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Abstract. Let G be a simple, connected and undirected graph. Let r, k be natural
numbers. By a proper k-coloring of a graph G, we mean a map c : V (G) → S, where
|S| = k, such that any two adjacent vertices receive different colors. An r-dynamic
k-coloring is a proper k-coloring c of G such that |c(N(v))| ≥ min{r, d(v)} for each
vertex v in V (G), where N(v) is the neighborhood of v and c(S) = {c(v) : v ∈ S} for a
vertex subset S. The r-dynamic chromatic number, written as χr(G), is the minimum
k such that G has an r-dynamic k-coloring. By simple observation it is easy to see that
χr(G) ≤ χr+1(G), however χr+1(G) − χr(G) does not always show a small difference
for any r. Thus, finding an exact value of χr(G) is significantly useful. In this paper,
we will study some of them especially when G are prism graph, three-cyclical ladder
graph, joint graph and circulant graph.

Keywords: r-dynamic chromatic number, graph coloring, special graphs.

1. Introduction
The r-dynamic chromatic number, introduced by Montgomery [8] and written as χr(G),
is the least k such that G has an r-dynamic k-coloring. Note that the 1-dynamic
chromatic number of graph is equal to its chromatic number, denoted by χ(G), and
the 2-dynamic chromatic number of graph has been studied under the name a dynamic
chromatic number, denoted by χd(G). In [8], he conjectured χ2(G) ≤ χ(G) + 2 when
G is regular, which remains open. Akbari et.al. [4] proved Montgomery’s conjecture for
bipartite regular graphs, as well as Lai, et.al. [9] proved χ2(G) ≤ ∆(G)+1 for ∆(G) ≤ 3
when no component is the 5-cycle. Some other results can be site in [1, 2, 3, 14] .

By a greedy coloring algorithm, Jahanbekama [7] proved that χr(G) ≤ r∆(G) + 1,
and equality holds for ∆(G) > 2 if and only if G is r-regular with diameter 2 and girth
5. They improved the bound to χr(G) ≤ ∆(G) + 2r − 2 when δ(G) > 2r lnn and
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χr(G) ≤ ∆(G) + r when δ(G) > r2 lnn. For further results of r-dynamic chromatic
number can be seen in [6, 10, 11, 12, 5] .

The following observation is useful to find the exact values of r-dynamic chromatic
number.

Observation 1. Let δ(G) and ∆(G) be a minimum and maximum degree of a graph G,
respectively. Then the followings hold

• χr(G) ≥ min{∆(G), r}+ 1,

• χ(G) ≤ χ2(G) ≤ χ3(G) ≤ · · · ≤ χ∆(G)(G),

• χr+1(G) ≥ χr(G) and if r ≥ ∆(G) then χr(G) = χ∆(G)(G).

Taherkhani in [13], proved the following theorem

Theorem 1. [13] Let G be a d-regular graph and r be a positive integer with 2 ≤ r ≤
δ

log(2er(∆2+1))
. Then the r-dynamic chromatic number of G is χr(G) ≤ χ(G) + (r −

1)de∆
δ log(2er(∆2 + 1))e, where e euler’s number.

2. The Results
We are ready to show our main theorems. There are four theorems found in this study.
These deals with prism graph, three-cyclical ladder graph, joint graph and circulant
graph.

Theorem 2. Let Pn,2 be a prism graph, the r-dynamic chromatic number is:

χ(Pn,2) =

{
2, n even
3, n odd

χd(Pn,2) =

{
3, n = 3k, k ∈ N
4, n otherwise

For r ≥ 3, we have

χr(Pn,2) =

 4, n = 4k, k ∈ N
6, n = 3, 7, 11
5, n otherwise

Proof. A prism graph, denoted by Pn,2, n ≥ 3, is a connected graph with vertex
set V (Pn,2) = {xi, yi, 1 ≤ i ≤ n}, and edge set E(Pn,2) = {xixi+1, yiyi+1; 1 ≤ i ≤
n − 1} ∪ {xnx1} ∪ {yny1} ∪ {xiyi; 1 ≤ i ≤ n}. The order and size of Pn,2, n ≥ 3 are
|V (Pn,2)| = 2n and |E(Pn,2)| = 3n. A prism graph is regular graph of degree 3, thus
Pn,2, δ(Pn,2) = ∆(Pn,2) = 3. By Observation 1, χr(Pn,2) ≥ min{∆(Pn,2), r} + 1 =
min{3, r} + 1. To find the exact value of r-dynamic chromatic number of Pn,2, we
define three cases, namely χ(Pn,2), χ2(Pn,2) and χr≥3(Pn,2). For χ(Pn,2), the lower
bound χ(Pn,2) ≥ min{3, 1}+ 1 = 2. We will prove that χ(Pn,2) ≤ 2 by defining a map
c1 : V (Pn,2)→ {1, 2, . . . , k} for n ≥ 3, by the following:

c1(x1, x2, . . . , xn) =

{
21 . . . 21, n even
12 . . . 12 3, n odd

c1(y1, y2, . . . , yn) =

{
12 . . . 12, n even
3 12 . . . 12, n odd
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It is easy to see that c1 gives χ(Pn,2) ≤ 2 for n even, but for n odd, we could not avoid
to have χ(Pn,2) ≤ 3, otherwise there are at least two adjacent vertices assigned the same
colors. Thus χ(Pn,2) = 2 for n even and χ(Pn,2) = 3, for n odd.

For χ2(Pn,2), the lower bound χ2(Pn,2) ≥ min{3, 2} + 1 = 3. We will prove that
χ2(Pn,2) ≤ 3 by defining a map c2 : V (Pn,2) → {1, 2, . . . , k} where n ≥ 3, by the
following

c2(x1, x2, . . . , xn−1) =


12123, n = 5
123 . . . 123, n ≡ 0(mod 3),
123 . . . 123 4, n ≡ 1(mod 3),
123 . . . 123 41234, n ≡ 2(mod 3).

c2(y1, y2, . . . , yn−1) =


23434, n = 5
312 . . . 312, n ≡ 0(mod 3),
4 123 . . . 123, n ≡ 1(mod 3),
4 123 . . . 123 4123, n ≡ 2(mod 3).

It is easy to see that c2 gives χ2(Pn,2) ≤ 3, for n = 3k, k ∈ N , but apart n = 3k we
could not avoid to have χ2(Pn,2) ≤ 4 otherwise there are at least two adjacent vertices
assigned the same colors. Thus χ2(Pn,2) = 3 for n = 3k and χ2(Pn,2) = 4 for otherwise.

For χr(Pn,2) and r ≥ 3, the lower bound χ3(Pn,2) ≥ min{3, 3} + 1 = 4. We will
prove that χ3(Pn,2) ≤ 4 by defining a map c3 : V (Pn,2) → {1, 2, . . . , k} for n ≥ 3, by
the following.

c3(x1, x2, . . . , xn) =



123, n = 3,
1234 . . . 1234, n ≡ 0(mod 4),
1234 . . . 1234 5, n ≡ 1(mod 4),
123456, n = 6,
1234563, n = 7,
1234 . . . 1234 512345, n ≡ 2(mod 4), n ≥ 10,
12345123456, n = 11,
1234 . . . 1234 51234512345, n ≡ 3(mod 4), n ≥ 15.

c3(y1, y2, . . . , yn−1) =



456, n = 3,
34 1234 . . . 1234 12, n ≡ 0(mod 4),
45 1234 . . . 1234 123, n ≡ 1(mod 4),
561234, n = 6,
6412345, n = 7,
4512345 1234 . . . 1234 123, n ≡ 0(mod 4), n ≥ 10,
56123451234, n = 11,
45 1234 . . . 1234 512345123, n ≡ 0(mod 4), n ≥ 15.

It is easy to see that c3 gives χ3(Pn,2) ≤ 4, for n = 4k, k ∈ N , but for n = 3, 6, 7, 11 we are
forced to have χ3(Pn,2) ≤ 6 as well as χ3(Pn,2) ≤ 5 for n otherwise. Thus χ3(Pn,2) = 4,
for n = 4k, χ3(Pn,2) = 6 for n = 3, 6, 7, 11 and χ3(Pn,2) = 5 for n otherwise. By
Observation 1, since r ≥ ∆(Pn,2) = 3, it immediately gives χ3(Pn,2)=χr(Pn,2) for
n ≥ 3. �
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Theorem 3. Let G be three-cyclical ladder graph (TCLn) for n ≥ 2, r-dynamic
chromatic number of TCLn is

χ(TCLn) = χd(TCLn) = 3, χ3(TCLn) = 4, χ4(TCLn) = 5, χr(TCLn) = 6, r ≥ 5

Proof. The graph three-cyclical ladder graph, denoted by TCLn, is connected graph
with vertex set V (TCLn) = {xi, yj , zj ; 1 ≤ i ≤ n; 1 ≤ j ≤ n + 1} and edge set
E(TCLn) = {yjzj ; 1 ≤ j ≤ n+ 1} ∪ {yjyj+1; 1 ≤ i ≤ n} ∪ {xiyi;xizi;xiyi+1;xizi+1; 1
≤ i ≤ n}. Thus, p = |V (TCLn)| = 3n+ 2, q = |E(TCLn)| = 6n+ 1,∆(TCLn) = 5.

By Observation 1, χr(TCLn) ≥ min{∆(TCLn), r} + 1 = min{5, r} + 1. To find the
exact value of r-dynamic chromatic number of TCLn, we define three cases, namely for
χ(TCLn), χd(TCLn), χ3(TCLn) and χ4(TCLn).

For χ(TCLn), χd(TCLn), the lower bound χ1(TCLn) ≥ min{5, 2} + 1 = 3. We will
show that χ1(TCLn) ≤ 3, by defining a map c4 : V (TCLn) → {1, 2, 3, . . . , k} where
n ≥ 2 by the following

c4(xi) = 3, 1 ≤ i ≤ n

c4(yj) =

{
1, j ≡ 1(mod 2), 1 ≤ j ≤ n+ 1,
2, j ≡ 0(mod 2), 1 ≤ j ≤ n+ 1.

c4(zj) =

{
1, j ≡ 0(mod 2), 1 ≤ j ≤ n+ 1,
2, j ≡ 1(mod 2), 1 ≤ j ≤ n+ 1.

It easy to see that c4 gives χ(TCLn) ≤ 3 and χd(TCLn) ≤ 3. Thus χ(TCLn) = 3 and
χd(TCLn) = 3.

For r = 3, the lower bound χ3(TCLn) ≥ min{5, 3} + 1 = 4. We will show that
χ3(TCLn) ≤ 4, by defining a map c5 : V (TCLn) → {1, 2, 3, . . . , k} where n ≥ 2 by the
following

c5(xi) =

 1, i ≡ 2(mod 3), 1 ≤ i ≤ n,
2, i ≡ 0(mod 3), 1 ≤ i ≤ n,
3, i ≡ 1(mod 3), 1 ≤ i ≤ n.

c5(yj) =

 1, j ≡ 1(mod 3), 1 ≤ j ≤ n+ 1,
2, j ≡ 2(mod 3), 1 ≤ j ≤ n+ 1,
3, j ≡ 0(mod 3), 1 ≤ j ≤ n+ 1.

c5(zj) = 4, for 1 ≤ i ≤ n+ 1

It is easy to understand that c5 gives χ3(TCLn) ≤ 4. Thus χ3(TCLn) = 4.
For r = 4, the lower bound χ4(TCLn) ≥ min{5, 4} + 1 = 5. We will show that

χ4(TCLn) ≤ 5, by defining a map c6 : V (TCLn) → {1, 2, 3, . . . , k} where n ≥ 2 by the
following

c6(xi) =

 3, i ≡ 1(mod 3), 1 ≤ i ≤ n,
4, i ≡ 2(mod 3), 1 ≤ i ≤ n,
5, i ≡ 0(mod 3), 1 ≤ i ≤ n.

c6(yj) =

{
1, j ≡ 1(mod 2), 1 ≤ j ≤ n+ 1,
2, j ≡ 0(mod 2), 1 ≤ j ≤ n+ 1.
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c6(zj) =

 3, j ≡ 0(mod 3), 1 ≤ j ≤ n+ 1,
4, j ≡ 1(mod 3), 1 ≤ j ≤ n+ 1,
5, j ≡ 2(mod 3), 1 ≤ j ≤ n+ 1.

It is easy to see that c6 gives χ4(TCLn) ≤ 5. Thus χ4(TCLn) = 5.
For r = 5, the lower bound χ5(TCLn) ≥ min{5, 5} + 1 = 6. We will show that

χ5(TCLn) ≤ 6, by defining a map c7 : V (TCLn) → {1, 2, 3, . . . , k} where n ≥ 2 by the
following

c7(xi) =

 4, i ≡ 1(mod 3), 1 ≤ i ≤ n,
5, i ≡ 2(mod 3), 1 ≤ i ≤ n,
6, i ≡ 0(mod 3), 1 ≤ i ≤ n.

c7(yj) =

 1, j ≡ 1(mod 3), 1 ≤ j ≤ n+ 1,
2, j ≡ 2(mod 3), 1 ≤ j ≤ n+ 1,
3, j ≡ 0(mod 3), 1 ≤ j ≤ n+ 1.

c7(zj) =

 4, j ≡ 0(mod 3), 1 ≤ j ≤ n+ 1,
5, j ≡ 1(mod 3), 1 ≤ j ≤ n+ 1,
6, j ≡ 2(mod 3), 1 ≤ j ≤ n+ 1.

It clearly shows that c7 gives χ5(TCLn) ≤ 6. Thus χ5(TCLn) = 6. Since for r ≥ 5, we
have r ≥ ∆(TCLn). By Observation 1, χr(TCLn) = χ5(TCLn) = 6. It concludes the
proof. �

Theorem 4. Let Pn + Cm be a joint graph of Pn and Cm, the r-dynamic chromatic
number is

χ1≤r≤4(Pn + Cm) =

{
5, m = 3k, k ∈ N,
6, m otherwise.

χ5(Pn + Cm) =

 6, m = 3,
8, m = 5,
7, m otherwise.

For r ≥ 6, we have

χr(Pn + Cm) =

{
r +m− 2, 3 ≤ m ≤ r − 2,m ≥ r − 1, n ≥ m− 1,
2r − 3, m lainnya, n ≥ r − 1.

Proof. The graph Pn +Cm is a connected graph with vertex set V (Pn +Cm) = {xi; 1 ≤
i ≤ n}∪{yj ; 1 ≤ j ≤ m} and edge set E(Pn+Cm) = {xixi+1; 1 ≤ i ≤ n−1}∪{yjyj+1; 1 ≤
j ≤ m} ∪ {ymy1} ∪ {xiyj ; 1 ≤ i ≤ n; 1 ≤ j ≤ m}. The order and size of this graph are
p = |V (Pn + Cm)| = m + n, q = |E(Pn + Cm)| = mn + m − 1. Since all vertices in Pn
joint with all vertices in Cm, it gives ∆(Pn + Cm) = m+ 2

By Observation 1, χr(Pn +Cm) ≥ min{∆(Pn +Cm), r}+ 1 = min{m+ 2, r}+ 1. To
find the exact value of r-dynamic chromatic number of Pn + Cm, we define three cases,
namely for χ1≤r≤4(Pn + Cm), χ5(Pn + Cm) and χr≥6(Pn + Cm).
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For χ1≤r≤4(Pn +Cm), define a map c8 : V (Pn +Cm)→ {1, 2, . . . , k} where n ≥ 3, by
the following:

c8(x0, x1, x2, . . . , xn−1) =


123 . . . 123, n ≡ 0(mod 3), m ≡ 2(mod 3),
123 . . . 123 1, n ≡ 1(mod 3), m ≡ 2(mod 3),
123 . . . 123 12, n ≡ 2(mod 3), m ≡ 2(mod 3),
12 . . . 12, n even, m otherwise,
12 . . . 12 1, n odd, m otherwise.

c8(y0, y1, y2, . . . , yn−1) =


345 . . . 345, m ≡ 0(mod 3),
345 . . . 345 6, m ≡ 1(mod 3),
45 . . . 45 6, m ≡ 2(mod 3),m odd,
45 . . . 45 46, m ≡ 2(mod 3),m even.

It is easy to see that c8 gives χ1≤r≤4(Pn + Cm) = 5, for m = 3k, k ∈ N and
χ1≤r≤4(Pn + Cm) = 6 for m otherwise.

For χ5(Pn + Cm), define a map c9 : V (Pn + Cm)→ {1, 2, . . . , k} where n ≥ 3, by the
following:

c9(x0, x1, x2, . . . , xn−1) =

 123 . . . 123, n ≡ 0(mod 3),
123 . . . 123 1, n ≡ 1(mod 3),
123 . . . 123 12, n ≡ 2(mod 3).

c9(y0, y1, y2, . . . , yn−1) =


456, m = 3,
45678, m = 5,
456 . . . 456 457, m ≡ 0(mod 3),m ≥ 6,
456 . . . 456 4567, m ≡ 1(mod 3),
456 . . . 45 74567, m ≡ 2(mod 3),m ≥ 8.

It is easy to see that c9 gives χ5(Pn +Cm) = 6, for m = 3, χ5(Pn +Cm) = 8, for m = 5,
and χ5(Pn + Cm) = 7 for m otherwise.

The last for χ6(Pn + Cm), define a map c10 : V (Pn + Cm) → {1, 2, . . . , k} where
m ≥ 3, n ≥ r − 2, by the following

c10(xi) =



1, i ≡ 1(mod r − 2),
2, i ≡ 2(mod r − 2),
3, i ≡ 3(mod r − 2),
...
r − 3, i = n− 1,
r − 2, i = n.
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c10(yj) =



r − 1, i ≡ 1(mod 3), 1 ≤ i ≤ n− r + 4,
r, i ≡ 2(mod 3), 1 ≤ i ≤ n− r + 3,
r + 1, i ≡ 3(mod 3), 1 ≤ i ≤ n− r + 2,
r + 2, i = n− r + 1,
r + 3, i = n− r,
r + 4, i = n− r − 1,
...
2n− 2, i = n− 1,
2n− 3, i = n.

It easy to see that c10 gives χ6(Pn+Cm) = r+m−2 for 3 ≤ m ≤ r−2,m ≥ r−1, n ≥
m− 1 and χ6(Pn + Cm) = 2r − 3 for n ≥ r − 1, m otherwise. By Observation 1, since
r ≥ ∆(Pn +Cm) = m+ 2, it immediately gives χ6(Pn +Cm)=χr(Pn +Cm) for n ≥ 4. �

Theorem 5. Let Cn(1, n2 ) be a circulant graph of order 3, the r-dynamic chromatic
number is

χ(Cn(1,
n

2
)) =

 4, n = 4,
2, n = 4k + 2, k ∈ N,
3, n = 4k + 4, k ∈ N.

χd(Cn(1,
n

2
)) = 4

For r ≥ 3, we have

χr(Cn(1,
n

2
)) =


n, n = 4, 6, 8,
4, n = 8k + 4, k ∈ N,
5, n = 8k + 6, k ∈ N,
6, n otherwise.

Proof. The graph Cn(1, n2 ) is a connected graph with vertex set V (Cn(1, n2 )) =
{xi, 0 ≤ i ≤ n − 1} and edge set E(Cn(1, n2 )) = {xixi+1(mod n), 0 ≤ i ≤ n −
1} ∪ {xixi+n

2
(mod n), 0 ≤ i ≤ n

2 }. The order and size of the graph Cn(1, n2 ) are

p = |V (Cn(1, n2 ))| = n, q = |E(Cn(1, n2 ))| = 3n
2 . Since Cn(1, n2 ) is a regular graph of

degree 3, thus δ(Cn(1, n2 )) = ∆(Cn(1, n2 )) = 3.
By Observation 1, χr(Cn(1, n2 )) ≥ min{∆(Cn(1, n2 )), r} + 1 = min{3, r} + 1. In the

same way, to find the exact value of r-dynamic chromatic number of Cn(1, n2 ), we define
three cases, namely for χ(Cn(1, n2 )), χ2(Cn(1, n2 )) and χr≥3(Cn(1, n2 )).

For χ(Cn(1, n2 )), define a map c11 : V (Cn(1, n2 )) → {1, 2, . . . , k} where n ≥ 3, by the
following:

c11(x0, x1, . . . , xn−1) =

{
1234, n = 4,
12 . . . 12, n = 4k + 2, k ∈ N.

c11(x0, x1, . . . , xn
2
) = 12 . . . 12 13, n = 4k + 4, k ∈ N.

c11(xn
2

+1, xn
2

+2, . . . , xn−1) = 21 . . . 21, 32, n = 4k + 4, k ∈ N.
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It easy to see that c11 gives χ(Cn(1, n2 )) = 4, for n = 4, χ(Cn(1, n2 )) = 2, for
n = 4k + 2, k ∈ N , and χ(Cn(1, n2 )) = 3, for n = 4k + 4, k ∈ N .

For χ2(Cn(1, n2 )), define a map c12 : V (Cn(1, n2 ))→ {1, 2, . . . , k} where n ≥ 3, by the
following:

c12(x0, x1, . . . , xn−1) = 1234, for n = 4

c12(x0, x1, . . . , xn
2
) = 12 . . . 12, for n = 4k + 2, k ∈ N

c12(xn
2

+1, xn
2

+2, . . . , xn−1) = 34 . . . 34, for n = 4k + 2, k ∈ N

It easy to see that c12 gives χ2(Cn(1, n2 )) = 4 for any n.
For χr(Cn(1, n2 )), and r ≥ 3, define a map c13 : V (Cn(1, n2 )) → {1, 2, . . . , k} where

n ≥ 3, by the followings

• For n = 4, c13(xi) = i+ 1, 0 ≤ i ≤ n− 1

• For n = 10

c13(xi) =


1, i = 0, 7,
2, i = 5, 8,
3, i = 1, 4,
4, i = 3, 6,
5, i = 2, 9.

• For n = 8k + 4, k ∈ N

c13(xi) =


1, i ≡ 0(mod 4), 0 ≤ i ≤ n− 4,
2, i ≡ 1(mod 4), 1 ≤ i ≤ n− 3,
3, i ≡ 2(mod 4), 2 ≤ i ≤ n− 2,
4, i ≡ 3(mod 4), 3 ≤ i ≤ n− 1.

• For n = 8k + 6, k ∈ N

c13(xi) =


1, i ≡ 0(mod 4), 0 ≤ i ≤ n

2 − 7,
2, i ≡ 1(mod 4), 1 ≤ i ≤ n

2 − 6,
3, i ≡ 2(mod 4), 2 ≤ i ≤ n

2 − 5,
4, i ≡ 3(mod 4), 3 ≤ i ≤ n

2 − 4,
5, i = n

2 − 12 atau i = n− 1,

c13(xi) =


i, i ≡ 0(mod n

2 − 2), n2 − 2 ≤ i ≤ n− 5,
i− 1, i ≡ 1(mod n

2 − 2), n2 − 1 ≤ i ≤ n− 4,
i− 2, i ≡ 2(mod n

2 − 2), n2 ≤ i ≤ n− 3,
i− 3, i ≡ 3(mod n

2 − 2), n2 + 1 ≤ i ≤ n− 2.
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• For n = 8k + 8, k ∈ N

c13(xi) =



1, i ≡ 0(mod 4), 0 ≤ i ≤ n
2 − 8, or

i ≡ 0(mod n
2 − 2), n2 − 2 ≤ i ≤ n− 6,

2, i ≡ 1(mod 4), 1 ≤ i ≤ n
2 − 7, or

i ≡ 1(mod n
2 − 2), n2 − 1 ≤ i ≤ n− 5,

3, i ≡ 2(mod 4), 2 ≤ i ≤ n
2 − 6, or

i ≡ 2(mod n
2 − 2), n2 ≤ i ≤ n− 4,

4, i ≡ 3(mod 4), 3 ≤ i ≤ n
2 − 5, or

i ≡ 3(mod n
2 − 2), n2 + 1 ≤ i ≤ n− 3,

5, i = n−8
2 or i = n− 2,

6, i = n−6
2 or i = n− 1.

• For n = 8k + 10, k ∈ N

c13(xi) =



1, i ≡ 0(mod 4), 0 ≤ i ≤ n
2 − 6, or

i ≡ 0(mod n
2 − 2), n2 − 2 ≤ i ≤ n− 7,

2, i ≡ 1(mod 4), 1 ≤ i ≤ n
2 − 5, or

i ≡ 1(mod n
2 − 2), n2 − 1 ≤ i ≤ n− 6,

3, i ≡ 2(mod 4), 2 ≤ i ≤ n
2 − 4, or

i ≡ 2(mod n
2 − 2), n2 ≤ i ≤ n− 5,

4, i ≡ 3(mod 4), 3 ≤ i ≤ n
2 − 3, or

i ≡ 3(mod n
2 − 2), n2 + 1 ≤ i ≤ n− 4, or i = n− 1,

5, For i = n− 3,
6, For i = n− 2,

It easy to see that c13 gives χ3(Cn(1, n2 )) = 4, 6, 8 for n = 4, 6, 8, χ3(Cn(1, n2 )) = 4
for n = 8k + 4, χ3(Cn(1, n2 )) = 5 for n = 8k + 6, and χ3(Cn(1, n2 )) = 6 for
n otherwise. By Observation 1, since r ≥ ∆(Cn(1, n2 )) = 4, it immediately gives
χ3(Cn(1, n2 ))=χr(Cn(1, n2 )) for n ≥ 4. �

Concluding Remarks
We have found some r−dynamic chromatic number of several graphs, namely prism
graph, three-cyclical ladder graph, joint graph and circulant graph. All numbers attain
a best lower bound. For the characterization of the lower bound of for any connected
graphs G, we have not found any result yet, thus we propose the following open problem.

Open Problem
Given that any connected graphs G, determine the sharp lower bound of χr(G)
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