E-ISSN: 1309-100X

Journal of

International

Dental and Medical

Research

2018 - Vol. 11 — No. 1

http://www.jidmr.com

Kepository Universitas Jemper Journal of International Dental and Medical Research / ISSN: 1309-100X

TABLE OF CONTENTS / 2018; 11 (1)

DENTISTRY

CLINICAL ARTICLE

1. Gingival Hyperplasia Around Dental Implants in Jaws Reconstructed with Free Vascularized Flaps: A Case Report Series

Edoardo Brauner, Francesca De Angelis, Sara Jamshir, Valentino Valentini, Umberto Romeo, Gianluca Tenore, Giorgio Pompa, Stefano Di Carlo *Pages 1-7*

CLINICAL ARTICLE

2. Crowding And Open Bite In Relation To Gingival Inflammation M Sejdini, S Cherkezi, M Nakova

Pages 8-14

CLINICAL ARTICLE

3. Frequency of Class II Disorders and their Relation to Ethnicity, Gender, Age and Residence in School Age Group

Milaim Sejdini, Sabetim Çerkezi, Sokol Krasniqi, Nora Berisha, Nora Aliu, Sami Salihu, Kastriot Meqa Pages 15-20

CLINICAL ARTICLE

4. Quality Assessment of Root Canal Treatment Performed by Dental Students at Western University, Thailand

Kanokwan Suttagul, Widcha Asawaworarit Pages 21-26

CLINICAL ARTICLE

5. Protein Biomarker Expression in Invasive Breast Carcinoma, NST Classified According to Age, TNM and Original Nottingham Prognostic Index – A Study in Kosovo

Nora Shabani, Fisnik Kurshumliu, Ljube Ivkovski, Suzana Manxhuka-Kerliu Pages 27-31

CLINICAL ARTICLE

6. Translation and Validation Study of the Chen Internet Addiction Scale (CIAS) among Malaysian college students

Ali Sabri Radeef, Ghasak Ghazi Faisal, Ramli Musa *Pages 32-37*

CLINICAL ARTICLE

7. Effectiveness of teaching dental implant science as a merged implant-related lectures on dental student's knowledge

Afya Sahib Diab Al-Radha Pages 38-44

CLINICAL ARTICLE

8. Proximal Caries Detection in Permanent Teeth by Using DIAGNOcam: An in Vivo Study Sara Ali Al Shaya, Musab Hamed Saeed, Waad M. Kheder

Pages 45-50

CLINICAL ARTICLE

9. Determination and Influence of Saliva Calcium and Magnesium in Children with Different Intensity of Caries

Milaim Sejdini, Nora Berisha, Ekrem Citaku *Pages 51-56*

CLINICAL ARTICLE

10. Posture Work to Complaint Musculoskeletal Disorders at the Dentist Tritania Ambarwati, Suroto, Baju Wicaksena, Yayah Sopianah, Hadiyat Miko Pages 57-61

J Int Dent Med Res

TABLE OF CONTENTS / 2018; 11 (1)

CLINICAL ARTICLE

11. Alteration of Memory and Depression in Elderly with Full Overdenture – Pilot Study Bahruddin Thalib, Brilyanti Horas, Edy Machmud, Asmawati Amin, Rafikah Hasyim Pages 62-65

CLINICAL ARTICLE

12. Exploring trends and factors related to hookah use among college students: A Cross-Sectional Survey Nishu Singla, Ritesh Singla, Lohan Moradia, Mafaz Bin Ahsan, Arunima Kapoor, Vidushi Garg Pages 66-70

CLINICAL ARTICLE

13. Post 'Gorkha earthquake' Medical Problems of the Victims in Nepal Utsab Shrestha, Nabin Rokaya, Dinesh Rokaya, Kanokwan Suttagul, Pravin Kumar Shah, Manoj Humagain, Saujanya Karki, Manash Shrestha, Dutmanee Seriwatanachai Pages 71-75

CLINICAL ARTICLE

14. Delayed Eruption of Primary Teeth Among Children with Down Syndrome Jie Xin Lim, Willyanti Soewondo, Inne S. Sasmita Pages 76-80

CLINICAL ARTICLE

15. Prevalence of Candida Species in Oral Candidiasis and Correlation With Cd4+ Count in Hiv/Aids Patients at Surabaya, Indonesia

Alexander Patera Nugraha, Diah Savitri Ernawati*, Adiastuti Endah Parmadiati, Bagus Soebadi, Erwin Astha Triyono, Remita Adya Prasetyo, Sulistyowati Budi Utami, Agung Sosiawan *Pages 81-85*

CLINICAL ARTICLE

16. The Effects of the Pop-Up Book "Akudan Gigiku" on Salivary Alpha Amylase Levels in Hearing Impaired Children

Aprillia Puspita Rachmadani, Eva Fauziah, Mochammad Fahlevi Rizal, Ike Siti Indiarti *Pages 86-89*

CLINICAL ARTICLE

17. An Indonesian Version of Caries Management by Risk Assessment (CAMBRA) for Children Aged 0–5 Years: Assessing Validity and Reliability

Annisa Rizki Amalia, Mochamad Fahlevi Rizal, Heriandi Sutadi *Pages 90-100*

CLINICAL ARTICLE

18. Oral Mucosal Lesion Detection Accuracy Post Lectures and Tests in Clinical Dental Students Rahmi Amtha, Indrayadi Gunardi, Sok Ching Cheong, Rosnah Binti Zain Pages 101-106

CLINICAL ARTICLE

19. Biopsychosocial Identification of Early Childhood Caries (Ecc) as a Predictor of Risk Factors of Caries in Pre-School Children

Harun Achmad, Hendrastuti Handayani, Sri Ramadhany, Hasanuddin Thahir, Mardiana Adam, Yunita Feby Ramadhany
Pages 107-115

CLINICAL ARTICLE

ÜRKİYE **ATIF DİZİNİ**

20. Salivary Flow Rate, pH, Viscosity, and Buffering Capacity in Visually Impaired Children Rizky Fitri Haryuni, Margaretha Suharsini, Sarworini B. Budiardjo, Amrita Widyagarini Pages 116-119

REPOSITORY UNIVERSITAS JEMPERJournal of International Dental and Medical Research / ISSN: 1309-100X

TABLE OF CONTENTS / 2018; 11 (1)

CLINICAL ARTICLE

21. Maternal Polymorphism MTHFR A1298C not C677T and MSX1 as the Risk Factors of Non-syndrome Cleft Lips /Palate in Sasak Tribe Indonesia

Yayun Siti Rochmah, Lusi Suwarsi, Stefani Harumsari, Agung Sosiawan, Siti Fatimah-Muis, Sultana MH Faradz

Pages 120-123

CLINICAL ARTICLE

22. Hiv-1 Tat: a Potential Diagnostic and Disease Progression Biomarker of Hiv/Aids
Desiana Radithia, Bagus Soebadi, Iwan Hernawan, Hadi Soenartyo, Suharto, Suhartono Taat Putra
Pages 124-127

CLINICAL ARTICLE

23. Measurement of Malondialdehyde in Patients with Recurrent Aphthous Stomatitis
Ayu Mashartini Prihanti, Diah Savitri E, Iwan Hernawan
Pages 128-130

CLINICAL ARTICLE

24. Study of Drug Utilization within an Anti-fungal Therapy for HIV/AIDS Patients Presenting Oral Candidiasis at UPIPI RSUD, Dr. Soetomo Hospital, Surabaya

Alexander Patera Nugraha, Diah Savitri Ernawati, Adiastuti Endah Parmadiati, Bagus Soebadi, Remita Adya Prasetyo, Erwin Asta Triyono, Agung Sosiawan *Pages 131-134*

CLINICAL ARTICLE

25. Impact of Using an Educational Pop-up Book to Address Dental Anxiety in Hearing Impaired Children Cahyanti Wydiastuti Susilo, Eva Fauziah, Mochamad Fahlevi Rizal, Margaretha Suharsini Pages 135-138

CLINICAL ARTICLE

26. Electrodermal Activity as an Indicator of Dental Anxiety Hearing Impaired Children After Educated by Pop-Up Books

Selvyra Rachmawati, Eva Fauziah, Mohammad Fahlevi Rizal, Ike Siti Indiarti *Pages 139-142*

CLINICAL ARTICLE

27. Dental Discomfort Questionnaire as an Assessment Tool in Detecting Early Childhood Caries
Muhammad Nasrun Akmal Rosli, Murshidah Abdul Ghani, Salwana Supaat, Azrul Fazwan Kharuddin, Yunita
Dewi Ardini

Pages 143-148

CLINICAL ARTICLE

28. Correlation between Oral-Health-Related Quality of Life and Salivary Cortisol Level in Children Ages 8–10 Years

Annisa Khairani, Sarworini B Budiardjo, Eva Fauziah Pages 149-152

CLINICAL ARTICLE

29. Relationship Between Anterior and Posterior Crossbite and Periodontal Status Faizah Haniyah, Hari Sunarto, Fatimah M. Tadjoedin Pages 153-156

CLINICAL ARTICLE

30. Relation between Health Insurance Systems to User Satisfaction in Dental Health Service Andre Kurniawan, Febriana Setiawati, Anton Rahardjo, Diah Ayu Maharani, Peter Andreas Pages 157-161

TABLE OF CONTENTS / 2018; 11 (1)

CLINICAL ARTICLE

31. The Early Childhood Oral Health Impact Scale (ECOHIS): Assessment Tool in Oral Health Related **Quality of Life**

Nur Syafiqah Ismail, Murshidah Abdul Ghani, Salwana Supaat, Azrul Fazwan Kharuddin, Yunita Dewi Ardini Pages 162-168

CLINICAL ARTICLE

32. Measuring Anatomical Landmark Structures to Determine the Width of Maxillary Anterior Teeth Annisa Ayu Larasati, Farisza Gita, Muslita Indrasari Pages 169-174

CLINICAL ARTICLE

33. Analysis of Strain Type and Quantitative of Enterococcus faecalis Bacteria in True Combined Endo-**Perio Lesions**

Nova Elvira, Kamizar, Ratna Meidyawati Pages 175-180

CLINICAL ARTICLE

34. Association between Oral Health Status and Oral Health-Related Quality of Life in Diabetes Patients Zakia Amalia, Zaura K. Anggraeni, Melissa Adiatman Pages 181-186

CLINICAL ARTICLE

35. Differences in Calcium and Phosphate Levels in the Saliva of Children with and without Black Dental

Ariq Noorkhakim, Mochamad Fahlevi Rizal, Heriandi Sutadi Pages 187-190

CLINICAL ARTICLE

36. Candida Albicans Biofilm Profiles on Various Denture Base Materials Miranti Anggraini, Ariadna Adisattya Djais, Sri Angky Soekanto Pages 191-196

CLINICAL ARTICLE

37. The Relation of a Mother's Dental Health Behavior and the Severity of Dental Black Stain in Children 4-8 Years Old

Edlyn Dwiputri, Ike Siti Indiarti, Margaretha Suharsini Pages 197-201

CLINICAL ARTICLE

38. Effect of Glove, Blood, and Saliva Contamination on the Compressive Strength of Nanohybrid Composite Resin

Annisa Widiandini, Endang Suprastiwi, Munyati Usman Pages 202-205

CLINICAL ARTICLE

39. Masticatory Ability Assessments and Related Factors

Pinta Marito, Savedra Pratama, Hendro Priyo Dwi Utomo, Henni Koesmaningati, Lindawati S. Kusdhany Pages 206-210

CLINICAL ARTICLE

40. Comparing Masticatory Performance as Measured by Gummy Jelly and Color-Changeable Chewing **Gum in Dentate Subjects**

Titus Dermawan, Gabriella Nasseri, Pinta Marito, Nina Ariani, Farisza Gita, Takahiro Ono, Lindawati Kusdhany

Pages 211-214

TABLE OF CONTENTS / 2018; 11 (1)

CLINICAL ARTICLE

41. Relationship between Chronic Pain Severity and Quality of Life in TMD Patients Vivi VW Wira, Yenny Pragustine, Laura S Himawan, Nina Ariani, Ira Tanti Pages 215-219

CLINICAL ARTICLE

42. Microbiological Evaluation of Dental Implants Using Quantification of Porphyromonas gingivalis in Dental Teaching Hospital Universitas Indonesia from 2009-2014

Media Sukmalia Adibah, Yuniarti Soeroso, Hari Sunarto Pages 220-223

CLINICAL ARTICLE

43. Determining the Relationship between Gingival Crevicular Fluid Zinc Levels and Gingivitis, and Gingival Crevicular Fluid Zinc Levels and the Growth of Streptococcus Mutans Colonies in Children Shaffa Amalia, Heriandi Sutadi

Pages 224-227

CLINICAL ARTICLE

44. Gender Differences in the Knowledge of Tuberculosis and Health Care Seeking Behaviors: A Cross Sectional Study among the Students in the Islamic Boarding School (Pesantren) in Garut, West Java, Indonesia

Frima Elda, Kartika Anggun Dimar Setio, Ella Nurlaella Hadi Pages 228-231

CLINICAL ARTICLE

45. Validity and Reliability of a modified Utian Quality of Life Scale for Indonesian Postmenopausal

Pitu Wulandari, Yuniarti Soeroso, Diah Ayu Maharani, Anton Rahardjo Pages 232-237

CLINICAL ARTICLE

46. Dental Caries in 12-year-old School Children Living in Jakarta

Ary Agustanti, Robbykha Rosalien, Dina Frihatiwi Hutami, Annisa Septalita, Anton Rahardjo, Diah Ayu Maharani Pages 238-242

CLINICAL ARTICLE

47. Oculocardiac reflex during zygomatico maxillary complex fracture management - a retrospective

Srikanth Gadicherla, Abhay T Kamath, Chithra Aramanadka, Kalyana C Pentapati Pages 243-247

EXPERIMENTAL ARTICLE

48. Improving the Strength Properties of Denture Base Acrylic Resins Using Hibiscus Sabdariffa Natural

Kenneth N. Okeke, Anisa Vahed, Shalini Singh Pages 248-254

EXPERIMENTAL ARTICLE

49. Discoloration of Aesthetic Brackets caused by food dyes: Budu and Chili sauce Hussain S. F., Abu Hassan, M. I, Al-Nasir M. Gh. Abdullah N., Abd Latif N Pages 255-260

EXPERIMENTAL ARTICLE

50. The effects of X-rays radiation on active and passive transport of erythrocytes membrane Azhari, Silviana Farrah Diba Pages 261-264

TABLE OF CONTENTS / 2018; 11 (1)

EXPERIMENTAL ARTICLE

 Effect of Two Different Placement Technique on Interfacial Layer Formation of Modified MTA on Root Apex

Fitha Prabantari Angela, Anggraini Margono, Kamizar, Dini Asrianti *Pages 265-269*

EXPERIMENTAL ARTICLE

52. NFATc1 and RUNX2 Expression on Orthodontic Tooth Movement Post Robusta Coffee Extract Administration

Herniyati, Happy Harmono, Leliana Sandra Devi *Pages 270-275*

EXPERIMENTAL ARTICLE

53. Apoptosis Induction (Caspase-3,-9) and Human Tongue Squamous Cell Carcinoma VEGF Angiogenesis Inhibition using Flavonoid's Ethyl Acetate Fraction of Papua Ant Hill (Myrmecodia pendans) SP-C1

Harun Achmad, Supriatno, Sri Ramadhany, Marhamah Singgih, Rasmidar Samad, M. Hendra Chandha, Sri Oktawati, Hendrastuti Handayani

Pages 276-284

EXPERIMENTAL ARTICLE

54. The Influence of Moderate Exercise on Caspase-3 Expression in Inhibiting Transformation of Oral Squamous Epithelial Cells

Anis Irmawati, Birgita Gina Pamita, Pratiwi Soesilawati Pages 285-288

EXPERIMENTAL ARTICLE

55. Microleakage Differences on Composite Resin Restoration with and without Nanohybrid Flowable Composite Resin as a Surface Sealant

Aditya Arinta Putra, Ruslan Effendy, Devi Eka Yuniarti *Pages 289-293*

EXPERIMENTAL ARTICLE

56. Nickel and Chromium Ions Release from Stainless Steel Bracket Immersed in Fluoridated Mouthwash Ida Bagus Narmada, Ria Anbar Baya, Thalca Hamid Pages 294-298

EXPERIMENTAL ARTICLE

57. Fluoride Varnish Effect on Dental Erosion Immersed with Carbonated Beverages Sunniyah Harum Adiba, Ruslan Effendy, Nanik Zubaidah Pages 299-302

EXPERIMENTAL ARTICLE

58. The effect of Binahong Gel (Anredera cordifolia (Ten.) Steenis) in accelerating the escalation expression of HIF-1α and FGF-2

Christian Khoswanto, Istiati Soehardjo Pages 303-307

EXPERIMENTAL ARTICLE

59. Macrophages Analysis on Gingival Tissue of Diabetic Rats after Insulin Leaf Extract Administration Tuti Kusumaningsih, Muhammad Luthfi, Marsecall_Dhira Brata Moffan Pages 308-311

EXPERIMENTAL ARTICLE

60. Hedyotiscorymbosa (L.) Lamk - The Potential Inhibitor Extract of Oral Cancer Cell Progressivity in Benzopyrene Induced Rattus Novergicus

Theresia Indah Budhy, Istiati, Bambang Sumaryono, Ira Arundia, Ririh Setyo Khrisnanthi *Pages 312-317*

J Int Dent Med Res

TABLE OF CONTENTS / 2018; 11 (1)

EXPERIMENTAL ARTICLE

61. The Differences Scaffold Composition in Pore Size and Hydrophobicity Properties as Bone **Regeneration Biomaterial**

Muhammad Dimas Aditya Ari, Anita Yuliati, Retno Pudji Rahayu, Dita Saraswati Pages 318-322

EXPERIMENTAL ARTICLE

62. Bone-immune interaction in osteogenesis Relapse Orthodontic after Nanopowder Stichopus hermanii

Noengki Prameswari, Arya Brahmanta, Dian Mulawarmanti Pages 323-329

CASE REPORT

63. Analysis of Noise Pollution: A Case Study of Malaysia's University

Nyi Mas Siti Purwaningsih, Mohd Safwani Affan Alli, Obaid Ullah Shams, Jefri Mohamat Ghani, S Ayyaturai, Ahmad Tarmidi Sailan, Suraya Hani Mohd Sinon Pages 330-333

CASE REPORT

64. Oral Squamous Cell Carsinoma Due to a Long-Term Smoking Habit: The Case Study Silfra Yunus Kende, Hening Tuti Hendarti, Diah Savitri Ernawati Pages 334-338

CASE REPORT

65. Emergency Pain Management in Symptomatic Pulpo-Periradicular Pathosis- Case Series Swathi Pai, Vishal Bhat, Sandya Kini, Tina Puthan Purayil Pages 339-341

REVIEW

66. Diabetes Mellitus Type 2 and Oral Health in Context to Thailand: An Updated Overview Kanokwan Suttagul Pages 342-347

MEDICINE

CLINICAL ARTICLE

67. The Probability of the Traffic Accidents on Students Rachmah Indawati, Mochammad Bagus Qomaruddin Pages 348-351

CLINICAL ARTICLE

68. Physical and Medical Treatment of Elbow Injuries in Children Zana Ibraimi, Ardiana Murtezani, Sabit Sllamniku, Arbnore B. Kepuska, Nehat Baftiu Pages 352-356

CLINICAL ARTICLE

69. Translation and Validation Study of the Malaysian Version of the Childbirth Experience Questionnaire -

Muna Kh. Al-kubaisi, AS Radeef Pages 357-361

Journal of International Dental and Medical Research ISSN 1309-100X

NFATc1 and RUNX2 Expression Herniyati, and et al

NFATc1 and RUNX2 Expression on Orthodontic Tooth Movement Post Robusta Coffee Extract Administration

Herniyati¹*, Happy Harmono², Leliana Sandra Devi³

- 1. Associate Professor , Department of Orthodontics, Faculty of Dentistry, Jember University, Jember, Indonesia.
- 2. Lecturer, Department of Dental Biomedics, Faculty of Dentistry, Faculty of Dentistry, Jember University, Jember, Indonesia.
- 3. Lecturer, Head, Department of Orthodontics, Faculty of Dentistry, Jember University, Jember, Indonesia.

Abstract

This study aimed at analyzing the expression of NFATc1 and RUNX2 on orthodontic tooth movement post administration of Robusta coffee extract.

A number of 14 wistar rats were divided into 2 groups, i.e. control group (C): rats applied with orthodontic mechanical force (OMF) and Treatment group (T): rats with OMF and Robusta coffee extract 20mg/100g BW. OMF for rats was applied by a ligature wire with a diameter of 0.20 mm on the maxillary right first molar and both maxillary incisors. Subsequently, the maxillary right first molar was moved to mesial using Niti closed coil spring. Observations were performed on day 15 with immunohistochemical examination to determine the expression of NFATc1 and RUNX2.

Robusta coffee extract increased NFATc1 and RUNX2 expression in compression and tension areas (p <0,05). The expression of NFATc1 in the compression area was greater than that in the tension area (p <0.05), whereas RUNX2 expression in the tension area was greater than that in the compression area (p <0.05).

Robusta coffee extract enhances the expression of NFATc1 and RUNX2 on orthodontic tooth movement, thus it can be used as an alternative to accelerate orthodontic treatment.

Experimental article (J Int Dent Med Res 2018; 11(1): pp. 270-275)

Keywords: NFATc1, RUNX2, Orthodontic tooth movement, Robusta coffee.

Received date: 30 August 2017 Accept date: 18 October 2017

Introduction

Orthodontic treatment is commonly conducted using various appliances to treat jaw shape abnormalities and can improve occlusion to overcome aesthetic and functional problems. However, longer treatment periods have limited its clinical application. Thereby, tooth movement control and effective short time of treatment is an important clinical issue that should be addressed for better treatment ^{1.2}.

Orthodontic tooth movement is a complex biological and mechanical process involving various molecules. The orthodontic force in the periodontal tissue activates osteoclasts and osteoblasts resulting in resorption and deposition of alveolar bone, and stimulates cell growth and collagen regeneration ³. Orthodontic tooth movement depends on alveolar bone

*Corresponding author:

Herniyati,

Department of Orthodontics, Faculty of Dentistry, Jember University, Kalimantan 37, Jember, Indonesia. **E-mail:** herniyati@unej.ac.id; herniyati@unej.co.id

remodeling. The formation of osteoclasts is a prerequisite of alveolar bone remodeling. Under pressure stimulation, osteoclasts produce an osteoclastic reaction. It has been shown that tooth movement can be effectively regulated by controlling osteoclast differentiation and function⁴. Osteoblasts that function in bone formation are necessary to remodel the resorption region in the compression area and to form new bone in the compression area and tension area⁵.

Nuclear Factor of Activated T-cells 1 (NFATc1) is the main regulator of the receptor activator of Nuclear Factor-κB Ligand (RANKL) which induces osteoclast differentiation and plays an important role in fusion and osteoclast activation through enhancement of osteoclast regulation of various genes responsible for osteoclast attachment, migration, acidification, inorganic degradation and bone organic matrix⁷. RANKL produced by osteoblasts further binds the Receptor activator of Nuclear Factor-κB (RANK) to the surface of osteoclast precursors and recruits adapter protein of tumor necrosis factor receptor-associated factor6 (TRAF6),

Journal of International Dental and Medical Research ISSN 1309-100X

NFATc1 and RUNX2 Expression Herniyati, and et al

which causes activation of Nuclear factor-kappa B (NF-kB) and transmits it to the nucleus. NF-kB increases the expression of c-Fos, and it interacts with NFATc1 to trigger transcription of the osteoclastogenic⁸.

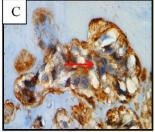
Runt-related transcription factor-2 (RUNX2) is a multifunctional transcription factor and is involved in the osteoblast cell differentiation process⁹. RUNX2 is a specific transcription factor of osteoblasts that activates and initiates differentiation of bone marrow mesenchyme cells into osteoblasts and regulates osteoblast maturation^{10,11}, and plays a key role in the process of mature osteoblasts¹². During the movement of orthodontic teeth, the RUNX2 levels in the tension area are higher compared to that in the compression area¹³.

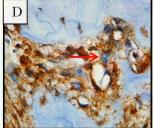
Tooth movement on orthodontic treatment that takes a long time and is relatively high cost will become economic burden to the patient thus efforts to shorten the time of orthodontic treatment need to be conducted continuously. To accelerate the movement of the tooth on orthodontic treatment various attempts have been made, among others, using some drugs¹⁴.

Various studies have been conducted recently to determine the effects of substances and medicines that have influence on orthodontic tooth movement i.e. medicines that show negative effects related to inhibition of orthodontic tooth movement e.g. osteoprotegerin (Pamidronat) 15,16, bisphosphonate and medicines that show a positive effect i.e. acceleration of orthodontic tooth movement e.g. caffeine 17,18. PGE2 injection may also increase the movement of the teeth¹⁹, but it may lead to excessive resorption of bone and root surfaces²⁰, whereas the newest results of researches suggest that topical administration of PGE2 gel does not cause root resorption thus it may be considered for medication during orthodontic tooth movement²¹.

Coffee is one of the popular beverages consumed among the public. Robusta coffee, among others, contains substances e.g. caffeine (1,3,7 trimetilxantin) ²², chlorogenic acid and caffeic acid, which have effect as an antioxidant ²³, that can reduce oxidative stress on osteoblasts ²⁴. The results in rats have shown that administration of high doses of caffeine (10 mg / 100 g BW) increase the number of osteoclasts and bone resorption in the compression area on day 14²⁵.

The administration of caffeine 50mg/kg in pregnant rats have high osteogenic potential of characterized osteoblasts bv increased of expression osteocalcin. osteopontin. sialoprotein, RUNX-2, alkaline phosphatase and collagen type 1 as well as the increase of synthesis of mineralized nodules²⁶. Chlorogenic acid in coffee improves osteogenesis in human adipose tissue derived Mesenchymal stem (hAMSCs), indicated by mineralization increase, mRNA levels of alkaline phosphatase and RUNX2-2 transcription factor required for osteoblast differentiation²⁷.


This study was conducted to analyze the expression of NFATc1 in osteoclasts and RUNX2 in osteoblasts during orthodontic tooth movement post Robusta coffee extract.

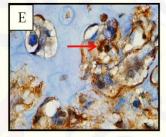

Materials and methods

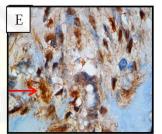
This laboratories experimental study was conducted using 14 male wistar rats aged 3-4 months and weighed 250-300, in good health, have complete tooth structure, oral conditions, and healthy periodontal tissue. Rats were randomly divided into 2 groups: control group (C): performed with orthodontic mechanical force and 2ml aquades, and Treatment group (T): performed with mechanical force of orthodontic and freeze dried extract of Robusta coffee of 20mg/100 g BB (equivalent to 1 cup of coffee for an adult person) dissolved in 2ml aquades. The mechanical force of orthodontics in rats was performed by anesthesia using ketamine. ligature wire (3 M Unitek, Germany) with a diameter of 0.20 mm was applied in the maxillary right first molar and both maxillary incisors. Subsequently, the maxillary right first molar was moved to mesial using Tension Gauge (Ormco, USA) to produce 10 g/cm2 strength with Nickel Titanium Orthodontic closed coil spring (3 M Unitek, Germany) length 6 mm ²⁸. Observation was conducted by sacrificing the rats on day 15 and extracted the maxillary right first and second along with periodontal Immunohistochemical tests were performed to determine the expression of NFATc1 osteoclasts and RUNX2 in osteoblasts. NFATc1 and RUNX2 expression. Observations were conducted using а microscope 400x magnification. Data were analyzed independent t-test, Mann-Whitney test, paired ttest and Wilcoxon signed ranks-test with 95% of trust level (α = 0,05). This study has been approved by the ethical research committee of the Faculty of Medicine, Jember University, Number: 1150/H.25.1.11/KE/2017.

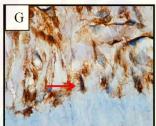
Results

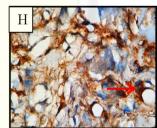
The results of research on Robusta coffee extract effect on NFATc1 expression on osteoclasts and RUNX2 in osteoblasts are shown in Table 1 and Table 2 (see the appendix). Immunohistochemical results of the expression of NFATc1 and RUNX2 in the compression and tension areas are shown in Figures 1 and 2.

Figure 1. The expression of NFATc1 on osteoclasts is indicated by arrows: in Control group of Compression area (A), Control group of Tension area (B), Treatment group of Compression area (C) and Treatment group of Tension area (D), (Imunohistochemical, 400x magnification).


0		NFATc1 (Mean ± Standard Deviation)		
Groups	n	Compression Area	Tension Area	р
Control (C)	7	5,86 ± 1,87	6,43 ± 1,62	0,522
Treatment (T)	7	12,57 ± 1,72	7,00 ± 1.41	0,016
P		0.000	0.710	


Table 1. Mean ± Standard Deviation of NFATc1 Expression and results test of differentiation test among the research groups of Compression Area and Tension Area.


Notes: p < 0.05 = Significant, p > 0.05 = Not Significant.


Table 1 illustrates the description of the data in the form of mean and standard deviation of NFATc1 expression on the osteoclast in the compression and tension areas. Tests based on

paired t-test showed that the expression of NFATc1 in osteoclasts in group C at the tension area was greater than that in the compression area but not significant (p> 0.05), whereas based on Wilcoxon signed ranks-test in group T, NFATc1 expression on osteoclasts in the compression area was significantly greater than the tension area (p <0.05). Differentiation test results based on independent t-test of NFATc1 expression on osteoclasts between the study groups in the compression area showed a significant difference (p <0.05), whereas the Mann-Whitney test in tension area showed no significant difference (p < 0.05).

Figure 2. RUNX2 expression on the osteoblasts is indicated by arrows: in the Control group of compression area (E), Control group of Tension area (F), the Treatment group of Compression area (G) and the Treatment group of Tension area (H), (Immunohistochemistry, 400x magnification).

	Groups	n	RUNX2 (Mean ± Standard Deviation)		
			Compression Area	Tension Area	р
	Control (C)	7	3,71 ± 1,38	3,71 ± 1,38	1,000
	Treatment (T)	7	6,14 ± 1,77	12,71 ± 1,89	0,000
	Р		0.014	0.000	

Table 2. Mean ± Standard Deviation of RUNX2 expression and results test of differentiation test among the research groups of Compression Area and Tension Area.

Notes: p < 0.05 = Significant, p > 0.05 = Not Significant.

Table 2 illustrates the description of the data in the form of mean and standard deviation of RUNX2 expression on osteoblasts in the compression and tension areas. Tests based on paired t-test showed that RUNX2 expression in

Journal of International Dental and Medical Research ISSN 1309-100X

NFATc1 and RUNX2 Expression Herniyati, and et al

osteoblasts in group C in the compression area was equal to that in tension area or no significant difference (p> 0,05), whereas based on paired t-test in group T, RUNX2 expression on osteoblasts in the tension region was significantly greater than that in the compression area (p <0.05). Differentiation test results based on independent t-test of RUNX2 expression between research groups in the compression and the tension areas showed significant differences (p <0.05).

Discussion

NFATc1 plays an important role in osteoclast fusion. The process through regulation of transmembrane-specific regulation of dendritic cell Protein (DC-STAMP) and isoform d2 of vacuolar ATPase Domain V0 (Atp6v0d2) ²⁹. There is evidence that NFATc1 also regulates the activation of osteoclasts and it has been shown that NFATc1 activation enhances osteoclast formation and activation *in vivo* ³⁰.

An increase in the amount of NFATc1 expression in Robusta coffee extracts in both compression and tension areas is due to the caffeine content in coffee increasing RANKL 17,18. Caffeine increases RANKL expression in osteoblasts and increases osteoclastogenesis by cyclooxygenase-2 increasing (COX-2)/Prostaglandin 2 (PGE2) 31. RANKL binds to its receptor RANK, which recruits adapter molecules e.g. TRAF6. It activates NF-kB, which is important for early induction of NFATc1. NFATc1 is activated by calcium signaling and binds its promoter, allowing switching on autoregulatory loop. The activator protein (AP) -1 complex containing c-Fos is required for autoamplification of NFATc1 leading to strong induction of NFATc1. Finally, NFATc1 works with other transcription partners to activate the specific osteoclast gene³².

The increased expression of NFATc1 in the ccompression area is greater than that in the tension area in accordance with previous research results indicating that the application of orthodontic forces in the compression area increases RANKL expression which further increases osteoclastogenesis^{17,18}, thus bone resorption also increases and subsequently lead to orthodontic tooth movement followed by remodeling of the alveolar bone and the periodontal ligament³³.

Osteoblasts are differentiated from mesenchymal precursors, and mature osteoblasts to form osteoid followed by bone mineralization process³⁴. Osteoblastic differentiation in human alveolar bone involves an increase in the expression of Runx2/Core Binding Factor a-1 (Cbfa1) which is an essential component of the differentiation process³⁵.

RUNX2 induces differentiation multipotent mesenchymal cells into immature osteoblasts and triggers bone matrix gene expression including osteocalcin (OCN), alkaline phosphatase (ALP) and others, in the early stages of osteoblast differentiation³⁶.

Increased expression of RUNX2 in osteoblasts in the compression and tension areas in the administration of Robusta coffee extract is due to caffeine content in coffee expression²⁴. RUNX2 Caffeine increases contained in coffee binds to adenosine receptors and modulates several other receptors including glucocorticoid, insulin, estrogen and androgen receptors, Vitamin D, cannabinoid, glutamate and adrenergic receptors, all of which are expressed in osteoblasts or progenitor cells and have an important function during osteoblast differentiation 37,38.39. Previous research has shown that caffeine with a concentration of 0.1 mM in adipose-derived stem cells (ADSCs) and bone marrow stromal cells, enhances osteoblast differentiation through activation of RUNX2⁴⁰.

Coffee also contains Chlorogenic acid that can increase RUNX2 ²⁷. Caffeic acid in coffee i.e. a phenolic acids has effect as an antioxidant that can reduce oxidative stress in osteoblasts²⁴. Antioxidant activity is important in stimulating osteoblastic activity through specific receptors⁴¹, thus the expression of RUNX2 in osteoblasts also increased. The expression of RUNX2 in the tension area is greater than that in the compression area confirming the results of the previous study that the extract of Robusta coffee also showed that the amount of osteoblasts in the tension area is greater than that in the compression area⁴².

Conclusions

It is concluded that the extract of Robusta coffee increases the expression of NFATc1 and RUNX2, thus it can be an alternative to improve the process of bone remodeling and accelerate the movement of orthodontic teeth.

Journal of International Dental and Medical Research ISSN 1309-100X

NFATc1 and RUNX2 Expression Herniyati, and et al

Acknowledgements

Supported by Dentistry Faculty of Jember University and Medical Faculty of Brawijaya University for the services provided during the accomplishment of the research.

Declaration of Interest

The authors report no conflict of interest.

References

- Li S, Zhou J, and Ren C. Adult orthodontic technique: development and challenge. West China Journal of Stomatology. 2013;31:549-551.
- Wang X, Wu C, Li Y, and Wang R. Research progress on relationship between malocclusion as well as orthodontic treatment and psychosocial behavior. China Medical Herald 2014;16:162-165.
- Thirunavukkarasu K, Halladay DL, and Miles RR "et al". The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem. 2000;275: 25163-25172.
- Caetano-Lopes J, Canhao H, and Fonseca JE. Osteoblasts and bone formation. Acta Reumatol Port. 2007;32:103–110.
- Kawakami M and Yamamoto TT. Local injection of 1,25dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats . J Bone Miner Metab. 2004;2:541-546.
- Kim JH and Kim N. Regulation of NFATc1 in Osteoclast Differentiation. J Bone Metab. 2014;21(4):233-241.
- Zhao Q, Wang Xi, Liu Y, He Aimin, and Jia Ruokun. NFATc1: Functions in osteoclasts, The International Journal of Biochemistry & Cell Biology. 2010;42(5): 576-579.
- Boyce, Brendan F.MD, and Lianping X.MD. Functions of RANKL/RANK/OPG in bone modeling ang remodeling. Arch Biochem Biophys. 2007;473(2):139-146.
- Wang W. Role of Runx1 and its co-transcription factor CBF b in osteoblast differentiation and bone development. Acta Zhejiang University. 2014;55:125-140.
- 10. Nagataké T, Fukuyama S, and Sato S "et al". Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. PLoS One. 2015;10: e0127460.
- Baek JE, Choi JY, and Kim JE. Skeletal analysis and differential gene expression in Runx2/Osterix double heterozygous embryos. Biochem Biophys Res Commun. 2014;451: 442-448.
- Byun MR, Kim A, and Hwang JH "et al". A stimulates osteoblast differentiation through TAZ mediated Runx2 activation. FEBS Lett. 2012;586:1086-1092.
- 13. Taddeia SRA, PedrosaMoura A, and Andrade JI "et al". Experimental model of tooth movement in mice: A standardized protocol for studying bone remodeling under compression and tensile strains. Journal of Biomechanics. 2012; 45(16):2729-2735.
- Shenava S, Nayak KUS., Bhaskar V, Nayak A. Accelerated Orthodontics-A Review. International Journal of Scientific Study. 2014;1(5):35-39.
- **15.** Matthew D.Dunn MD, Park CH, Kostenuik PJ, Kapila S, and Giannobile WV. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone. 2007;41(3):446-455.
- 16. Venkataramana V, Rajasigamani K, Nirmal Madhavan, S.N.Reddy, Karthik, and Kurunji Kumaran N. Inhibitory effect of bisphosphonate [pamidronate] on orthodontic tooth movement in newzealand albino rabbits. Journal of International Dental and Medical Research. 2012;5(3): 136-142.

- 17. Jianru Y, Boxi Y, and Meile L "et al". Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression. Archives of Oral Biology. 2016;64:51-60.
- 18. Herniyati, Narmada IB, and Soetjipto. The Role of Rankl and Opg in Alveolar Bone Remodeling and Improvement of Orthodontic Tooth Movement Post Coffee Brew Administration. Journal of International Dental and Medical Research. 2017;10(1):84-88.
- 19. Kale S, Kocadereli I, Atilla P, and Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E₂ on orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics. 2004;125(5):607-614.
- 20. Seifi M, Eslami B, and Saffar AS. The effect of prostaglandinE 2 and calcium gluconate on orthodontic tooth Movement and root resorption in rats. Eur J Orthod. 2003;25:199 204.
- 21. Widayati R, Suniarti DF, Poerwaningsih EH, and Iskandriati D. Root Resorption and RANKL Concentration in Orthodontic Tooth Movement Accompanied by Topical PGE2 Gel Application. Journal of International Dental and Medical Research. 2016;9(3):228-232.
- Sukendro S. Keajaiban Dalam Secangkir Kopi. Yogyakarta: Penerbit Media Pressindo. 2013:17.
- 23. Yashin A, Yashin Y, Wang JY and Nemzer B, Antioxidant and Antiradical Activity of Coffee, Antioxidants. 2013;2:230-245.
- 24. Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, and Kwon HS. Association of oxidative stress with postmenopausal osteoporosis and effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Internat. 2010;87(3):226-35.
- 25. Peng S, and Chun HY. Effect of caffeine on alveolar bone remodeling during orthodontic tooth movement in rats. Journal of Tongji University (Medical Science). 2011;03.
- 26. Reis AS, Riberio LGR, Ocarino NM, Goes AlM, and Serakides R. Osteogenic potential of osteoblasts from neonatal rats born to mothers treated with caffeine throughout pregnancy. BMD Musculoskeletal Disorder. 2015;16:10.
- 27. Bin HS, Jeong JH, and Choi UK. Chlorogenic acid promotes osteoblastogenesis in human adipose tissue-derived mesenchymal stem cells. Food Science, and Biotechnology. 2013; 22:107-112.
- 28. D'Apuzzo F, Cappablanca S, and Clavarella D et al. Biomarkers of periodontal tissue remodelling during orthodontic tooth movement in mice and men: overview and clinical relevance. Sci World J. 2013;41:342-53.
- Kim K, Lee SH, Ha Kim J, Choi Y, and Kim N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cellspecific transmembrane protein (DC-STAMP). Mol. Endocrinol. 2008;22:176-185.
- Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy SV, and Yoneda T. Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J. Immunol 2006;177:2384-2390.
 Liu SH, Chen C, Yang RS, Yuan PY, Yang YT, and Tsai C.
- 31. Liu SH, Chen C, Yang RS, Yuan PY, Yang YT, and Tsai C. Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats. Journal of Orthopaedic Research. 2011;29(6):954-960.
- Asagiri M and Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251-264
- Krishnan V and Davidovitch Z. 2006. Cellular, molecular, and tissue-level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics. 129(4):469-1.
- **34.** Sprogar S, Vaupotic T, Cör A, Drevenšek M, and Drevenšek G. The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 2008;43(4):740-747.
- **35.** Hiran P, Thomas M, and "et al". Alveolar bone osteoblast differentiation and Runx2/Cbfa1 expression. Archives of Oral Biology. 2006;51:406-415.
- Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and Tissue Research. 2010;339:189.

Journal of International Dental and Medical Research ISSN 1309-100X

NFATc1 and RUNX2 Expression Herniyati, and et al

- 37. Lu PZ, Lai CY, and Chan WH. Caffeine induces cell death via activation of apoptotic signal and inactivation of survival signal in human osteoblasts. Int J Mol Sci. 2008;9: 698-718.
- **38.** Costa MA, Barbosa A, and Neto E "et al". On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol. 2011;226: 1353-66.
- Wang Y, Zhu J, and DeLuca HF. Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J Bone Miner Res. 2014;29:685-92.
- 40. Jem SS, Lung CK, Hui SS Tsung YY, Wen SH, and Ming CK. Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and bone marrow stromal cell line. International Journal of Food Sciences and nutrition. 2013;64(4):429-436.
- Banfi G, Banfi G, Iorio EL, and Corsi MM. Oxidative stress, free radicals and bone remodeling. Clinical Chemistry and Laboratory Medicine: CCLM/FESCC. 2008; 46(11):1550-1555.
- **42.** Herniyati. Mekanisme Pergerakan Gigi Ortodonti Dan Proses Remodeling Tulang Alveolar Yang Diinduksi Gaya Mekanis Ortodonti Akibat Pemberian Seduhan Kopi. Disertasi, Program Studi Jenjang Doktor Fakultas Kedokteran Universitas Airlangga Surabaya. 2016: 97-99.