PAPER•OPEN ACCESS

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Related content

- List of committees
- List of Committees

Committees

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011002

View the article online for updates and enhancements.

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia Professor of Combinatorics and Graph Theory
E-mail: d.dafik@unej.ac.id

Advisory Committee

Moch. Hasan Rector of the University of Jember
Zulfikar Vice Rector of the University of Jember
Slamin President of Indonesian Combinatorial Society

Organizing Committee
Dafik Chairperson
Ika Hesti Agustin Secretary

Advisory Editorial Board

Surahmat University of Islam Malang, Indonesia Syafrizal Sy University of Andalas, Indonesia

Editorial Board

Arika Indah Kristiana	University of Jember, Indonesia
Abduh Riski	University of Jember, Indonesia
Ikhsanul Halikin	University of Jember, Indonesia
Ridho Alfarisi	University of Jember, Indonesia
Rafiantika Megahnia Prihandini	University of Jember, Indonesia
Kusbudiono	University of Jember, Indonesia
Ermita Rizky Albirri	University of Jember, Indonesia
Robiatul Adawiyah	University of Jember, Indonesia
Dwi Agustin Retno Wardani	IKIP PGRI Jember, Indonesia

Scientific Committee and Reviewers

Joe Ryan University of Newcastle, Australia
Kinkar Chandra Das Sungkyunkwan University, Republic of Korea
Octavio Paulo Vera Villagran University of Bio-Bio, Chile
Ali Ahmad Jazan University, Saudi Arabia
Roslan Hasni Universiti Malaysia Terengganu, Malaysia
Kiki A. Sugeng University of Indonesia, Indonesia
Rinovia Simajuntak Institut Teknologi Bandung, Indonesia
Hilda Assiyatun Institut Teknologi Bandung, Indonesia
Liliek Susilowati Universitas Airlangga, Indonesia
Diary Indriati Universitas Sebelas Maret, Indonesia
Syaiful Bukhori University of Jember, Indonesia
Antonius Cahya Prihandoko University of Jember, Indonesia
Bambang Sujanarko University of Jember, Indonesia
Khairul Anam University of Jember, Indonesia

The committees of the First International Conference on Combinatorics, Graph Theory and Network Topology would like to express gratitude to all Committees for the volunteering support and contribution in the editing and reviewing process.

Digital Repository Universitas Jember

PAPER • OPEN ACCESS

On the local edge antimagicness of m-splitting graphs

To cite this article: E R Albirri et al 2018 J. Phys.: Conf. Ser. 1008012044

View the article online for updates and enhancements.

Related content

The Construction of $\$\{\mathrm{P}\} \quad\{2\}$ |vartriangleright H -antimagic graph using smaller edge-antimagic vertex labeling
Rafiantika M. Prihandini, I.H. Agustin and Dafik

On the local vertex antimagic total coloring of some families tree Desi Febriani Putri, Dafik, Ika Hesti Agustin et al.

E-cordial and product e-cordial labeling for the extended duplicate graph of splitting graph of path R. Avudainayaki, B. Selvam and P.P. Ulaganathan

On the local edge antimagicness of m-splitting graphs

E R Albirri ${ }^{1,3}$, Dafik ${ }^{1,3}$, Slamin 1,4, I H Agustin ${ }^{1,2}$, R Alfarisi ${ }^{1,5}$
${ }^{1}$ CGANT-University of Jember, Jember, Indonesia
${ }^{2}$ Department of Mathematics, University of Jember, Jember, Indonesia
${ }^{3}$ Department of Mathematics Education, University of Jember, Jember, Indonesia
${ }^{4}$ Department of Information System, University of Jember, Jember, Indonesia
${ }^{5}$ Department of Elementary School Education, University of Jember, Jember, Indonesia
E-mail: d.dafik@unej.ac.id, ikahesti.fmipa@unej.ac.id, ermitara@unej.ac.id

Abstract

Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v^{\prime} in every vertex v such that v^{\prime} adjacent to v in graph G. An m-splitting graph is a graph which has $m v^{\prime}$-vertices, denoted by ${ }_{m} \operatorname{Spl}(G)$. A local edge antimagic coloring in $G=(V, E)$ graph is a bijection $f: V(G) \longrightarrow\{1,2,3, \ldots,|V(G)|\}$ in which for any two adjacent edges e_{1} and e_{2} satisfies $w\left(e_{1}\right) \neq w\left(e_{2}\right)$, where $e=u v \in G$. The color of any edge $e=u v$ are assigned by $w(e)$ which is defined by sum of label both end vertices $f(u)$ and $f(v)$. The chromatic number of local edge antimagic labeling $\gamma_{l e a}(G)$ is the minimal number of color of edge in G graph which has local antimagic coloring. We present the exact value of chromatic number $\gamma_{l e a}$ of m-splitting graph and some special graphs.

Keywords: Local edge antimagic coloring, chromatic number of graph, m-splitting graph

1. Introduction

This paper uses connected, simple and undirected graph. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of a graph. It can be seen at [4], [3] and [7]. Let G be a graph with p vertices and q edges. By labeling, we mean one-to-one mapping which carries a set of graph elements into a set of numbers (integers), called labels. The labeling on graph can be done on edge or vertex. In this research, we label the edge with its own uniqueness, it is antimagic. The edge-antimagic labeling is defined as labeling that all the weights of the edge have different values, which can be seen at [6] and [9]. Agustin I. H. et all [1] introduced a concept of an local edge antimagic of graph. For a graph G of a size q, local edge antimagic is defined as follows:

Definition 1.1 A local edge antimagic coloring in $G=(V, E)$ graph is a bijection $f: V(G) \longrightarrow$ $\{1,2,3, \ldots,|V(G)|\}$ in which for any two adjacent edges e_{1} and e_{2} satisfies $w\left(e_{1}\right) \neq w\left(e_{2}\right)$, where $e=u v \in G$.

Lemma 1.1 [1] If $\delta(G)$ is maximum degree of G, then we have $\gamma_{\text {lea }}(G) \geq \delta(G)$
Hartsfield and Ringel [8] explain that the color of any edge $e=u v$ are assigned by $w(e)$ which is defined by sum of label both end vertices $f(u)$ and $f(v)$. The chromatic number of local edge antimagic labeling $\gamma_{l e a}(G)$ is the minimal number of color of edge in G graph which has local antimagic coloring.

Some new result can be seen in Arumugam et al [2] about local antimagic vertex coloring which be a basic idea about local antimagic coloring. Then, there are another research about

Figure 1. ${ }_{2} \operatorname{Spl}\left(P_{4}\right)$ Graph
super antimagic labeling which be found by Dafik et al [5]. The newest one is research about local edge antimagic of graph by Agustin et al [1]. Based on the previous research on it, we decide to do research in same topic such that local-edge-antimagic. But we choose different graph, it is split graph.
Definition 1.2 Split graph is graph which be gotten by adding new vertex v^{\prime} in every vertex v such that v^{\prime} adjacent v in G graph. m-splitting graph is graph which has the number of vertex v^{\prime} as m. m-splitting graph is denoted by ${ }_{m} \operatorname{Spl}(G)$.

Based on Figure 1, we know that alphabet set $\{A, B, \ldots, L\}$ is the vertex set and $\{a, f, \ldots, t\}$ is the edge set. $\{A, B, C, D\}$ is the vertex set of basic graph or Path graph $\left(P_{4}\right)$. $\{E, F, G, H\}$ is the vertex set of 1 -splitting of P_{4} and $\{I, J, K, L\}$ is the vertex set of 2 -splitting of P_{4}.

2. Result

Some interesting theorem which be found by us such that,
Theorem 2.1 For $n \geq 3$, the local edge antimagic of $m-S p l i t t i n g$ of P_{n} graph is

$$
\gamma_{l a e}\left(m \operatorname{Spl}\left(P_{n}\right)\right)=\gamma_{l a e}\left(P_{n}\right)+2 m
$$

Proof. The ${ }_{m} \operatorname{Spl}\left(P_{n}\right)$ graph has vertex set $V(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i}^{j}: 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq\right.$ $m\} \cup\left\{x_{i}^{j} x_{i+1}: 1 \leq i \leq n-1,1 \leq j \leq m\right\} \cup\left\{x_{i}^{j} x_{i+1}^{j+1}: 1 \leq i \leq n-1,1 \leq j \leq m\right\} \cup\left\{x_{i}^{j} x_{i-1}^{j+1}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq m\}$. The cardinality $|V(G)|=m(n+1)$ and $|E(G)|=2 m(n-1)+(n-1)$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
\begin{gathered}
f\left(x_{i}\right)= \begin{cases}\frac{i+1}{2} & 1 \leq i \leq n, i \text { odd } \\
n-\frac{i-2}{2} & 1 \leq i \leq n, i \text { even. }\end{cases} \\
f\left(x_{i}^{j}\right)= \begin{cases}\frac{2 n j+i+1}{2 n(j+1)-(i-2)} \\
\frac{2}{2} & 1 \leq j \leq m, i \text { odd; }\end{cases} \\
\hline m, i \text { even. }
\end{gathered}
$$

It is easy to see that f is a local antimagic labeling of ${ }_{m} S p l\left(P_{n}\right)$ and the edge weights are as follows

Figure 2. ${ }_{1} \operatorname{Spl}\left(C_{4}\right)$ Graph

$$
\begin{gathered}
w\left(x_{i} x_{i+1}\right)= \begin{cases}n+1 & 1 \leq j \leq m, i \text { odd } \\
n+2 & 1 \leq j \leq m, i \text { even } .\end{cases} \\
w\left(x_{i} x_{i+1}^{j}\right)=\left\{\begin{array}{l}
(j+1) n+1 \\
(j+1) n+2 \\
(j \leq j \leq m, i \text { odd }
\end{array}\right. \\
w\left(x_{i}^{j} x_{i+1}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq m, i \text { odd } \\
(j+1) n+2 & 1 \leq j \leq m, i \text { even }\end{cases}
\end{gathered}
$$

Hence, from the above the edge weights, it is easy to see that f induces a proper edge colouring of ${ }_{m} S p l\left(P_{n}\right)$ and it gives $\gamma_{l a e}\left({ }_{m} S p l\left(P_{n}\right)\right) \leq \gamma_{l a e}\left(P_{n}\right)+2 m$. Then it will be showed that $\gamma_{l a e}\left(m \operatorname{Spl}\left(P_{n}\right)\right) \geq \gamma_{l a e}\left(P_{n}\right)+2 m$.

Let $\gamma(G) \geq \delta$. We will show that $\gamma(G) \geq 2 m+2$. Based on Lemma [1] that $\gamma(G) \geq \delta$, we know that $\delta(G)=2 m+2$. So, $\gamma(G) \geq \delta=2 m+2$, the lower bound of local edge antimagic of G. It conclude that $\gamma=2 m+2$. So $\gamma_{l a e}\left(m \operatorname{Spl}\left(P_{n}\right)\right)=\gamma_{l a e}\left(P_{n}\right)+2 m$.

Theorem 2.2 For $n \geq 4$, the local edge antimagic of $m-S p l i t t i n g$ of C_{n} graph is

$$
\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(C_{n}\right)\right)=\gamma_{l a e}\left(C_{n}\right)+3 m
$$

Proof. The ${ }_{m} \operatorname{Spl}\left(C_{n}\right)$ graph has vertex set $V(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i}^{j}: 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq\right.$ $m\} \cup\left\{x_{i}^{j} x_{i+1}: 1 \leq i \leq n-1,1 \leq j \leq m\right\}$. The cardinality $|V(G)|=m n$ and $|E(G)|=2 m n$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. The illustration can be seen at Figure 2. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
\begin{gathered}
f\left(x_{i}\right)= \begin{cases}\frac{i+1}{2} & 1 \leq i \leq n, i \text { odd } \\
n-\frac{i-2}{2} & 1 \leq i \leq n, i \text { even }\end{cases} \\
f\left(x_{i}^{j}\right)= \begin{cases}\frac{2 n j+i+1}{2} & 1 \leq j \leq m, i \text { odd } \\
\frac{2 n(j+1)-(i-2)}{2} & 1 \leq j \leq m, i \text { even }\end{cases}
\end{gathered}
$$

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012044 doi:10.1088/1742-6596/1008/1/012044

It is easy to see f is a local antimagic coloring of $m \operatorname{Spl}\left(C_{n}\right)$ and the edge weights as follows. For n even,

$$
w(e)= \begin{cases}n+1 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { odd } \\ n+2 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { even } \\ \frac{n+2}{2} & \text { for } e=x_{n} x_{1}\end{cases}
$$

For n odd,

$$
\begin{gathered}
w(e)= \begin{cases}n+1 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { odd; } \\
n+2 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { even; } \\
\frac{n+3}{2} & \text { for } e=x_{n} x_{1} ;\end{cases} \\
w\left(x_{i} x_{i+1}^{j}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq m, i \text { odd; } \\
(j+1) n+2 & 1 \leq j \leq m, i \text { even. }\end{cases} \\
w\left(x_{i}^{j} x_{i+1}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq m, i \text { odd; } \\
(j+1) n+2 & 1 \leq j \leq m, i \text { even. }\end{cases}
\end{gathered}
$$

Hence, from the above the edge weights, it easy to see that f induces a proper edge colouring of ${ }_{m} \operatorname{Spl}\left(C_{n}\right)$ and it gives $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(C_{n}\right)\right) \leq \gamma_{l a e}\left(C_{n}\right)+3 m$. Then it will be showed that $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(C_{n}\right)\right) \geq \gamma_{l a e}\left(C_{n}\right)+3 m$.

We will show that $\gamma(G) \geq 3 m+3$. Based on Lemma that $\gamma(G) \geq \delta=2 m+2$. Case 1: Assume that $\gamma(G)<3 m+3$, we take $\gamma=3 m+2$. Let c_{1} and c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 n+2)}{2}$ and hence $c_{1}+c_{2}=2 n+2$. However, if x_{i} is the vertex with $f\left(x_{i}\right)=n$, then the colors received by inner edges are at least $n+1$ and one of them is at least $n+2$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=2 n+3$. Case 2: Assume that $\gamma(G)<3 m+3$, we take $\gamma=3 m+2$. Assume that each outer edge:

- for $m=1$, then γ of outer edge is equal to 3
- for $m=2$, then γ of outer edge is equal to 6
- for any m, then γ of outer edge is equal to $3 m$

Based on Case 1 and Case 2, then it is contradiction. Hence $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(C_{n}\right)\right) \geq 2+3 m$. Since $\gamma_{l a e}\left(m \operatorname{Spl}\left(C_{n}\right)\right) \leq 3+3 m$ and $\gamma_{l a e}\left(m \operatorname{Spl}\left(C_{n}\right)\right) \geq \gamma_{l a e}\left(C_{n}\right)+3 m$.

Theorem 2.3 For $n \geq 4$, the local edge antimagic of m-Splitting of K_{n} graph is

$$
\gamma_{l a e}\left(m \operatorname{Spl}\left(K_{n}\right)\right)=\gamma_{l a e}\left(K_{n}\right)+4 m
$$

Proof. The ${ }_{m} \operatorname{Spl}\left(K_{n}\right)$ graph has vertex set $V(G)=\left\{x_{i}, x_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+k}: 1 \leq i \leq n, 1 \leq k \leq n-i\right\} \cup\left\{x_{i} x_{i+k}^{j}: 1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq\right.$ $n-i\} \cup\left\{x_{i}^{j} x_{i+k}: 1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq n-i\right\}$. The cardinality $|V(G)|=m n$ and $|E(G)|=3 m n$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. The illustration can be seen at Figure 3. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
f\left(x_{i}\right)= \begin{cases}i & 1 \leq i \leq n\end{cases}
$$

Figure 3. ${ }_{1} \operatorname{Spl}\left(K_{4}\right)$ Graph

$$
f\left(x_{i}^{j}\right)= \begin{cases}\frac{2 n j+i+1}{2} & 1 \leq j \leq m, i \text { odd } \\ n j+i & 1 \leq j \leq m, i \text { even }\end{cases}
$$

It is easy to see f is a local antimagic coloring of ${ }_{m} \operatorname{Spl}\left(K_{n}\right)$ and the edge weights as follows.

$$
w(e)= \begin{cases}i+k+1 & \text { for } e=x_{i} x_{i+k}, 2 \leq i \leq n, 1 \leq k \leq n-1 \\ k+2 & \text { for } e=x_{1} x_{1+k}, 1 \leq k \leq n-2 \\ n+1 & \text { for } e=x_{i} x_{n}\end{cases}
$$

For $1 \leq k \leq n-i$,

$$
\begin{aligned}
& w\left(x_{i} x_{i+k}^{j}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq m, i \text { odd; } \\
(j+1) n+2 & 1 \leq j \leq m, i \text { even. }\end{cases} \\
& w\left(x_{i}^{j} x_{i+k}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq m, i \text { odd; } \\
(j+1) n+2 & 1 \leq j \leq m, i \text { even. }\end{cases}
\end{aligned}
$$

Hence, from the above the edge weights, it is easy to see that f induces a proper edge colouring of ${ }_{m} \operatorname{Spl}\left(K_{n}\right)$ and it gives $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{n}\right)\right) \leq \gamma_{l a e}\left(K_{n}\right)+4 m$. Then it will be showed that $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{n}\right)\right) \geq \gamma_{l a e}\left(K_{n}\right)+4 m$.

We will show that $\gamma(G) \geq 4 m+4$. Case 1: Assume that $\gamma(G)<4 m+4$, we take $\gamma=4 m+3$. Let c_{1} and c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 k+4)}{2}$ and hence $c_{1}+c_{2}=2 k+4$. However, if x_{i} is the vertex with $f\left(x_{i}\right)=n$, then the colors received by inner edges are at least $k+2$ and one of them is at least $n+1$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=k+n+3$.
Case 1: Assume that $\gamma(G)<4 m+4$, we take $\gamma=4 m+3$. Assume that each outer edge:

- for $m=1$, then γ of outer edge is equal to 4
- for $m=2$, then γ of outer edge is equal to 8
- for any m, then γ of outer edge is equal to $4 m$

Based on Case 1 and Case 2, then it is contradiction. Hence $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{n}\right)\right) \geq 3+4 m$. Since $\gamma_{\text {lae }}\left(m \operatorname{Spl}\left(K_{n}\right)\right) \leq 4+4 m$ and $\gamma_{\text {lae }}\left({ }_{m} \operatorname{Spl}\left(K_{n}\right)\right) \geq \gamma_{\text {lae }}\left(K_{n}\right)+4 m$.

There are some theorem of special graph which be found as follows:

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012044 doi:10.1088/1742-6596/1008/1/012044

Theorem 2.4 The local edge antimagic of ${ }_{m} \operatorname{Spl}\left(P_{4}\right)$ graph is $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(P_{4}\right)\right)=2(1+m)$.
Proof. The ${ }_{m} S p l\left(P_{4}\right)$ graph has vertex set $V(G)=\left\{x_{i}: 1 \leq i \leq 4\right\} \cup\left\{x_{i}^{j}: 1 \leq i \leq 4,1 \leq j \leq m\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq 3\right\} \cup\left\{x_{i} x_{i+1}^{j}: 1 \leq i \leq 3,1 \leq j \leq m\right\} \cup\left\{x_{i}^{j} x_{i+1}: 1 \leq\right.$ $i \leq 3,1 \leq j \leq m\} \cup\left\{x_{i}^{j} x_{i+1}^{j+1}: 1 \leq i \leq 3,1 \leq j \leq m\right\} \cup\left\{x_{i}^{j} x_{i-1}^{j+1}: 1 \leq i \leq 3,1 \leq j \leq m\right\}$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
f\left(x_{i}\right)= \begin{cases}\frac{i+1}{2} & 1 \leq i \leq 4, i \text { odd } \\ n-\frac{i-2}{2} & 1 \leq i \leq 4, i \text { even }\end{cases}
$$

For $1 \leq i \leq 4$,

$$
f\left(x_{i}^{j}\right)= \begin{cases}\frac{8 j+i+1}{2} & 1 \leq j \leq m, i \text { odd } \\ \frac{8(j+1)-(i-2)}{2} & 1 \leq j \leq m, i \text { even }\end{cases}
$$

It is easy to see that f is a local antimagic labeling of ${ }_{m} S p l\left(P_{4}\right)$ and the edge weights are as follows. For $1 \leq i \leq 4$,

$$
\begin{gathered}
w\left(x_{i} x_{i+1}\right)= \begin{cases}5 & 1 \leq j \leq m, i \text { odd } \\
6 & 1 \leq j \leq m, i \text { even }\end{cases} \\
w\left(x_{i} x_{i+1}^{j}\right)= \begin{cases}(j+1) 4+1 & 1 \leq j \leq m, i \text { odd } \\
(j+1) 4+2 & 1 \leq j \leq m, i \text { even }\end{cases} \\
w\left(x_{i}^{j} x_{i+1}\right)=\left\{\begin{array}{l}
(j+1) 4+1 \\
(j+1) 4+2 \\
(j \leq j \leq m, i \text { odd }
\end{array}\right. \\
\hline m, i \text { even }
\end{gathered}
$$

Hence, from the above the edge weights, it is easy to see that f induces a proper edge colouring of ${ }_{m} S p l\left(P_{4}\right)$ and it gives $\gamma_{l a e}\left(m S p l\left(P_{4}\right)\right) \leq 2(1+m)$. Then it will be showed that $\gamma_{l a e}\left({ }_{m} S p l\left(P_{4}\right)\right) \geq 2(1+m)$.

Let $\gamma(G) \geq \bar{\delta}$. We will show that $\gamma(G) \geq 10$. Based on Lemma [1] that $\gamma(G) \geq \delta$, we know that $\delta(G)=10$. So, $\gamma(G) \geq \delta=10$, the lower bound of local edge antimagic of G. It conclude that $\gamma=10$. So $\gamma_{l a e}\left(m \operatorname{Spl}\left(P_{4}\right)\right)=2(1+m)$.

Theorem 2.5 The local edge antimagic of ${ }_{2} \operatorname{Spl}\left(P_{n}\right)$ graph is $\gamma_{l a e}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right)=6$.
Proof. The ${ }_{2} \operatorname{Spl}\left(P_{n}\right)$ graph has vertex set $V(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq 2\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq 2\right\} \cup\left\{x_{i}^{j} x_{i+1}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq 2\} \cup\left\{x_{i}^{j} x_{i+1}^{j+1}: 1 \leq i \leq n-1,1 \leq j \leq 2\right\} \cup\left\{x_{i}^{j} x_{i-1}^{j+1}: 1 \leq i \leq n-1,1 \leq j \leq 2\right\}$. The cardinality $|V(G)|=2(n+1)$ and $|E(G)|=4(n-1)+(n-1)$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
f\left(x_{i}\right)= \begin{cases}\frac{i+1}{2} & 1 \leq i \leq n, i \text { odd } \\ n-\frac{i-2}{2} & 1 \leq i \leq n, i \text { even }\end{cases}
$$

$$
f\left(x_{i}^{j}\right)= \begin{cases}\frac{2 n j+i+1}{2} & 1 \leq j \leq 2, i \text { odd } \\ \frac{2 n(j+1)-(i-2)}{2} & 1 \leq j \leq 2, i \text { even. }\end{cases}
$$

It is easy to see that f is a local antimagic labeling of ${ }_{2} \operatorname{Spl}\left(P_{n}\right)$ and the edge weights are as follows

$$
\begin{gathered}
w\left(x_{i} x_{i+1}\right)= \begin{cases}n+1 & 1 \leq j \leq 2, i \text { odd; } \\
n+2 & 1 \leq j \leq 2, i \text { even. }\end{cases} \\
w\left(x_{i} x_{i+1}^{j}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq 2, i \text { odd } \\
(j+1) n+2 & 1 \leq j \leq 2, i \text { even. }\end{cases} \\
w\left(x_{i}^{j} x_{i+1}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq 2, i \text { odd } \\
(j+1) n+2 & 1 \leq j \leq 2, i \text { even. }\end{cases}
\end{gathered}
$$

Hence, from the above the edge weights, it easy to see that f induces a proper edge colouring of ${ }_{m} \operatorname{Spl}\left(P_{n}\right)$ and it gives $\gamma_{l a e}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right) \leq 6$. Then it will be showed that $\gamma_{l a e}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right) \geq 6$.

Assume that $\gamma_{\text {lae }}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right)=6-1$. Since $\gamma_{\text {lae }}\left(P_{n}\right)=2$, then $\gamma_{\text {lae }}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right)=5$. Let c_{1} till c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 n+2)}{2}$ and hence $c_{1}+c_{2}=2 n+2$. However, if xi is the vertex with $f(x i)=n$, then the colors received by inner edges are at least $n+1$ and one of them is at least $n+2$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=2 n+3$. It's contradiction. Hence $\gamma_{\text {lae }}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right) \geq 6$. Since $\gamma_{\text {lae }}\left(2 \operatorname{Spl}\left(P_{n}\right)\right) \leq 6$ and $\gamma_{\text {lae }}\left({ }_{2} \operatorname{Spl}\left(P_{n}\right)\right) \geq 6$, it completes the proof.

Theorem 2.6 The local edge antimagic of ${ }_{m} \operatorname{Spl}\left(C_{4}\right)$ graph is $\gamma_{l a e}\left({ }_{m} S p l\left(C_{4}\right)\right)=3(1+m)$.
Proof. The ${ }_{m} S p l\left(C_{4}\right)$ graph has vertex set $V(G)=\left\{x_{i}: 1 \leq i \leq 4\right\} \cup\left\{x_{i}^{j}: 1 \leq i \leq 4,1 \leq j \leq m\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq 3\right\} \cup\left\{x_{i} x_{i+1}^{j}: 1 \leq i \leq 3,1 \leq j \leq m\right\} \cup\left\{x_{i}^{j} x_{i+1}: 1 \leq\right.$ $i \leq 3,1 \leq j \leq m\}$. The cardinality $|V(G)|=4 m$ and $|E(G)|=8 m$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
\begin{gathered}
f\left(x_{i}\right)= \begin{cases}\frac{i+1}{2} & 1 \leq i \leq 4, i \text { odd; } \\
n-\frac{i-2}{2} & 1 \leq i \leq 4, i \text { even. }\end{cases} \\
f\left(x_{i}^{j}\right)= \begin{cases}\frac{8 j+i+1}{2} & 1 \leq j \leq m, i \text { odd } ; \\
\frac{8(j+1)-(i-2)}{2} & 1 \leq j \leq m, i \text { even. }\end{cases}
\end{gathered}
$$

It is easy to see f is a local antimagic coloring of ${ }_{m} \operatorname{Spl}\left(C_{4}\right)$ and the edge weights as follows. For n even,

$$
w(e)= \begin{cases}5 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq 3, i \text { odd; } \\ 6 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq 3, i \text { even } \\ 3 & \text { for } e=x_{4} x_{1}\end{cases}
$$

For n odd,

$$
\begin{gathered}
w(e)= \begin{cases}n+1 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { odd; } \\
n+2 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { even; } \\
\frac{n+3}{2} & \text { for } e=x_{n} x_{1} ;\end{cases} \\
w\left(x_{i} x_{i+1}^{j}\right)= \begin{cases}(j+1) 4+1 & 1 \leq j \leq m, i \text { odd } ; \\
(j+1) 4+2 & 1 \leq j \leq m, i \text { even. }\end{cases} \\
w\left(x_{i}^{j} x_{i+1}\right)= \begin{cases}(j+1) 4+1 & 1 \leq j \leq m, i \text { odd } ; \\
(j+1) 4+2 & 1 \leq j \leq m, i \text { even }\end{cases}
\end{gathered}
$$

Hence, from the above the edge weights, it easy to see that f induces a proper edge colouring of ${ }_{m} S p l\left(C_{4}\right)$ and it gives $\gamma_{l a e}\left({ }_{m} S p l\left(C_{n}\right)\right) \leq 3(1+m)$. Then it will be showed that $\gamma_{\text {lae }}\left({ }_{m} \operatorname{Spl}\left(C_{n}\right)\right) \geq 3(1+m)$.

Assume that $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(C_{4}\right)\right)=\left(\gamma_{\text {lae }}\left(C_{4}\right)-1\right)+3 m$. Since $\gamma_{\text {lae }}\left(C_{4}\right)=3$, then $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(C_{4}\right)\right)=$ $3(1+m)-1 m$. Let c_{1} till c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 n+2)}{2}$ and hence $c_{1}+c_{2}=2 n+2$. However, if xi is the vertex with $f(x i)=n$, then the colors received by inner edges are at least $n+1$ and one of them is at least $n+2$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=2 n+3$. It's contradiction. Hence $\gamma_{l a e}\left({ }_{m} S p l\left(C_{4}\right)\right) \geq 3(1+m)-1$. Since $\gamma_{l a e}\left({ }_{m} S p l\left(C_{4}\right)\right) \leq 3(1+m)$ and $\gamma_{l a e}\left(m_{m p l}\left(C_{4}\right)\right) \geq 3(1+m)$, it completes the proof.

Theorem 2.7 The local edge antimagic of ${ }_{3} \operatorname{Spl}\left(C_{n}\right)$ graph is $\gamma_{\text {lae }}\left(3 S p l\left(C_{n}\right)\right)=12$.
Proof. The ${ }_{3} S p l\left(C_{n}\right)$ graph has vertex set $V(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq 3\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq 3\right\} \cup\left\{x_{i}^{j} x_{i+1}\right.$: $1 \leq i \leq n-1,1 \leq j \leq 3\}$. The cardinality $|V(G)|=3 n$ and $|E(G)|=6 n$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. It also admits in edge set. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
\begin{gathered}
f\left(x_{i}\right)= \begin{cases}\frac{i+1}{2} & 1 \leq i \leq n, i \text { odd; } \\
n-\frac{i-2}{2} & 1 \leq i \leq n, i \text { even. }\end{cases} \\
f\left(x_{i}^{j}\right)= \begin{cases}\frac{2 n j+i+1}{2 n(j+1)-(i-2)} & 1 \leq j \leq 3, i \text { odd; } \\
\frac{2 \leq j \leq 3, i \text { even. }}{2} & 1 \leq 5\end{cases}
\end{gathered}
$$

It is easy to see f is a local antimagic coloring of ${ }_{3} S p l\left(C_{n}\right)$ and the edge weights as follows. For n even,

$$
w(e)= \begin{cases}n+1 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { odd; } \\ n+2 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { even; } \\ \frac{n+2}{2} & \text { for } e=x_{n} x_{1} ;\end{cases}
$$

For n odd,

$$
w(e)= \begin{cases}n+1 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { odd; } \\ n+2 & \text { for } e=x_{i} x_{i+1}, 1 \leq i \leq n-1, i \text { even } ; \\ \frac{n+3}{2} & \text { for } e=x_{n} x_{1} ;\end{cases}
$$

$$
\begin{aligned}
& w\left(x_{i} x_{i+1}^{j}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq 3, i \text { odd; } \\
(j+1) n+2 & 1 \leq j \leq 3, i \text { even. }\end{cases} \\
& w\left(x_{i}^{j} x_{i+1}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq 3, i \text { odd } \\
(j+1) n+2 & 1 \leq j \leq 3, i \text { even. }\end{cases}
\end{aligned}
$$

Hence, from the above the edge weights, it easy to see that f induces a proper edge colouring of ${ }_{m} \operatorname{Spl}\left(C_{n}\right)$ and it gives $\gamma_{l a e}\left({ }_{m} S p l\left(C_{n}\right)\right) \leq 12$. Then it will be showed that $\gamma_{l a e}\left({ }_{m} S p l\left(C_{n}\right)\right) \geq 12$.

Assume that $\gamma_{l a e}\left({ }_{3} S p l\left(C_{n}\right)\right)=\left(\gamma_{l a e}\left(C_{n}\right)-1\right)+9$. Since $\gamma_{l a e}\left(C_{n}\right)=3$, then $\gamma_{l a e}\left({ }_{m} S p l\left(C_{n}\right)\right)=$ 11. Let c_{1} till c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 n+2)}{2}$ and hence $c_{1}+c_{2}=2 n+2$. However, if xi is the vertex with $f(x i)=n$, then the colors received by inner edges are at least $n+1$ and one of them is at least $n+2$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=2 n+3$. It's contradiction. Hence $\gamma_{l a e}\left({ }_{m} S p l\left(C_{n}\right)\right) \geq 11$. Since $\gamma_{l a e}\left(3 S p l\left(C_{n}\right)\right) \leq 12$ and $\gamma_{l a e}\left({ }_{3} S p l\left(C_{n}\right)\right) \geq 12$, it completes the proof.

Theorem 2.8 The local edge antimagic of ${ }_{m} \operatorname{Spl}\left(K_{4}\right)$ graph is $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{4}\right)\right)=4 m+5$.
Proof. The ${ }_{m} \operatorname{Spl}\left(K_{4}\right)$ graph has vertex set $V(G)=\left\{x_{i}, x_{i}^{j}: 1 \leq i \leq 4,1 \leq j \leq m\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+k}: 1 \leq i \leq 4,1 \leq k \leq 4-i\right\} \cup\left\{x_{i} x_{i+k}^{j}: 1 \leq i \leq 4,1 \leq j \leq m, 1 \leq k \leq\right.$ $4-i\} \cup\left\{x_{i}^{j} x_{i+k}: 1 \leq i \leq 4,1 \leq j \leq m, 1 \leq k \leq 4-i\right\}$. The cardinality $|V(G)|=4 m$ and $|E(G)|=12 \mathrm{~m}$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
\begin{gathered}
f\left(x_{i}\right)=\left\{\begin{array}{ll}
i & 1 \leq i \leq 4 \\
f\left(x_{i}^{j}\right)=\left\{\begin{array}{cc}
\frac{8 j+i+1}{2} & 1 \leq j \leq m, i \text { odd } \\
4 j^{2}+i & 1 \leq j \leq m, i \text { even }
\end{array}\right.
\end{array} . \begin{array}{c}
1 \leq 2
\end{array}\right) \\
\end{gathered}
$$

It is easy to see f is a local antimagic coloring of $m \operatorname{Spl}\left(K_{4}\right)$ and the edge weights as follows.

$$
w(e)= \begin{cases}i+k+1 & \text { for } e=x_{i} x_{i+k}, 2 \leq i \leq n, 1 \leq k \leq 3 \\ k+2 & \text { for } e=x_{1} x_{1+k}, 1 \leq k \leq 2 \\ 4+1 & \text { for } e=x_{i} x_{4}\end{cases}
$$

For $1 \leq k \leq 4-i$,

$$
\begin{aligned}
& w\left(x_{i} x_{i+k}^{j}\right)= \begin{cases}(j+1) 4+1 & 1 \leq j \leq m, i \text { odd } \\
(j+1) 4+2 & 1 \leq j \leq m, i \text { even }\end{cases} \\
& w\left(x_{i}^{j} x_{i+k}\right)= \begin{cases}(j+1) 4+1 & 1 \leq j \leq m, i \text { odd } \\
(j+1) 4+2 & 1 \leq j \leq m, i \text { even. }\end{cases}
\end{aligned}
$$

Hence, from the above the edge weights, it easy to see that f induces a proper edge colouring of ${ }_{m} \operatorname{Spl}\left(K_{4}\right)$ and it gives $\gamma_{l a e}\left({ }_{m} S p l\left(K_{4}\right)\right) \leq 4 m+5$. Then it will be showed that $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{4}\right)\right) \geq 4 m+5$.

Assume that $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{4}\right)\right)=4 m+5-1$. Since $\gamma_{l a e}\left(K_{4}\right)=5$, then $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{4}\right)\right)=4 m+4$. Let c_{1} till c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 k+4)}{2}$ and hence $c_{1}+c_{2}=2 k+4$.

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012044 doi:10.1088/1742-6596/1008/1/012044

However, if xi is the vertex with $f(x i)=n$, then the colors received by inner edges are at least $k+2$ and one of them is at least $n+1$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=k+n+3$. It's contradiction. Hence $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{4}\right)\right) \geq 4 m+4$. Since $\gamma_{l a e}\left(m \operatorname{Spl}\left(K_{n}\right)\right) \leq 4 m+5$ and $\gamma_{l a e}\left({ }_{m} \operatorname{Spl}\left(K_{n}\right)\right) \geq 4 m+5$, it completes the proof.

Theorem 2.9 The local edge antimagic of ${ }_{2} \operatorname{Spl}\left(K_{n}\right)$ graph is $\gamma_{l a e}\left({ }_{2} \operatorname{Spl}\left(K_{n}\right)\right)=2 n+5$.
Proof. The ${ }_{2} \operatorname{Spl}\left(K_{n}\right)$ graph has vertex set $V(G)=\left\{x_{i}, x_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq 2\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+k}: 1 \leq i \leq n, 1 \leq k \leq n-i\right\} \cup\left\{x_{i} x_{i+k}^{j}: 1 \leq i \leq n, 1 \leq j \leq 2,1 \leq k \leq\right.$ $n-i\} \cup\left\{x_{i}^{j} x_{i+k}: 1 \leq i \leq n, 1 \leq j \leq 2,1 \leq k \leq n-i\right\}$. The cardinality $|V(G)|=2 n$ and $|E(G)|=6 n$. Let split graph has set of vertices and edges. The set of vertices consists of set of inner and outter vertices. Inner vertex is the vertex set in center graph and outter vertex is the vertex set in split of graph. This also applies to inner and outer edge definitions. Define a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ by

$$
\begin{aligned}
& f\left(x_{i}\right)= \begin{cases}i & 1 \leq i \leq n .\end{cases} \\
& f\left(x_{i}^{j}\right)=\left\{\begin{array}{cl}
\frac{2 n j+i+1}{2} & 1 \leq j \leq 2, i \text { odd; } \\
n j+i & 1 \leq j \leq 2, i \text { even. }
\end{array}\right.
\end{aligned}
$$

It is easy to see f is a local antimagic coloring of ${ }_{2} \operatorname{Spl}\left(K_{n}\right)$ and the edge weights as follows.

$$
w(e)= \begin{cases}i+k+1 & \text { for } e=x_{i} x_{i+k}, 2 \leq i \leq n, 1 \leq k \leq n-1 \\ k+2 & \text { for } e=x_{1} x_{1+k}, 1 \leq k \leq n-2 \\ n+1 & \text { for } e=x_{i} x_{n} .\end{cases}
$$

For $1 \leq k \leq n-i$,

$$
\begin{aligned}
& w\left(x_{i} x_{i+k}^{j}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq 2, i \text { odd } \\
(j+1) n+2 & 1 \leq j \leq 2, i \text { even }\end{cases} \\
& w\left(x_{i}^{j} x_{i+k}\right)= \begin{cases}(j+1) n+1 & 1 \leq j \leq 2, i \text { odd } \\
(j+1) n+2 & 1 \leq j \leq 2, i \text { even. }\end{cases}
\end{aligned}
$$

Hence, from the above the edge weights, it easy to see that f induces a proper edge colouring of ${ }_{2} \operatorname{Spl}\left(K_{n}\right)$ and it gives $\gamma_{l a e}\left(2 \operatorname{Spl}\left(K_{n}\right)\right) \leq 2 n+5$. Then it will be showed that $\gamma_{\text {lae }}\left(2 \operatorname{Spl}\left(K_{n}\right)\right) \geq 2 n+5$.

Assume that $\gamma_{l a e}\left(2 \operatorname{Spl}\left(K_{n}\right)\right)=2 n+5-1$. Since $\gamma_{\text {lae }}\left(K_{n}\right)=2 n-3$, then $\gamma_{l a e}\left(2 \operatorname{Spl}\left(K_{n}\right)\right)=$ $2 n+4$. Let c_{1} till c_{2} be the color of inner edge. Then $\frac{n\left(c_{1}+c_{2}\right)}{2}=\frac{n(2 k+4)}{2}$ and hence $c_{1}+c_{2}=2 k+4$. However, if xi is the vertex with $f(x i)=n$, then the colors received by inner edges are at least $k+2$ and one of them is at least $n+1$. Thus $c_{1}+c_{2}=(n+1)+(n+2)=k+n+3$. It's contradiction. Hence $\gamma_{\text {lae }}\left(2 \operatorname{Spl}\left(K_{n}\right)\right) \geq 2 n+4$. Since $\gamma_{\text {lae }}\left(2 \operatorname{Spl}\left(K_{n}\right)\right) \leq 2 n+5$ and $\gamma_{\text {lae }}\left(2 \operatorname{Spl}\left(K_{n}\right)\right) \geq 2 n+5$.

3. Concluding Remarks

We have discussed about the local antimagic edge coloring of some related m-splitting graphs for several sets of value (m, n) in this paper. Three basic theorem is about complete graph, circle graph, and path graph which has any solutions for being a basic graph of operation m-splitting.

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012044 doi:10.1088/1742-6596/1008/1/012044

Open Problem

Find local edge antimagic coloring of $m \operatorname{Spl}\left(H_{n}\right)$ graph for any n and m where H is any graph.

Acknowledgement

This work was partially supported by the CGANT University of Jember year 2018

References

[1] Agustin I H, Dafik, Moh. Hasan, Alfarisi R, Prihandini R M 2017 Local edge Antimagic Coloring of Graphs Far East Journal of Mathematical Science 102 1925-1941
[2] Arumugam S, Premalatha K, Baca M and Semanicova-Fenovcikova A 2017 Local Antimagic Vertex Coloring of a Graph, Graphs and Combinatorics 33 275-285
[3] Bondy J A and Murty U S R 1982 Graph Theory and Application 3rd ed (United States of America: North Holland)
[4] Chartrand G and Lesniak L 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)
[5] Dafik, Miller M, Ryan J, and Baca M 2011 Super edge-antimagic total labelings of ${ }_{m} K_{n, n}$ Ars Combinatoria, 101 97-107.
[6] Dafik, Baca M, Miller M, and Ryan J 2008 On super (a, d)-edge-antimagic total labeling of caterpillars Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC) 65 61-70.
[7] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group
[8] Hartsfield N dan Ringel G 1994 Pearls in Graph Theory Academic Press. United Kingdom
[9] Baca M, Miller M, Ryan J, and Dafik 2009 Antimagic labeling of disjoint union of s-crowns Utilitas Mathematica 78 193-205

