Home Search Collections Journals About Contact us My IOPscience

Several classes of graphs and their *r*-dynamic chromatic numbers

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 J. Phys.: Conf. Ser. 855 012011

(http://iopscience.iop.org/1742-6596/855/1/012011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 114.125.118.49

This content was downloaded on 16/08/2017 at 05:08

Please note that terms and conditions apply.

You may also be interested in:

H-Supermagic Labeling on Coronation of Some Classes of Graphs with a Path

H Sandariria, M Roswitha and T A Kusmayadi

Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers

A B Kupavskii

On the strong regularity of some edge-regular graphs

A A Makhnev

SOME UNSOLVED PROBLEMS IN GRAPH THEORY

V G Vizing

On the range of bond percolation thresholds for fully triangulated graphs

John C Wierman

On super Hantimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation

Dafik, Ika Hesti Agustin, A. I. Nurvitaningrum et al.

Estimating the chromatic numbers of Euclidean space by convex minimization methods

Elena S Gorskaya, Irina M Mitricheva, Vladimir Yu Protasov et al.

Bose-Einstein condensation on inhomogeneous complexnetworks

R Burioni, D Cassi, M Rasetti et al.

Nodal domain counts and the chromatic number of graphs

Idan Oren

International Conference on Mathematics: Education, Theory and Application

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

Several classes of graphs and their r-dynamic chromatic numbers

Dafik^{1,2}, D.E.W. Meganingtyas³, K. Dwidja Purnomo³, M. Dicky Tarmidzi³, Ika Hesti Agustin^{1,3}

- ¹ CGANT, University of Jember, Indonesia
- ² Mathematics Edu. Depart. University of Jember, Indonesia
- ³ Mathematics Depart. University of Jember, Indonesia

E-mail: d.dafik@unej.ac.id, ikahesti.fmipa@unej.ac.id

Abstract. Let G be a simple, connected and undirected graph. Let r,k be natural numbers. By a proper k-coloring of a graph G, we mean a map $c:V(G)\to S$, where |S|=k, such that any two adjacent vertices receive different colors. An r-dynamic k-coloring is a proper k-coloring c of G such that $|c(N(v))| \geq \min\{r,d(v)\}$ for each vertex v in V(G), where N(v) is the neighborhood of v and $c(S)=\{c(v):v\in S\}$ for a vertex subset S. The r-dynamic chromatic number, written as $\chi_r(G)$, is the minimum k such that G has an r-dynamic k-coloring. By simple observation it is easy to see that $\chi_r(G) \leq \chi_{r+1}(G)$, however $\chi_{r+1}(G) - \chi_r(G)$ does not always show a small difference for any r. Thus, finding an exact value of $\chi_r(G)$ is significantly useful. In this paper, we will study some of them especially when G are prism graph, three-cyclical ladder graph, joint graph and circulant graph.

Keywords: r-dynamic chromatic number, graph coloring, special graphs.

1. Introduction

The r-dynamic chromatic number, introduced by Montgomery [8] and written as $\chi_r(G)$, is the least k such that G has an r-dynamic k-coloring. Note that the 1-dynamic chromatic number of graph is equal to its chromatic number, denoted by $\chi(G)$, and the 2-dynamic chromatic number of graph has been studied under the name a dynamic chromatic number, denoted by $\chi_d(G)$. In [8], he conjectured $\chi_2(G) \leq \chi(G) + 2$ when G is regular, which remains open. Akbari et.al. [4] proved Montgomery's conjecture for bipartite regular graphs, as well as Lai, et.al. [9] proved $\chi_2(G) \leq \Delta(G) + 1$ for $\Delta(G) \leq 3$ when no component is the 5-cycle. Some other results can be site in [1, 2, 3, 14].

By a greedy coloring algorithm, Jahanbekama [7] proved that $\chi_r(G) \leq r\Delta(G) + 1$, and equality holds for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5. They improved the bound to $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$ and

International Conference on Mathematics: Education, Theory and Application

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

 $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$. For further results of r-dynamic chromatic number can be seen in [6, 10, 11, 12, 5].

The following observation is useful to find the exact values of r-dynamic chromatic number.

Observation 1. Let $\delta(G)$ and $\Delta(G)$ be a minimum and maximum degree of a graph G, respectively. Then the followings hold

- $\chi_r(G) \ge \min\{\Delta(G), r\} + 1$,
- $\chi(G) \le \chi_2(G) \le \chi_3(G) \le \dots \le \chi_{\Lambda(G)}(G)$,
- $\chi_{r+1}(G) \geq \chi_r(G)$ and if $r \geq \Delta(G)$ then $\chi_r(G) = \chi_{\Delta(G)}(G)$.

Taherkhani in [13], proved the following theorem

Theorem 1. [13] Let G be a d-regular graph and r be a positive integer with $2 \le r \le \frac{\delta}{\log(2er(\Delta^2+1))}$. Then the r-dynamic chromatic number of G is $\chi_r(G) \le \chi(G) + (r-1)[e^{\frac{\Delta}{\delta}}\log(2er(\Delta^2+1))]$, where e euler's number.

2. The Results

We are ready to show our main theorems. There are four theorems found in this study. These deals with prism graph, three-cyclical ladder graph, joint graph and circulant graph.

Theorem 2. Let $P_{n,2}$ be a prism graph, the r-dynamic chromatic number is:

$$\chi(\mathbf{P}_{n,2}) = \begin{cases} 2, & n \text{ even} \\ 3, & n \text{ odd} \end{cases} \qquad \chi_d(\mathbf{P}_{n,2}) = \begin{cases} 3, & n = 3k, k \in \mathbb{N} \\ 4, & n \text{ otherwise} \end{cases}$$

For r > 3, we have

$$\chi_r(\mathbf{P}_{n,2}) = \begin{cases} 4, & n = 4k, k \in \mathbb{N} \\ 6, & n = 3, 7, 11 \\ 5, & n \text{ otherwise} \end{cases}$$

Proof. A prism graph, denoted by $\mathbf{P}_{n,2}, n \geq 3$, is a connected graph with vertex set $V(\mathbf{P}_{n,2}) = \{x_i, y_i, 1 \leq i \leq n\}$, and edge set $E(\mathbf{P}_{n,2}) = \{x_i x_{i+1}, y_i y_{i+1}; 1 \leq i \leq n-1\} \cup \{x_n x_1\} \cup \{y_n y_1\} \cup \{x_i y_i; 1 \leq i \leq n\}$. The order and size of $\mathbf{P}_{n,2}, n \geq 3$ are $|V(\mathbf{P}_{n,2})| = 2n$ and $|E(\mathbf{P}_{n,2})| = 3n$. A prism graph is regular graph of degree 3, thus $\mathbf{P}_{n,2}, \delta(\mathbf{P}_{n,2}) = \Delta(\mathbf{P}_{n,2}) = 3$. By Observation 1, $\chi_r(\mathbf{P}_{n,2}) \geq \min\{\Delta(\mathbf{P}_{n,2}), r\} + 1 = \min\{3, r\} + 1$. To find the exact value of r-dynamic chromatic number of $\mathbf{P}_{n,2}$, we define three cases, namely $\chi(\mathbf{P}_{n,2}), \chi_2(\mathbf{P}_{n,2})$ and $\chi_{r\geq 3}(\mathbf{P}_{n,2})$. For $\chi(\mathbf{P}_{n,2})$, the lower bound $\chi(\mathbf{P}_{n,2}) \geq \min\{3, 1\} + 1 = 2$. We will prove that $\chi(\mathbf{P}_{n,2}) \leq 2$ by defining a map $c_1: V(\mathbf{P}_{n,2}) \to \{1, 2, \dots, k\}$ for $n \geq 3$, by the following:

$$c_1(x_1, x_2, \dots, x_n) = \begin{cases} 21 \dots 21, & n \text{ even} \\ 12 \dots 12 & 3, & n \text{ odd} \end{cases}$$
$$c_1(y_1, y_2, \dots, y_n) = \begin{cases} 12 \dots 12, & n \text{ even} \\ 3 & 12 \dots 12, & n \text{ odd} \end{cases}$$

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

It is easy to see that c_1 gives $\chi(\mathbf{P}_{n,2}) \leq 2$ for n even, but for n odd, we could not avoid to have $\chi(\mathbf{P}_{n,2}) \leq 3$, otherwise there are at least two adjacent vertices assigned the same colors. Thus $\chi(\mathbf{P}_{n,2}) = 2$ for n even and $\chi(\mathbf{P}_{n,2}) = 3$, for n odd.

For $\chi_2(\mathbf{P}_{n,2})$, the lower bound $\chi_2(\mathbf{P}_{n,2}) \ge \min\{3,2\} + 1 = 3$. We will prove that $\chi_2(\mathbf{P}_{n,2}) \le 3$ by defining a map $c_2 : V(\mathbf{P}_{n,2}) \to \{1,2,\ldots,k\}$ where $n \ge 3$, by the following

$$c_2(x_1, x_2, \dots, x_{n-1}) = \begin{cases} 12123, & n = 5 \\ 123 & \dots & 123, & n \equiv 0 \pmod{3}, \\ 123 & \dots & 123 & 4, & n \equiv 1 \pmod{3}, \\ 123 & \dots & 123 & 41234, & n \equiv 2 \pmod{3}. \end{cases}$$

$$c_2(y_1, y_2, \dots, y_{n-1}) = \begin{cases} 23434, & n = 5 \\ 312 & \dots & 312, & n \equiv 0 \pmod{3}, \\ 4 & 123 & \dots & 123, & n \equiv 1 \pmod{3}, \\ 4 & 123 & \dots & 123 & 4123, & n \equiv 2 \pmod{3}. \end{cases}$$

It is easy to see that c_2 gives $\chi_2(\mathbf{P}_{n,2}) \leq 3$, for $n = 3k, k \in N$, but apart n = 3k we could not avoid to have $\chi_2(\mathbf{P}_{n,2}) \leq 4$ otherwise there are at least two adjacent vertices assigned the same colors. Thus $\chi_2(\mathbf{P}_{n,2}) = 3$ for n = 3k and $\chi_2(\mathbf{P}_{n,2}) = 4$ for otherwise.

For $\chi_r(\mathbf{P}_{n,2})$ and $r \geq 3$, the lower bound $\chi_3(\mathbf{P}_{n,2}) \geq \min\{3,3\} + 1 = 4$. We will prove that $\chi_3(\mathbf{P}_{n,2}) \leq 4$ by defining a map $c_3 : V(\mathbf{P}_{n,2}) \to \{1,2,\ldots,k\}$ for $n \geq 3$, by the following.

$$c_3(x_1, x_2, \dots, x_n) = \begin{cases} 123, & n = 3, \\ 1234 & \dots & 1234, & n \equiv 0 \pmod{4}, \\ 1234 & \dots & 1234 & 5, & n \equiv 1 \pmod{4}, \\ 123456, & n = 6, \\ 1234563, & n = 7, \\ 1234 & \dots & 1234 & 512345, & n \equiv 2 \pmod{4}, & n \geq 10, \\ 12345123456, & n = 11, \\ 1234 & \dots & 1234 & 51234512345, & n \equiv 3 \pmod{4}, & n \geq 15. \end{cases}$$

$$c_3(y_1, y_2, \dots, y_{n-1}) = \begin{cases} 456, & n = 3, \\ 34 & 1234 & \dots & 1234 & 123, & n \equiv 1 \pmod{4}, \\ 45 & 1234 & \dots & 1234 & 123, & n \equiv 1 \pmod{4}, \\ 561234, & n = 6, \\ 6412345, & n = 7, \\ 4512345, & 1234 & \dots & 1234 & 123, & n \equiv 0 \pmod{4}, & n \geq 10, \\ 56123451234, & n = 11, \\ 45 & 1234 & \dots & 1234 & 512345123, & n \equiv 0 \pmod{4}, & n \geq 15. \end{cases}$$

It is easy to see that c_3 gives $\chi_3(\mathbf{P}_{n,2}) \leq 4$, for $n = 4k, k \in N$, but for n = 3, 6, 7, 11 we are forced to have $\chi_3(\mathbf{P}_{n,2}) \leq 6$ as well as $\chi_3(\mathbf{P}_{n,2}) \leq 5$ for n otherwise. Thus $\chi_3(\mathbf{P}_{n,2}) = 4$, for n = 4k, $\chi_3(\mathbf{P}_{n,2}) = 6$ for n = 3, 6, 7, 11 and $\chi_3(\mathbf{P}_{n,2}) = 5$ for n otherwise. By Observation 1, since $r \geq \Delta(\mathbf{P}_{n,2}) = 3$, it immediately gives $\chi_3(\mathbf{P}_{n,2}) = \chi_r(\mathbf{P}_{n,2})$ for $n \geq 3$.

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

Theorem 3. Let G be three-cyclical ladder graph (TCL_n) for $n \geq 2$, r-dynamic chromatic number of TCL_n is

$$\chi(TCL_n) = \chi_d(TCL_n) = 3, \chi_3(TCL_n) = 4, \chi_4(TCL_n) = 5, \chi_r(TCL_n) = 6, r \ge 5$$

Proof. The graph three-cyclical ladder graph, denoted by TCL_n , is connected graph with vertex set $V(TCL_n) = \{x_i, y_j, z_j; 1 \leq i \leq n; 1 \leq j \leq n+1\}$ and edge set $E(TCL_n) = \{y_j z_j; 1 \leq j \leq n+1\} \cup \{y_j y_{j+1}; 1 \leq i \leq n\} \cup \{x_i y_i; x_i z_i; x_i y_{i+1}; x_i z_{i+1}; 1 \leq i \leq n\}$. Thus, $p = |V(TCL_n)| = 3n+2, q = |E(TCL_n)| = 6n+1, \Delta(TCL_n) = 5$.

By Observation 1, $\chi_r(TCL_n) \ge \min\{\Delta(TCL_n), r\} + 1 = \min\{5, r\} + 1$. To find the exact value of r-dynamic chromatic number of TCL_n , we define three cases, namely for $\chi(TCL_n), \chi_d(TCL_n), \chi_3(TCL_n)$ and $\chi_4(TCL_n)$.

For $\chi(TCL_n)$, $\chi_d(TCL_n)$, the lower bound $\chi_1(TCL_n) \ge \min\{5,2\} + 1 = 3$. We will show that $\chi_1(TCL_n) \le 3$, by defining a map $c_4 : V(TCL_n) \to \{1,2,3,\ldots,k\}$ where $n \ge 2$ by the following

$$c_4(x_i) = 3, 1 \le i \le n$$

$$c_4(y_j) = \begin{cases} 1, & j \equiv 1 \pmod{2}, \ 1 \le j \le n+1, \\ 2, & j \equiv 0 \pmod{2}, \ 1 \le j \le n+1. \end{cases}$$

$$c_4(z_j) = \begin{cases} 1, & j \equiv 0 \pmod{2}, \ 1 \le j \le n+1, \\ 2, & j \equiv 1 \pmod{2}, \ 1 \le j \le n+1. \end{cases}$$

It easy to see that c_4 gives $\chi(TCL_n) \leq 3$ and $\chi_d(TCL_n) \leq 3$. Thus $\chi(TCL_n) = 3$ and $\chi_d(TCL_n) = 3$.

For r=3, the lower bound $\chi_3(TCL_n) \ge \min\{5,3\} + 1 = 4$. We will show that $\chi_3(TCL_n) \le 4$, by defining a map $c_5: V(TCL_n) \to \{1,2,3,\ldots,k\}$ where $n \ge 2$ by the following

$$c_5(x_i) = \begin{cases} 1, & i \equiv 2 \pmod{3}, \ 1 \le i \le n, \\ 2, & i \equiv 0 \pmod{3}, \ 1 \le i \le n, \\ 3, & i \equiv 1 \pmod{3}, \ 1 \le i \le n. \end{cases}$$

$$c_5(y_j) = \begin{cases} 1, & j \equiv 1 \pmod{3}, \ 1 \le j \le n+1, \\ 2, & j \equiv 2 \pmod{3}, \ 1 \le j \le n+1, \\ 3, & j \equiv 0 \pmod{3}, \ 1 \le j \le n+1. \end{cases}$$

$$c_5(z_j) = 4, \text{ for } 1 \le i \le n+1$$

It is easy to understand that c_5 gives $\chi_3(TCL_n) \leq 4$. Thus $\chi_3(TCL_n) = 4$.

For r=4, the lower bound $\chi_4(TCL_n) \ge \min\{5,4\}+1=5$. We will show that $\chi_4(TCL_n) \le 5$, by defining a map $c_6: V(TCL_n) \to \{1,2,3,\ldots,k\}$ where $n \ge 2$ by the following

$$c_6(x_i) = \begin{cases} 3, & i \equiv 1 \pmod{3}, \ 1 \le i \le n, \\ 4, & i \equiv 2 \pmod{3}, \ 1 \le i \le n, \\ 5, & i \equiv 0 \pmod{3}, \ 1 \le i \le n. \end{cases}$$

$$c_6(y_j) = \begin{cases} 1, & j \equiv 1 \pmod{2}, \ 1 \le j \le n+1, \\ 2, & j \equiv 0 \pmod{2}, \ 1 \le j \le n+1. \end{cases}$$

International Conference on Mathematics: Education, Theory and Application

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

$$c_6(z_j) = \left\{ \begin{array}{ll} 3, & j \equiv 0 (mod \, 3), \, 1 \leq j \leq n+1, \\ 4, & j \equiv 1 (mod \, 3), \, 1 \leq j \leq n+1, \\ 5, & j \equiv 2 (mod \, 3), \, 1 \leq j \leq n+1. \end{array} \right.$$

It is easy to see that c_6 gives $\chi_4(TCL_n) \leq 5$. Thus $\chi_4(TCL_n) = 5$.

For r=5, the lower bound $\chi_5(TCL_n) \geq \min\{5,5\} + 1 = 6$. We will show that $\chi_5(TCL_n) \leq 6$, by defining a map $c_7: V(TCL_n) \to \{1,2,3,\ldots,k\}$ where $n \geq 2$ by the following

$$c_7(x_i) = \begin{cases} 4, & i \equiv 1 \pmod{3}, \ 1 \le i \le n, \\ 5, & i \equiv 2 \pmod{3}, \ 1 \le i \le n, \\ 6, & i \equiv 0 \pmod{3}, \ 1 \le i \le n. \end{cases}$$

$$c_7(y_j) = \begin{cases} 1, & j \equiv 1 \pmod{3}, \ 1 \le j \le n + 1, \\ 2, & j \equiv 2 \pmod{3}, \ 1 \le j \le n + 1, \\ 3, & j \equiv 0 \pmod{3}, \ 1 \le j \le n + 1. \end{cases}$$

$$c_7(z_j) = \begin{cases} 4, & j \equiv 0 \pmod{3}, \ 1 \le j \le n + 1, \\ 5, & j \equiv 1 \pmod{3}, \ 1 \le j \le n + 1, \\ 6, & j \equiv 2 \pmod{3}, \ 1 \le j \le n + 1. \end{cases}$$

It clearly shows that c_7 gives $\chi_5(TCL_n) \leq 6$. Thus $\chi_5(TCL_n) = 6$. Since for $r \geq 5$, we have $r \geq \Delta(TCL_n)$. By Observation 1, $\chi_r(TCL_n) = \chi_5(TCL_n) = 6$. It concludes the proof.

Theorem 4. Let $P_n + C_m$ be a joint graph of P_n and C_m , the r-dynamic chromatic number is

$$\chi_{1 \le r \le 4}(P_n + C_m) = \begin{cases} 5, & m = 3k, k \in N, \\ 6, & m \text{ otherwise.} \end{cases}$$

$$\chi_5(P_n + C_m) = \begin{cases} 6, & m = 3, \\ 8, & m = 5, \\ 7, & m \text{ otherwise.} \end{cases}$$

For $r \geq 6$, we have

$$\chi_r(P_n + C_m) = \begin{cases} r + m - 2, & 3 \le m \le r - 2, m \ge r - 1, n \ge m - 1, \\ 2r - 3, & m \text{ lainnya}, n \ge r - 1. \end{cases}$$

Proof. The graph $P_n + C_m$ is a connected graph with vertex set $V(P_n + C_m) = \{x_i; 1 \le i \le n\} \cup \{y_j; 1 \le j \le m\}$ and edge set $E(P_n + C_m) = \{x_i x_{i+1}; 1 \le i \le n-1\} \cup \{y_j y_{j+1}; 1 \le j \le m\} \cup \{y_m y_1\} \cup \{x_i y_j; 1 \le i \le n; 1 \le j \le m\}$. The order and size of this graph are $p = |V(P_n + C_m)| = m + n, q = |E(P_n + C_m)| = mn + m - 1$. Since all vertices in P_n joint with all vertices in C_m , it gives $\Delta(P_n + C_m) = m + 2$

By Observation 1, $\chi_r(P_n + C_m) \ge \min\{\Delta(P_n + C_m), r\} + 1 = \min\{m + 2, r\} + 1$. To find the exact value of r-dynamic chromatic number of $P_n + C_m$, we define three cases, namely for $\chi_{1 \le r \le 4}(P_n + C_m)$, $\chi_5(P_n + C_m)$ and $\chi_{r \ge 6}(P_n + C_m)$.

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

For $\chi_{1 \leq r \leq 4}(P_n + C_m)$, define a map $c_8 : V(P_n + C_m) \to \{1, 2, \dots, k\}$ where $n \geq 3$, by the following:

$$c_8(x_0, x_1, x_2, \dots, x_{n-1}) = \begin{cases} 123 \dots 123, & n \equiv 0 \pmod{3}, & m \equiv 2 \pmod{3}, \\ 123 \dots 123 \ 1, & n \equiv 1 \pmod{3}, & m \equiv 2 \pmod{3}, \\ 123 \dots 123 \ 12, & n \equiv 2 \pmod{3}, & m \equiv 2 \pmod{3}, \\ 12 \dots 12, & n \text{ even, } m \text{ otherwise,} \\ 12 \dots 12 \ 1, & n \text{ odd, } m \text{ otherwise.} \end{cases}$$

$$c_8(y_0, y_1, y_2, \dots, y_{n-1}) = \begin{cases} 345 \dots 345, & m \equiv 0 \pmod{3}, \\ 345 \dots 345 6, & m \equiv 1 \pmod{3}, \\ 45 \dots 45 6, & m \equiv 2 \pmod{3}, m \text{ odd}, \\ 45 \dots 45 46, & m \equiv 2 \pmod{3}, m \text{ even}. \end{cases}$$

It is easy to see that c_8 gives $\chi_{1 \leq r \leq 4}(P_n + C_m) = 5$, for $m = 3k, k \in N$ and $\chi_{1 \leq r \leq 4}(P_n + C_m) = 6$ for m otherwise.

For $\chi_5(P_n + C_m)$, define a map $c_9: V(P_n + C_m) \to \{1, 2, \dots, k\}$ where $n \geq 3$, by the following:

$$c_9(x_0, x_1, x_2, \dots, x_{n-1}) = \begin{cases} 123 \dots 123, & n \equiv 0 \pmod{3}, \\ 123 \dots 123 1, & n \equiv 1 \pmod{3}, \\ 123 \dots 123 12, & n \equiv 2 \pmod{3}. \end{cases}$$

$$c_9(y_0, y_1, y_2, \dots, y_{n-1}) = \begin{cases} 456, & m = 3, \\ 45678, & m = 5, \\ 456 & \dots & 456 \ 457, & m \equiv 0 (\text{mod } 3), m \ge 6, \\ 456 & \dots & 456 \ 4567, & m \equiv 1 (\text{mod } 3), \\ 456 & \dots & 45 \ 74567, & m \equiv 2 (\text{mod } 3), m \ge 8. \end{cases}$$

It is easy to see that c_9 gives $\chi_5(P_n + C_m) = 6$, for m = 3, $\chi_5(P_n + C_m) = 8$, for m = 5, and $\chi_5(P_n + C_m) = 7$ for m otherwise.

The last for $\chi_6(P_n + C_m)$, define a map $c_{10}: V(P_n + C_m) \to \{1, 2, \dots, k\}$ where $m \geq 3, n \geq r - 2$, by the following

$$c_{10}(x_i) = \begin{cases} 1, & i \equiv 1 \pmod{r-2}, \\ 2, & i \equiv 2 \pmod{r-2}, \\ 3, & i \equiv 3 \pmod{r-2}, \end{cases}$$
$$\vdots$$
$$r-3, & i = n-1, \\ r-2, & i = n.$$

International Conference on Mathematics: Education, Theory and Application

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

There on Mathematics: Education, Theory and Application arrial of Physics: Conf. Series **855** (2017) 012011 doi:10.1088/17
$$c_{10}(y_j) = \begin{cases} r-1, & i \equiv 1 \pmod{3}, 1 \leq i \leq n-r+4, \\ r, & i \equiv 2 \pmod{3}, 1 \leq i \leq n-r+3, \\ r+1, & i \equiv 3 \pmod{3}, 1 \leq i \leq n-r+2, \\ r+2, & i = n-r+1, \\ r+3, & i = n-r, \\ r+4, & i = n-r-1, \\ \vdots \\ 2n-2, & i = n-1, \\ 2n-3, & i = n. \end{cases}$$
 see that c_{10} gives $\chi_6(P_n+C_m) = r+m-2$ for $3 \leq m \leq r-2$ are that c_{10} gives $\chi_6(P_n+C_m) = r+m-2$ for $3 \leq m \leq r-2$

It easy to see that c_{10} gives $\chi_6(P_n+C_m)=r+m-2$ for $3\leq m\leq r-2, m\geq r-1, n\geq r-1$ m-1 and $\chi_6(P_n+C_m)=2r-3$ for $n\geq r-1$, m otherwise. By Observation 1, since $r \geq \Delta(P_n + C_m) = m + 2$, it immediately gives $\chi_6(P_n + C_m) = \chi_r(P_n + C_m)$ for $n \geq 4$. \square

Theorem 5. Let $C_n(1, \frac{n}{2})$ be a circulant graph of order 3, the r-dynamic chromatic number is

$$\chi(C_n(1, \frac{n}{2})) = \begin{cases} 4, & n = 4, \\ 2, & n = 4k + 2, k \in N, \\ 3, & n = 4k + 4, k \in N. \end{cases} \qquad \chi_d(C_n(1, \frac{n}{2})) = 4$$

For $r \geq 3$, we have

$$\chi_r(C_n(1, \frac{n}{2})) = \begin{cases} n, & n = 4, 6, 8, \\ 4, & n = 8k + 4, k \in N, \\ 5, & n = 8k + 6, k \in N, \\ 6, & n \text{ otherwise.} \end{cases}$$

Proof. The graph $C_n(1,\frac{n}{2})$ is a connected graph with vertex set $V(C_n(1,\frac{n}{2})) =$ $\{x_i, 0 \le i \le n-1\}$ and edge set $E(C_n(1, \frac{n}{2})) = \{x_i x_{i+1 \pmod{n}}, 0 \le i \le n-1\} \cup \{x_i x_{i+\frac{n}{2} \pmod{n}}, 0 \le i \le \frac{n}{2}\}$. The order and size of the graph $C_n(1, \frac{n}{2})$ are $p = |V(C_n(1, \frac{n}{2}))| = n, q = |E(C_n(1, \frac{n}{2}))| = \frac{3n}{2}$. Since $C_n(1, \frac{n}{2})$ is a regular graph of degree 3, thus $\delta(C_n(1,\frac{n}{2})) = \Delta(C_n(1,\frac{n}{2})) = 3$.

By Observation 1, $\chi_r(C_n(1, \frac{n}{2})) \ge \min\{\Delta(C_n(1, \frac{n}{2})), r\} + 1 = \min\{3, r\} + 1$. In the same way, to find the exact value of r-dynamic chromatic number of $C_n(1,\frac{n}{2})$, we define

three cases, namely for $\chi(C_n(1, \frac{n}{2})), \chi_2(C_n(1, \frac{n}{2}))$ and $\chi_{r \geq 3}(C_n(1, \frac{n}{2}))$. For $\chi(C_n(1, \frac{n}{2}))$, define a map $c_{11} : V(C_n(1, \frac{n}{2})) \to \{1, 2, \dots, k\}$ where $n \geq 3$, by the following:

$$c_{11}(x_0, x_1, \dots, x_{n-1}) = \begin{cases} 1234, & n = 4, \\ 12 \dots 12, & n = 4k + 2, k \in N. \end{cases}$$

$$c_{11}(x_0, x_1, \dots, x_{\frac{n}{2}}) = 12 \dots 12 13, \ n = 4k + 4, k \in N.$$

$$c_{11}(x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_{n-1}) = 21 \dots 21, \ 32, \ n = 4k + 4, k \in N.$$

International Conference on Mathematics: Education, Theory and Application

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

It easy to see that c_{11} gives $\chi(C_n(1, \frac{n}{2})) = 4$, for n = 4, $\chi(C_n(1, \frac{n}{2})) = 2$, for $n = 4k + 2, k \in \mathbb{N}$, and $\chi(C_n(1, \frac{n}{2})) = 3$, for $n = 4k + 4, k \in \mathbb{N}$.

For $\chi_2(C_n(1, \frac{n}{2}))$, define a map $c_{12}: V(C_n(1, \frac{n}{2})) \to \{1, 2, \dots, k\}$ where $n \geq 3$, by the following:

$$\begin{array}{rcl} c_{12}(x_0,x_1,\ldots,x_{n-1}) & = & 1234, \text{ for } n=4 \\ c_{12}(x_0,x_1,\ldots,x_{\frac{n}{2}}) & = & 12\ldots & 12, \text{ for } n=4k+2, k\in N \\ c_{12}(x_{\frac{n}{2}+1},x_{\frac{n}{2}+2},\ldots,x_{n-1}) & = & 34\ldots & 34, \text{ for } n=4k+2, k\in N \end{array}$$

It easy to see that c_{12} gives $\chi_2(C_n(1, \frac{n}{2})) = 4$ for any n.

For $\chi_r(C_n(1,\frac{n}{2}))$, and $r \geq 3$, define a map $c_{13}: V(C_n(1,\frac{n}{2})) \to \{1,2,\ldots,k\}$ where $n \geq 3$, by the followings

- For n = 4, $c_{13}(x_i) = i + 1$, $0 \le i \le n 1$
- For n = 10

$$c_{13}(x_i) = \begin{cases} 1, & i = 0, 7, \\ 2, & i = 5, 8, \\ 3, & i = 1, 4, \\ 4, & i = 3, 6, \\ 5, & i = 2, 9. \end{cases}$$

• For $n = 8k + 4, k \in N$

$$c_{13}(x_i) = \begin{cases} 1, & i \equiv 0 \pmod{4}, 0 \le i \le n-4, \\ 2, & i \equiv 1 \pmod{4}, 1 \le i \le n-3, \\ 3, & i \equiv 2 \pmod{4}, 2 \le i \le n-2, \\ 4, & i \equiv 3 \pmod{4}, 3 \le i \le n-1. \end{cases}$$

• For $n = 8k + 6, k \in N$

$$c_{13}(x_i) = \begin{cases} 1, & i \equiv 0 \pmod{4}, 0 \le i \le \frac{n}{2} - 7, \\ 2, & i \equiv 1 \pmod{4}, 1 \le i \le \frac{n}{2} - 6, \\ 3, & i \equiv 2 \pmod{4}, 2 \le i \le \frac{n}{2} - 5, \\ 4, & i \equiv 3 \pmod{4}, 3 \le i \le \frac{n}{2} - 4, \\ 5, & i = \frac{n}{2} - 12 \text{ atau } i = n - 1, \end{cases}$$

$$c_{13}(x_i) = \begin{cases} i, i \equiv 0 \pmod{\frac{n}{2} - 2}, \frac{n}{2} - 2 \le i \le n - 5, \\ i - 1, i \equiv 1 \pmod{\frac{n}{2} - 2}, \frac{n}{2} - 1 \le i \le n - 4, \\ i - 2, i \equiv 2 \pmod{\frac{n}{2} - 2}, \frac{n}{2} \le i \le n - 3, \\ i - 3, i \equiv 3 \pmod{\frac{n}{2} - 2}, \frac{n}{2} + 1 \le i \le n - 2. \end{cases}$$

International Conference on Mathematics: Education, Theory and Application

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

• For $n = 8k + 8, k \in N$

$$c_{13}(x_i) = \begin{cases} 1, & i \equiv 0 \pmod{4}, 0 \le i \le \frac{n}{2} - 8, \text{ or } \\ & i \equiv 0 \pmod{\frac{n}{2} - 2}, \frac{n}{2} - 2 \le i \le n - 6, \\ 2, & i \equiv 1 \pmod{4}, 1 \le i \le \frac{n}{2} - 7, \text{ or } \\ & i \equiv 1 \pmod{\frac{n}{2} - 2}, \frac{n}{2} - 1 \le i \le n - 5, \\ 3, & i \equiv 2 \pmod{4}, 2 \le i \le \frac{n}{2} - 6, \text{ or } \\ & i \equiv 2 \pmod{\frac{n}{2} - 2}, \frac{n}{2} \le i \le n - 4, \\ 4, & i \equiv 3 \pmod{4}, 3 \le i \le \frac{n}{2} - 5, \text{ or } \\ & i \equiv 3 \pmod{\frac{n}{2} - 2}, \frac{n}{2} + 1 \le i \le n - 3, \\ 5, & i = \frac{n - 8}{2} \text{ or } i = n - 2, \\ 6, & i = \frac{n - 6}{2} \text{ or } i = n - 1. \end{cases}$$

• For $n = 8k + 10, k \in N$

$$c_{13}(x_i) = \begin{cases} 1, & i \equiv 0 \pmod{4}, 0 \le i \le \frac{n}{2} - 6, \text{ or } \\ & i \equiv 0 \pmod{\frac{n}{2} - 2}, \frac{n}{2} - 2 \le i \le n - 7, \\ 2, & i \equiv 1 \pmod{4}, 1 \le i \le \frac{n}{2} - 5, \text{ or } \\ & i \equiv 1 \pmod{\frac{n}{2} - 2}, \frac{n}{2} - 1 \le i \le n - 6, \\ 3, & i \equiv 2 \pmod{4}, 2 \le i \le \frac{n}{2} - 4, \text{ or } \\ & i \equiv 2 \pmod{\frac{n}{2} - 2}, \frac{n}{2} \le i \le n - 5, \\ 4, & i \equiv 3 \pmod{4}, 3 \le i \le \frac{n}{2} - 3, \text{ or } \\ & i \equiv 3 \pmod{\frac{n}{2} - 2}, \frac{n}{2} + 1 \le i \le n - 4, \text{ or } i = n - 1, \\ 5, & \text{For } i = n - 3, \\ 6, & \text{For } i = n - 2, \end{cases}$$

It easy to see that c_{13} gives $\chi_3(C_n(1,\frac{n}{2})) = 4,6,8$ for n = 4,6,8, $\chi_3(C_n(1,\frac{n}{2})) = 4$ for n = 8k + 4, $\chi_3(C_n(1,\frac{n}{2})) = 5$ for n = 8k + 6, and $\chi_3(C_n(1,\frac{n}{2})) = 6$ for n otherwise. By Observation 1, since $r \geq \Delta(C_n(1,\frac{n}{2})) = 4$, it immediately gives $\chi_3(C_n(1,\frac{n}{2})) = \chi_r(C_n(1,\frac{n}{2}))$ for $n \geq 4$.

Concluding Remarks

We have found some r-dynamic chromatic number of several graphs, namely prism graph, three-cyclical ladder graph, joint graph and circulant graph. All numbers attain a best lower bound. For the characterization of the lower bound of for any connected graphs G, we have not found any result yet, thus we propose the following open problem.

Open Problem

Given that any connected graphs G, determine the sharp lower bound of $\chi_r(G)$

Acknowledgement

We gratefully acknowledge the support from DIPA 2017 of CGANT & LEMLIT - University of Jember.

International Conference on Mathematics: Education, Theory and Application

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012011

doi:10.1088/1742-6596/855/1/012011

References

- M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012) 2098– 2103.
- [2] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152–156.
- [3] S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math. 157 (2009) 3005–3007.
- [4] S. Akbari, M. Ghanbari, S. Jahanbekam, On the dynamic chromatic number of graphs, in: Combinatorics and Graphs, in: Contemp. Math., Amer. Math. Soc., vol. 531, 2010, pp. 11–18
- [5] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Coloring of Cartesian Product Graphs, Ars Combinatoria 114 (2014) 161 – 167
- [6] H. Furmanczyk, M. Kubale. Equitable Coloring of Corona Products of Cubic Graphs is Harder Than Ordinary Coloring. Ars Mathematica Contemporanea 10 (2016) 333 – 347
- [7] S. Jahanbekam, J. Kim, Suil O, Douglas B. West. On r-Dynamic Coloring of Graph. Discrete Applied Mathematics 206 (2016) 65 – 72
- [8] B. Montgomery, Dynamic Coloring of Graphs (Ph.D Dissertation), West Virginia University, 2001.
- [9] H.J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003) 193–201.
- [10] H.J. Lai, B. Montgomery. Dynamic Coloring of Graph. Department of Mathematics, West Virginia University, Mongantown WV 26506-6310. 2002
- [11] H.J. Lai, B. Montgomery, H. Poon. Upper Bounds of Dynamic Chromatic Number. Ars Combinatoria. 68 (2003) 193 – 201
- [12] R. Kang, T. Muller, Douglas B. West. On r-Dynamic Coloring of Grids. Discrete Applied Mathematics 186 (2015) 286 – 290
- [13] A. Taherkhani, r-Dynamic Chromatic Number of Graphs. arXiv:1401.6470v1 [math.CO], 24 January 2014, Dept of Math, Institutu for Basic Studies and Advance Sciense, Iran.
- [14] A. Taherkhani. On r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics 201 (2016) 222 – 227