Far East Journal of Mathematical Sciences (FJMS)
© 2018 Pushpa Publishing House, Allahabad, India http://www.pphmj.com

SUPER (a, d)-CYCLES-ANTIMAGIC LABELING OF SUBDIVISION OF A FAN GRAPH

R. M. Prihandini ${ }^{1,4}$, Ridho Alfarisi ${ }^{1,4}$, I. H. Agustin ${ }^{1,3}$ and Dafik ${ }^{1,2}$
 ${ }^{1}$ CGANT University of Jember
 Jember, Indonesia
 ${ }^{2}$ Department of Mathematics Education
 University of Jember
 Jember, Indonesia
 ${ }^{3}$ Department of Mathematics
 University of Jember
 Jember, Indonesia
 ${ }^{4}$ Elementary School Teacher Education
 University of Jember
 Jember, Indonesia

Abstract

We consider a simple, connected and undirected graph $G(V, E)$ with vertex set $V(G)$ and edge set $E(G)$. There is a super $(a, d)-\mathcal{H}$ antimagic total labeling on the graph $G(V, E)$ if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that for all subgraphs isomorphic to H, the total H-weights $W(H)=$ $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e) \quad$ form an arithmetic sequence

Received: August 8, 2017; Accepted: November 19, 2017
2010 Mathematics Subject Classification: 05C78.
Keywords and phrases: H-covering, super $(a, d)-\mathcal{H}$-antimagic total labeling, cycle-antimagic labeling, subdivisions of fan graph.

820
R. M. Prihandini, Ridho Alfarisi, I. H. Agustin and Dafik
$\{a, a+d, a+2 d, \ldots, a+(m-1) d\}$, where $a>0$ is the smallest value, d is the feasible difference, and m is the number of all subgraphs isomorphic to H. In this paper, we investigate the existence of super $(a, d)-\mathcal{H}$-antimagic total labeling for subdivisions of a fan graph $S\left(F_{m}\right)$, when subgraphs H are cycles.

1. Introduction

Given that a graph $G=(V, E)$ is nontrivial, finite, simple, undirected and connected graph of vertex set V and edge set E. For more details on graph, see $[10,3,4]$. A covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{n}$ such that all vertices $V(G)$ and edges $E(G)$ belong to at least one of the subgraphs $H_{i}, i=1,2, \ldots, n$ taken into account as a cover. In this case, we say that G admits $\left(H_{1}, H_{2}, \ldots, H_{n}\right)$-covering if every subgraph H_{i} is isomorphic to a given graph H admits a special property to be an H -labeling.

A graph G is said to be an (a, d) - H-antimagic total graph if there exists a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs isomorphic to H, the total H-weights

$$
w(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)
$$

form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(m-1) d\}$, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. If such a function exists, then f is called an (a, d)- H-antimagic total labeling of G, see [11]. The total H-weight is the sum of both vertex and edge labels belonging to a subgraph H, under a given labeling f. The H-weight under a labeling f is denoted by $w(H)$. Such a labeling is called super if the smallest possible labels appear on the vertices. If G admits a super $(a, d)-H$-antimagic total labeling, then we say that G is a super (a, d)-H -antimagic graph. For $d=0$, it is called H-magic or H-supermagic.

Some relevant results have been published in many journals, some of them can be found in [1, 2, 8, 9]. Furthermore, Lladó and Moragas [12] proved that wheels, windmills, books and prisms are C_{t}^{k}-magic for some t. Inayah et al. in [11] proved that for any H and any integer $k \geq 2$, shack (H, v, k) which contains exactly k subgraphs isomorphic to H admits H-super antimagic. Dafik et al. in [5, 6] also obtained a cycle-super antimagicness of connected and cisconnected tensor product of graphs, and constructed H -antimagic graphs by using smaller edge-antimagic graphs. Furthermore, Dafik et al. in [7] also determined the super H-antimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation.

2. The Results

We study the subdivision of graph G. By subdivision of graph, denoted by $S(G)$, we mean a graph obtained from G by replacing each edge $u v$ of G by a new vertex y and the two new edges $u y$ and $v y$. For details on the subdivision of graph G, see [4]. The vertex y is called a subdivision vertex on $u v$.

We deal with the super cycle-antimagic total labelings of subdivision of a fan graph, denoted by $S\left(F_{m}\right)$.

Observation 1. Let $S\left(F_{m}\right)$ be a subdivision of a fan graph. The order and size of graph $S\left(F_{m}\right)$ are, respectively, $\left|V\left(S\left(F_{m}\right)\right)\right|=3 m$ and $\left|E\left(S\left(F_{m}\right)\right)\right|$ $=4 m-2$.

Proof. The graph $S\left(F_{m}\right)$ is a connected graph with vertex set $V\left(S\left(F_{m}\right)\right)$ $=\{x\} \cup\left\{x_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} ; 1 \leq i \leq m\right\} \cup\left\{z_{i} ; 1 \leq i \leq m-1\right\}$ and edge set

$$
\begin{aligned}
E\left(S\left(F_{m}\right)\right)= & \left\{y_{i} z_{i} ; 1 \leq i \leq m-1\right\} \cup\left\{x x_{i} ; 1 \leq i \leq m\right\} \\
& \cup\left\{z_{i} y_{i+1} ; 1 \leq i \leq m-1\right\} \cup\left\{y_{i} x_{i} ; 1 \leq i \leq m\right\} .
\end{aligned}
$$

Thus, the order of the graph $S\left(F_{m}\right)$ is $\left|V\left(S\left(F_{m}\right)\right)\right|=3 m$ and the size of the graph $S\left(F_{m}\right)\left|E\left(S\left(F_{m}\right)\right)\right|=4 m-2$.

822
R. M. Prihandini, Ridho Alfarisi, I. H. Agustin and Dafik

For illustration, we give an example of subdivision of a fan graph $S\left(F_{m}\right)$ depicted in Figure 1.

Figure 1. Example of subdivision of a fan graph $S\left(F_{m}\right)$.
Observation 2. Let C_{t}^{k} be a cycle of t vertices of subdivision of a fan graph $S\left(F_{m}\right)$, where $t=6,8, \ldots, 2 m-2$. The number of cycles of order t which is a cover $H \cong C_{t}^{k}$ of $S\left(F_{m}\right)$ is given by $|H|=m-\frac{t-4}{2}$.

Proof. Let C_{t}^{k} be a cycle of t vertices of subdivision of a fan graph $S\left(F_{m}\right)$, where $t=6,8, \ldots, 2 m-2$ for $3 \leq m \leq 4$ and $t=6,8, \ldots, 2 m-2$ for $m \geq 5$. The t th cycle of C_{t}^{k} can be formed by the following set of vertices

$$
\begin{gathered}
C_{t}^{k}=\left\{x, x_{k}, y_{k}, z_{k}, y_{k+1}, z_{k+1}, y_{k+2}, z_{k+2}, \ldots,\right. \\
\left.z_{k+\frac{t-6}{2}}, y_{k+\frac{t-6}{2}}, y_{k+\frac{t-4}{2}}, x_{k+\frac{t-4}{2}}, x\right\} .
\end{gathered}
$$

It is easy to see that $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$. Thus $\left|C_{t}^{k}\right|=m-\frac{t-4}{2}$. It concludes the proof.

Furthermore, we can determine the C_{k}^{t}-weight of the cycle $C_{k}^{t}, k=$ $1,2, \ldots, m-\left(\frac{t-4}{2}\right)$ under a total labeling g :

Super (a,d)-cycles-antimagic Labeling of Subdivision ...

$$
\begin{align*}
w_{g}\left(C_{t}^{k}\right)= & \sum_{v \in V\left(C_{t}^{k}\right)} f(v)+\sum_{e \in E\left(C_{t}^{k}\right)} f(e) \\
= & \sum_{s=0}^{\frac{t-6}{2}}\left[g\left(y_{k+s}\right)+g\left(z_{k+s}\right)+g\left(y_{k+s} z_{k+s}\right)+g\left(z_{k+s} y_{k+s+1}\right)\right] \\
& +g\left(y_{k+\left(\frac{t-4}{2}\right)}\right)+g\left(x_{k}\right)+g\left(x_{k+\left(\frac{t-4}{2}\right)}\right)+g(x) \\
& +g\left(y_{k+\left(\frac{t-4}{2}\right)^{x} k+\left(\frac{t-4}{2}\right)}\right)+g\left(y_{k} x_{k}\right)+g\left(x_{k} x\right)+g\left(x_{\left.k+\left(\frac{t-4}{2}\right)^{x}\right) .}\right. \tag{1}
\end{align*}
$$

From now on, we show our main results. We have found that the graph $S\left(F_{m}\right)$ admits super $(a, d)-C_{t}^{k}$ antimagic labeling for differences $d=\{0,1,2,4\}$.

Theorem 1. Let $t=6,8, \ldots, 2 m-2$ for $3 \leq m \leq 4$ and $t=6,8, \ldots$, $2 m-2$ for $m \geq 5$. Let $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$. The subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$-antimagic labeling for $d=0$.

Proof. We define the labeling

$$
g_{1}, g_{1}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\left\{1,2, \ldots, p_{S\left(F_{m}\right)}+q_{S\left(F_{m}\right)}\right\}
$$

in the following way:

$$
\begin{array}{ll}
g_{1}\left(y_{i}\right)=2 i-1 ; 1 \leq i \leq m & g_{1}\left(z_{i}\right)=2 i ; 1 \leq i \leq m-1 \\
g_{1}\left(x_{i}\right)=3 m+i-1 ; 1 \leq i \leq m & g_{1}(x)=2 m \\
g_{1}\left(y_{i} z_{i}\right)=5 m-2 i ; 1 \leq i \leq m-1 & g_{1}\left(y_{i} x_{i}\right)=5 m+2 i-3 ; 1 \leq i \leq m \\
g_{1}\left(x x_{i}\right)=7 m-2 i ; 1 \leq i \leq m & g_{1}\left(z_{i} y_{i+1}\right)=5 m-2 i-1 ; 1 \leq i \leq m-1 .
\end{array}
$$

Evidently, it is easy to see that g_{1} is a bijective function, as it is a map $g_{1}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\{1,2, \ldots, 3 m, \ldots, 5 m-1,5 m, \ldots, 7 m-2\}$. The total weight of $V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right)=\left\{y_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} z_{i} ; 1 \leq i \leq m-1\right\}$ under the labeling g_{1}, is given by

$$
\begin{equation*}
g_{1}\left(y_{i}\right)+g_{1}\left(y_{i} z_{i}\right)=g_{1}\left(z_{i}\right)+g_{1}\left(z_{i} y_{i+1}\right)=[2 i-1]+[5 m-2 i]=5 m-1 . \tag{2}
\end{equation*}
$$

The total edge-weight of

$$
E\left(S\left(F_{m}\right)\right)=\left\{x x_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} x_{i} ; 1 \leq i \leq m\right\}
$$

is

$$
\begin{equation*}
g_{1}\left(x x_{i}\right)+g_{1}\left(y_{i} x_{i}\right)=[5 m+2 i-3]+[7 m-2 i]=12 m-3 . \tag{3}
\end{equation*}
$$

From equations (1), (2) and (3), we obtain the total C_{t}^{k}-weight as follows:

$$
\begin{aligned}
w_{g_{1}}\left(C_{t}^{k}\right)= & \sum_{v \in V\left(C_{t}^{k}\right)} f(v)+\sum_{e \in E\left(C_{t}^{k}\right)} f(e) \\
= & {[(t-4)(5 m-1)]+2 \times[12 m-3]+\left[3 m+k+\frac{t-4}{2}\right] } \\
& +[3 m-k+1]+2 m \\
= & 5 m(t-4)-t+4+24 m-6+3 m+k+\frac{t}{2}-2 \\
& +3 m-k+1+2 m \\
= & m(5 t+12)-\frac{t}{2}-3 .
\end{aligned}
$$

It is easy to see that the total C_{t}-weights of $S\left(F_{m}\right)$, under the labeling g_{1}, when $t=6,8, \ldots, 2 m$ for $3 \leq m \leq 4$ and when $t=6,8, \ldots, 2 m-2$ for $m \geq 5$, and for $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$, constitute the following sets:

$$
C_{t}^{k}=\left\{m(5 t+12)-\frac{t}{2}-3, m(5 t+12)-\frac{t}{2}-3, \ldots, m(5 t+12)-\frac{t}{2}-3\right\} .
$$

It concludes that the subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$ antimagic total labeling with feasible $d=0$.

Super (a, d)-cycles-antimagic Labeling of Subdivision ...
Theorem 2. Let $t=6,8, \ldots, 2 m-2$ for $3 \leq m \leq 4$ and $t=6,8, \ldots$, $2 m-2$ for $m \geq 5$. Let $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$. Then subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$-antimagic labeling for $d=1$.

Proof. We define the labeling

$$
g_{2}, g_{2}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\left\{1,2, \ldots, p_{S\left(F_{m}\right)}+q_{S\left(F_{m}\right)}\right\}
$$

in the following way:

$$
\begin{array}{ll}
g_{2}\left(y_{i}\right)=i ; 1 \leq i \leq m & g_{2}\left(x_{i}\right)=2 m-i+1 ; 1 \leq i \leq m \\
g_{2}\left(z_{i}\right)=3 m-i ; 1 \leq i \leq m-1 & g_{2}(x)=3 m \\
g_{2}\left(y_{i} z_{i}\right)=3 m+i ; 1 \leq i \leq m-1 & g_{2}\left(y_{i} x_{i}\right)=5 m+2 i-3 ; 1 \leq i \leq m \\
g_{2}\left(x x_{i}\right)=7 m-2 i ; 1 \leq i \leq m & g_{2}\left(z_{i} y_{i+1}\right)=5 m-i-1 ; 1 \leq i \leq m-1 .
\end{array}
$$

Evidently, it is easy to see that g_{2} is a bijection, as it is a map $g_{2}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\{1,2, \ldots, 3 m, \ldots, 5 m-1,5 m, \ldots, 7 m-2\}$. The total weight of

$$
\begin{aligned}
& V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \\
= & \left\{y_{i} ; 1 \leq i \leq m\right\} \cup\left\{z_{i} ; 1 \leq i \leq m-1\right\} \\
& \cup\left\{y_{i} z_{i} ; 1 \leq i \leq m-1\right\} \cup\left\{z_{i} y_{i+1} ; 1 \leq i \leq m-1\right\}
\end{aligned}
$$

under the labeling g_{2}, is

$$
\begin{align*}
& g_{2}\left(y_{i}\right)+g_{2}\left(y_{i} z_{i}\right)+g_{2}\left(z_{i}\right)+g_{2}\left(z_{i} y_{i+1}\right) \\
= & i+3 m+i+3 m-i+5 m-i-1=11 m-1 . \tag{4}
\end{align*}
$$

The total edge-weight of $E\left(S\left(F_{m}\right)\right)=\left\{x x_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} x_{i} ; 1 \leq i \leq m\right\}$ is as follows:

$$
\begin{equation*}
g_{2}\left(x x_{i}\right)+g_{2}\left(y_{i} x_{i}\right)=[5 m+2 i-3]+[7 m-2 i]=12 m-3 . \tag{5}
\end{equation*}
$$

From equations (1), (4) and (5), we obtain the total C_{t}^{k}-weight as follows:

$$
\begin{aligned}
w_{g_{2}}\left(C_{t}^{k}\right)= & \sum_{v \in V\left(C_{t}^{k}\right)} f(v)+\sum_{e \in E\left(C_{t}^{k}\right)} f(e) \\
= & {\left[\left(\frac{t-4}{2}\right)(11 m-1)\right]+2 \times[12 m-3]+[2 m+1] } \\
& +[2 m-k+1]+3 m \\
= & 11 m\left(\frac{t-4}{2}\right)-\frac{t-4}{2}+24 m-6+2 m+1+2 m-k+1+3 m \\
= & 11 m \frac{t}{2}+9 m-\frac{t}{2}-3-k .
\end{aligned}
$$

It is easy to see that the total C_{t}-weights of $S\left(F_{m}\right)$, under the labeling $g_{2}, t=6,8, \ldots, 2 m$ for $3 \leq m \leq 4$ and $t=6,8, \ldots, 2 m-2$ for $m \geq 5$ and $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$, constitute the following sets:

$$
\begin{aligned}
C_{t}^{k}=\{ & 11 m \frac{t}{2}+9 m-\frac{t}{2}-3-k, \ldots, 11 m \frac{t}{2}+9 m-\frac{t}{2}-3-2, \\
& \left.11 m \frac{t}{2}+9 m-\frac{t}{2}-3-1\right\} .
\end{aligned}
$$

It concludes that the subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$ antimagic total labeling with feasible $d=1$.

Theorem 3. Let $t=6,8, \ldots, 2 m-2$ for $3 \leq m \leq 4$ and $t=6,8, \ldots$, $2 m-2$ for $m \geq 5$. Let $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$. Then subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$-antimagic labeling for $d=4$.

Proof. We define the labeling

$$
g_{3}, g_{3}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\left\{1,2, \ldots, p_{S\left(F_{m}\right)}+q_{S\left(F_{m}\right)}\right\}
$$

in the following way:

$$
\begin{array}{ll}
g_{3}\left(y_{i}\right)=2 i-1 ; 1 \leq i \leq m & g_{3}\left(z_{i}\right)=2 i ; 1 \leq i \leq m-1 \\
g_{3}\left(x_{i}\right)=2 m+i-1 ; 1 \leq i \leq m & g_{3}(x)=3 m \\
g_{3}\left(y_{i} z_{i}\right)=7 m-2 i ; 1 \leq i \leq m-1 & g_{3}\left(y_{i} x_{i}\right)=5 m-2 i+1 ; 1 \leq i \leq m \\
g_{3}\left(x x_{i}\right)=3 m+2 i ; 1 \leq i \leq m & g_{3}\left(z_{i} y_{i+1}\right)=7 m-2 i-1 ; 1 \leq i \leq m-1 .
\end{array}
$$

Evidently, it is easy to see that g_{3} is a bijection as it is a map $g_{3}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\{1,2, \ldots, 3 m, \ldots, 5 m-1,5 m, \ldots, 7 m-2\}$. The total weight of $V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right)=\left\{y_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} z_{i} ; 1 \leq i \leq m-1\right\}$ under the labeling g_{3}, is given by

$$
\begin{equation*}
g_{3}\left(y_{i}\right)+g_{3}\left(y_{i} z_{i}\right)=g_{3}\left(z_{i}\right)+g_{3}\left(z_{i} y_{i+1}\right)=[2 i-1]+[7 m-2 i]=7 m-1 . \tag{6}
\end{equation*}
$$

The total edge-weight of $E\left(S\left(F_{m}\right)\right)=\left\{x x_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} x_{i} ; 1 \leq i \leq m\right\}$ is as follows:

$$
\begin{equation*}
g_{3}\left(x x_{i}\right)+g_{3}\left(y_{i} x_{i}\right)=[5 m-2 i+1]+[3 m+2 i]=8 m+1 . \tag{7}
\end{equation*}
$$

From equations (1), (6) and (7), we obtain the total C_{t}^{k}-weight as follows:

$$
\begin{aligned}
w_{g_{3}}\left(C_{t}^{k}\right)= & \sum_{v \in V\left(C_{t}^{k}\right)} f(v)+\sum_{e \in E\left(C_{t}^{k}\right)} f(e) \\
= & {[(t-4)(7 m-1)]+2 \times[8 m+1]+\left[2(m+2)+3\left(k+\frac{t}{2}-4\right)\right] } \\
& +[2 m+k-1]+3 m \\
= & (t-4) 7 m-t+4+16 m+2+2 m+4+3\left(k+\frac{t}{2}\right) \\
& -12+2 m+k-1+3 m \\
= & m(7 t-5)-3+\frac{t}{2}+4 k .
\end{aligned}
$$

It is easy to see that the total C_{t}-weights of $S\left(F_{m}\right)$, under the labeling $g_{3}, t=6,8, \ldots, 2 m$ for $3 \leq m \leq 4$ and $t=6,8, \ldots, 2 m-2$ for $m \geq 5$ and $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$, constitute the following sets:

$$
C_{t}^{k}=\left\{m(7 t-5)-3+\frac{t}{2}+4, m(7 t-5)-3+\frac{t}{2}+8, \ldots, m(7 t-5)-3+\frac{t}{2}+4 k\right\} .
$$

It concludes that the subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$ antimagic total labeling with feasible $d=4$.

Theorem 4. Let $t=6,8, \ldots, 2 m-2$ for $3 \leq m \leq 4$ and $t=6,8, \ldots$, $2 m-2$ for $m \geq 5$. Let $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$. Then subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$-antimagic labeling for $d=2$.

Proof. We define the labeling g_{3},

$$
g_{3}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\left\{1,2, \ldots, p_{S\left(F_{m}\right)}+q_{S\left(F_{m}\right)}\right\}
$$

in the following way:

$$
\begin{array}{ll}
g_{4}\left(y_{i}\right)=2 i-1 ; 1 \leq i \leq m & g_{4}\left(z_{i}\right)=2 i ; 1 \leq i \leq m-1 \\
g_{4}\left(x_{i}\right)=3 m-i+1 ; 1 \leq i \leq m & g_{4}(x)=2 m \\
g_{4}\left(y_{i} z_{i}\right)=5 m-i-1 ; 1 \leq i \leq m-1 & g_{4}\left(y_{i} x_{i}\right)=5 m+2 i-3 ; 1 \leq i \leq m \\
g_{4}\left(x x_{i}\right)=7 m-2 i ; 1 \leq i \leq m & g_{4}\left(z_{i} y_{i+1}\right)=4 m-i ; 1 \leq i \leq m-1 .
\end{array}
$$

Evidently, it is easy to see that g_{4} is a bijection as it is a map $g_{3}: V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right) \rightarrow\{1,2, \ldots, 3 m, \ldots, 5 m-1,5 m, \ldots, 7 m-2\}$. The total weight of

$$
\begin{aligned}
V\left(S\left(F_{m}\right)\right) \cup E\left(S\left(F_{m}\right)\right)= & \left\{z_{i} ; 1 \leq i \leq m-1\right\} \cup\left\{y_{i} z_{i} ; 1 \leq i \leq m-1\right\} \\
& \cup\left\{z_{i} y_{i+1} ; 1 \leq i \leq m-1\right\}
\end{aligned}
$$

under the labeling g_{3}, is as follows:

$$
\begin{equation*}
g_{4}\left(z_{i}\right)+g_{4}\left(y_{i} z_{i}\right)+g_{4}\left(z_{i} y_{i+1}\right)=(5 m-i-1)+2 i+4 m-i=9 m-1 . \tag{8}
\end{equation*}
$$

The total edge-weights of $E\left(S\left(F_{m}\right)\right)=\left\{x x_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} x_{i} ; 1 \leq i \leq m\right\}$ are as follows:

$$
\begin{equation*}
g_{4}\left(x x_{i}\right)+g_{4}\left(y_{i} x_{i}\right)=[5 m+2 i-3]+[7 m-2 i]=12 m-3 . \tag{9}
\end{equation*}
$$

From equations (1), (8) and (9), we obtain the total C_{t}^{k}-weight in the following way:

$$
\begin{aligned}
w_{g_{1}}\left(C_{t}^{k}\right)= & \sum_{v \in V\left(C_{t}^{k}\right)} f(v)+\sum_{e \in E\left(C_{t}^{k}\right)} f(e) \\
= & {\left[\left(\frac{t-4}{2}\right)(9 m-1)\right]+2 \times[12 m-3]+[2 m]+[2 k-1+2 k+t-5] } \\
& +[3 m-k+1]+3 m-\frac{t}{2}+2-k \\
= & 9 m\left(\frac{t-4}{2}\right)+32 m+2 k-7 .
\end{aligned}
$$

It is easy to see that the total C_{t}-weights of $S\left(F_{m}\right)$, under the labeling $g_{4}, t=6,8, \ldots, 2 m$ for $3 \leq m \leq 4$ and $t=6,8, \ldots, 2 m-2$ for $m \geq 5$ and $k=1,2, \ldots, m-\left(\frac{t-4}{2}\right)$, constitute the following sets:

$$
\begin{aligned}
C_{t}^{k}= & \left\{9 m\left(\frac{t-4}{2}\right)+32 m+2-7,9 m\left(\frac{t-4}{2}\right)+32 m+4\right. \\
& \left.-7, \ldots, 9 m\left(\frac{t-4}{2}\right)+32 m+2\left(m-\left(\frac{t-4}{2}\right)\right)-7\right\} .
\end{aligned}
$$

It concludes that the subdivision of fan $S\left(F_{m}\right)$ admits a super $(a, d)-C_{t}^{k}$ antimagic total labeling with feasible $d=2$.

3. Concluding Remarks

We have shown the existence of super $(a, d)-H$-antimagicness of subdivision of fan graphs $S\left(F_{m}\right)$, when H is a cycle. We can prove that $d=\{0,1,2,4\}$. As we have not found the result for another difference, we propose the following:

Problem. Find a super $(a, d)-H$-antimagic labeling of the subdivision of a fan graph for $d \neq\{0,1,2,4\}$.

Acknowledgement

We gratefully acknowledge the support HIKOM DP2M Ristekdikti Indonesia and CGANT - University of Jember of year 2017.

References

[1] M. Baca, Dafik, M. Miller and J. Ryan, Antimagic labeling of disjoint union of s-crowns, Util. Math. 79 (2009), 193-205.
[2] M. Bača, L. Brankovic, M. Lascsáková M, O. Phanalasy and A. SemaničováFeňovčíková, On d-antimagic labelings of plane graphs, Electr. J. Graph Theory Appl. 1(1) (2013), 28-39.
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd ed., Chapman and Hall, London, 2000.
[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 5th ed., Chapman and Hall/CRC, 2011.
[5] Dafik, A. K. Purnapraja and R. Hidayat, Cycle-super antimagicness of connected and disconnected tensor product of graphs, Procedia Computer Science 74 (2015), 93-99.
[6] Dafik, Slamin, Dushyant Tanna, Andrea Semaničová-Feňovčíková and Martin Bača, Constructions of H -antimagic graphs using smaller edge-antimagic graphs, Ars Combin. 133 (2017), 233-245.
[7] Dafik, I. H. Agustin, A. I. Nurvitaningrum and R. M. Prihandin, On super H-antimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation, IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017), 012010.
[8] Dafik, M. Miller, J. Ryan and M. Baca, Super edge-antimagic total labelings of $m K_{n, n}$, Ars Combin. 101 (2011), 97-107.
[9] Dafik, M. Miller, J. Ryan and M. Baca, On antimagic labelings of disjoint union of complete s-partite graphs, J. Combin. Math. Combin. Comput. 65 (2008), 41-49.
[10] J. L. Gross, J. Yellen and P. Zhang, Handbook of graph Theory, 2nd ed., CRC Press Taylor and Francis Group, 2014.
[11] N. Inayah, R. Simanjuntak and A. N. M. Salman, Super (a, d) - H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013), 127-138.
[12] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 2925-2933.

