Bidang Ilmu : PERTANIAN

LAPORAN PENELITIAN HIBAH BERSAING (TAHUN II)

PEMBUATAN SEDIAAN PEWARNA ALAMI PANGAN BERBASIS ANTOSIANIN DARI BUAH DUWET (Syzigium cumini)

Peneliti
Dr. PUSPITA SARI, STP, MAgr (Utama)
Ir. SUKATININGSIH, MS (Anggota)

Didanai DIPA Universitas Jember Tahun Anggaran 2012 Nomor: 0612/023-04.2.01/15/2012

UNIVERSITAS JEMBER DESEMBER 2012

PRAKATA

Dengan mengucap syukur ke hadirat Allah, segala persiapan, pelaksanaan, dan penyusunan hasil akhir penelitian dengan judul Pembuatan Sediaan Pewarna Alami Pangan Berbasis Antosianin dari Buah Duwet (*Syzygium cumini*) telah dapat kami selesaikan. Penelitian ini merupakan penelitian skim Hibah Bersaing dan dilaksanakan dengan pendanaan dari DIPA Universitas Jember Tahun Anggaran 2012 No. 0612/023-04.2.01/15/2012, untuk itu pada kesempatan ini kami menyampaikan terimakasih untuk bantuan dana penelitian.

Kami menyadari bahwa dalam laporan ini masih banyak kekurangan. Untuk itu segala saran dan kritik yang membangun demi perbaikan tulisan ini sangat kami harapkan. Besar harapan kami, tulisan ini dapat bermanfaat bagi kita semua.

Jember, 8 Desember 2012 Tim peneliti

DAFTAR ISI

	halamar
HALAMAN PENGESAHAN	. i
PRAKATA	ii
DAFTAR ISI	iii
DAFTAR GAMBAR	V
DAFTAR TABEL	vii
DAFTAR LAMPIRAN	viii
1. PENDAHULUAN	
1.1 Latar Belakang	1
2.2 Tujuan Penelitian	
2. STUDI PUSTAKA	2 3
2.1 Tanaman Duwet	3
2.2 Pewarna Pangan	4
2.3 Antosianin	6
2.4 Mikroenkapsulasi	11
2.5 Jelly	12
2.6 Minuman karbonasi	12
3. METODOLOGI PENELITIAN	13
3.1 Bahan dan Alat	13
3.2 Metode Penelitian	13
3.2.1 Pembuatan Pewarna Antosianin	
3.2.2 Ekstraksi Polifenol Rosemary	
3.3.3 Pembuatan Produk	17
3.3.4 Prosedur Analisis	19
4. HASIL DAN PEMBAHASAN	22
4.1 Pewarna Antosianin Bubuk	22
4.2 Aplikasi Pewarna Antosianin dengan dan Tanpa Kopigmen	
pada Produk Pangan	22
4.3 Stabilitas Antosianin dengan atau Tanpa Kopigmen Ekstrak	
polifenol Rosemary pada Produk Jelly dan Minuman	
Karbonasi selama Penyimpanan	30
4.4 Kapasitas Antioksidan pada Produk Jelly dan Minuman	00
karbonasi setelam Penyimpanan	37
5. KESIMPULAN	41
DAFTAR PUSTAKA	42
I AMPIRAN	17

DAFTAR GAMBAR

	н	alaman
Gambar 1	Tanamam dan buah duwet	3
Gambar 2	Antosianidin yang umum ada di bahan pangan	7
Gambar 3	Unit glikosil dari antosianin	8
Gambar 4	Unit asil yang berikatan dengan antosianin	8
Gambar 5	Antosianin	10
Gambar 6	Perbedaan tipe mikrokapsul	11
Gambar 7	Diagram alur pembuatan pewarna antosianin bubuk	16
Gambar 8	Diagram alir ekstraksi polifenol rosemary	17
Gambar 9	Diagram alir pembuatan jelly	18
	Diagram alir pembuatan minuman karbonasi	19
	Pewarna antosianin bubuk dari buah duwet	22
	Produk jelly yang diberi pewarna antosianin dengan	
	penambahan kopigmen dan tanpa kopigmen	23
	Perubahan absorbans maksimum (520 nm) pada produk	
	elly dengan atau tanpa penambahan kopigmen	24
	Skor kesukaan panelis terhadap produk jelly	25
Gambar 15	Produk minuman karbonasi yang diberi pewarna antosianin	
.	dengan penambahan kopigmen dan tanpa kopigmen	27
	Perubahan nilai absorbans maksimum (520 nm) pada	
	minuman karbonasi dengan atau tanpa penambahan	00
	kopigmen	28
	Skor kesukaan panelis terhadap produk minuman	00
0 10	karbonasi	29
	Produk jelly sebelum dan setelah penyimpanan pada suhu	24
	ruang dan refrigerasi	31
	Nilai retensi antosianin pada produk jelly dengan	
	penambahan kopigmen dan tanpa kopigmen selama	32
	penyimpanan suhu refrigerasi dan ruang Minuman karbonasi dengan penambahan kopigmen dan	32
	tanpa kopigmen selama penyimpanan pada suhu refrigerasi	
	dan suhu ruang	34
	Nilai retensi antosianin pada minuman karbonasi dengan	3 4
	penambahan kopigmen dan tanpa kopigmen selama	
	penyimpanan suhu refrigerasi dan ruang	35
	Stabilitas antosianin melalui pembentukan kompleks secara	
Gambar ZZ.	transfer muatan	36
Gambar 23	Skema scavenging radikal DPPH oleh antioksidan (RH)	38
	Kapasitas antioksidan produk jelly pada awal dan akhir	00
Cambai 21.	penyimpanan	39
Gambar 25	Kapasitas antioksidan minuman karbonasi pada awal dan	30
2 320 20.	akhir penyimpanan	39

DAFTAR TABEL

	Ha	laman
Tabel 1	Certified colorants yang diijinkan untuk digunakan	5
Tabel 2	Pewarna alami (uncertified colorants) untuk makanan dan	
	minuman (didaftar oleh FDA)	5
Tabel 3	Substitusi kation flavilium untuk membentuk antosianidin	7
Tabel 4	Kandungan antosianin, pH, dan kapasitas antioksidan produk	
	jelly	24
Tabel 5	Kandungan antosianin, pH, dan kapasitas antioksidan minuma	n
	karbonasi	27
Tabel 5	Nilai laju degradasi dan waktu paruh antosianin pada produk	
	jelly dengan dan tanpa penambahan kopigmen	33
Tabel 6	Nilai laju degradasi dan waktu paruh antosianin pada produk	
	minuman karbonasi dengan dan tanpa penambahan kopigmen	37

DAFTAR LAMPIRAN

H	Halaman
Produk pewarna antosianin buah duwet dalam bentuk sediaan bubuk	48
Produk pewarna antosianin buah duwet dalam bentuk sediaan cair	49
Aplikasi pewarna antosianin buah duwet pada produk jel	ly 50
Aplikasi pewarna antosianin buah duwet pada minuman	
karbonasi	51
Surat pendaftaran paten	52
Deskripsi paten	53
Draft artikel ilmiah	65
	Produk pewarna antosianin buah duwet dalam bentuk sediaan bubuk

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Pewarna pangan merupakan bahan tambahan pangan yang banyak digunakan oleh industri makanan untuk mewarnai makanan yang dihasilkan seperti pada produk minuman, *confectionary*, *dessert*, *snack* serta produk pangan lainnya. Pewarna ditambahkan pada produk pangan untuk memberi warna pada produk pangan agar lebih terlihat menarik. Pewarna yang digunakan pada produk pangan dapat dibedakan menjadi tiga kelompok berdasarkan sumbernya yaitu pewarna sintetik, identik alami, dan alami (Henry, 1996).

Pewarna sintetik telah banyak digunakan pada produk pangan. Namun, penggunaan pewarna sintetik sering tidak mengikuti aturan pemakaian/regulasi bahan tambahan pangan (BTP). Konsumsi pewarna sintetik dalam jangka panjang dapat menyebabkan masalah kesehatan seperti alergi, hiperaktif, bahkan kanker. Dewasa ini, dengan semakin meningkatnya kesadaran manusia untuk hidup lebih sehat mendorong meningkatnya penggunaan pewarna alami pada pangan. Pewarna alami lebih bersifat aman untuk dikonsumsi, tidak toksik, dan tanpa efek samping. Selain dapat digunakan untuk mewarnai makanan, pewarna alami juga dapat memberikan menfaat menguntungkan untuk kesehatan.

Salah satu jenis pewarna alami yang belum banyak dikembangkan di Indonesia namun memliki potensi yang bagus untuk dikembangkan adalah pewarna berbasis antosianin. Sumber utama antosianin banyak dijumpai terutama pada tanaman. Berbagai jenis tanaman yang sudah diteliti dapat dijadikan sebagai sumber antosianin untuk pewarna alami seperti anggur, *blackcurrant*, *blackberry*, *bilberry*, *cranberry*, *blueberry*, strawberi, *cherry*, *plum*, delima, *blood orange*, leci (kulit), apel (kulit), *Perilla spp*, rosela, bawang merah, wortel ungu, kubis merah, *yam* ungu (umbi), kedelai hitam, jagung ungu, lobak merah, ubi jalar ungu (Mazza dan Miniati, 1993; Jackman dan Smith, 1996; Bridle dan Timberlake, 1997). Beberapa produk tersebut bahkan sudah digunakan secara komersial sebagai bahan baku pewarna alami berbasis antosianin seperti kulit anggur, kubis merah,

dan wortel hitam (Delgado-Vargas dan Paredes-Lopez, 2003). Pewarna alami berbasis antosianin banyak digunakan pada sistem pangan berbasis asam karena pada kondisi asam, antosianin memberikan warna merah.

Selain tanaman seperti yang disebutkan diatas, buah duwet (Syzygium cumini) yang merupakan buah tropis yang juga banyak dijumpai di Indonesia memiliki potensi untuk digunakan sebagai sumber antosianin. Hasil penelitian sebelumnya menunjukkan bahwa kandungan antosianin pada buah duwet segar matang (warna ungu kehitaman) rata-rata sebesar 161 mg/100 g (bb), sedangkan pada bagian kulit buah mengandung antosianin rata-rata sebesar 731 mg/100 g (bb). Antosianin buah duwet banyak terakumulasi pada bagian kulit (Sari et al., 2009). Kandungan antosianin dalam buah duwet tinggi terutama pada bagian kulit sehingga dapat dikatakan buah duwet berpotensi digunakan sebagai bahan sumber antosianin untuk pewarna alami pangan. Hal ini juga ditunjang harga buah duwet relatif murah. Oleh karena itu, untuk memudahkan aplikasi pewarna antosianin dari buah duwet pada produk pangan maka perlu dilakukan pembuatan sediaan pewarna berbasis antosianin dari buah duwet. Pada tahun I (tahun anggaran 2011) telah dilakukan penelitian tentang pembuatan sediaan pewarna antosianin buah duwet dalam bentuk cair dan bubuk serta diuji stabilitas antosianin dalam pewarna selama penyimpanan. Pada penelitian tahun II (2012) dilakukan penelitian tentang aplikasi pewarna antosianin buah duwet pada produk pangan serta pengujian stabilitas antosianin dalam produk pangan. Produk pangan yang dipilih adalah minuman karbonasi dan jelly yang berasa asam.

1.2 Tujuan Penelitian

Tujuan penelitian yang dilakukan pada program penelitian Hibah Bersaing untuk tahun II (tahun anggaran 2012) adalah :

a. Mengaplikasikan pewarna antosianin buah duwet dalam produk pangan berbasis asam seperti minuman karbonasi dan jelly dengan atau tanpa penambahan ekstrak polifenol *rosemary* sebagai agensia peningkat warna dan stabilitas (kopigmen).

- b. Menguji stabilitas antosianin buah duwet (dengan atau tanpa kopigmen ekstrak polifenol *rosemary*) dalam minuman karbonasi dan jelly selama penyimpanan suhu refrigerasi dan ruang.
- c. Menguji aktitifitas antioksidan dari pewarna antosianin yang ditambahkan dalam minuman karbonasi dan jelly.

Dari penelitian ini diharapkan dapat dihasilkan informasi tentang teknologi pembuatan pewarna berbasis antosianin buah duwet serta aplikasi pewarna pada produk pangan. Harapan selanjutnya, pewarna antosianin buah duwet dapat dikomersialkan sehingga mengurangi jumlah impor pewarna antosianin. Selama ini pewarna antosianin sebagian besar masih diimpor.