found the concept local antimagic *r*-dynamic coloring. We find the basic results namely the upper bound of the local antimagic *r*-dynamic chromatic number of some classes graph, namely path, cycle, star, and complete graph

Acknowledgement

We gratefully acknowledge the support from University of Airlangga, Surabaya and CGANT University of Jember Indonesian of year 2018.

References

- Agustin I H, Hasan M, Dafik, Alfarisi R, Kristiana A I and Prihandini R M 2018 Local edge antimagic coloring of comb product of graph *Journal of Physics: Conf. Series* Vol. 1008
- [2] Albirri E R, Dafik, Slamin, Agustin I H, and Alfarisi R 2018 On the local edge antimagicness of m-splitting graphs Journal of Physics: Conf. Series Vol 1008 012044

ICEGE 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 doi:10.1088/1755-1315/243/1/012077

- [3] Alfarisi R, Dafik, Kristiana A I, Albirri E R, and Agustin I H 2018 Non-isolated resolving number of graphs with homogeneous pendant edges *AIP Conference Proceeding* 020012
- [4] Arumugam S, Premalatha K, Baca M and Semanicova-Fenovcikova A 2017 Local Antimagic Vertex Coloring of a Graph Graphs and Combinatorics Vol.33 275-285.
- [5] Kristiana A I, Utoyo M I, Dafik 2018 On the r-dynamic chromatic number of the corronation by complete graph Journal of Physics: Conf. Series Vol.1008 012033.
- [6] Kristiana A I, Utoyo M I, Dafik 2018 The lower bound of the r-dynamic chromatic number of corona product by wheel graphs AIP Conference Proceedings Vol.2014 020054.
- [7] Lai H J and Montgomery B 2002 Dynamic coloring of graph Departement of Mathematics West Virginia University
- [8] Montgomery B 2001 Dynamic coloring of graphs West Virginia University

