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Abstract. Let H be a simple and connected graph. A shackle of graph H, denoted by
G = shack(H,v,n), is a graph G constructed by non-trivial graphs Hi, Ha,..., H, such
that, for every 1 < s,t < n, Hs and H; have no a common vertex with |s — ¢ > 2
and for every 1 < ¢ < n — 1, H; and H;41 share exactly one common vertex v, called
connecting vertex, and those k — 1 connecting vertices are all distinct. The graph G is said
to be an (a*,d”)-H-antimagic total graph of second order if there exist a bijective function
f:V(G)UE(G) — {1,2,...,|V(G)|+|E(G)|} such that for all subgraphs isomorphic to H, the
total H-weights W (H) = >, cy () f(v) + X ccpm) f(€) form an arithmetic sequence of second
order of {a*, a*+d*, a*+3d*, a* +6d", ..., a*+(”ZT*")d*}, where a* and d* are positive integers
and n is the number of all subgraphs isomorphic to H. An (a*,d")-H-antimagic total labeling
of second order f is called super if the smallest labels appear in the vertices. In this paper,
we study a super (a*,d”)-H antimagic total labeling of second order of G = shack(H,v,n) by
using a partition technique of second order.

1. Introduction

All graphs in this study are simple, connected an undirected. A graph G is said to be an (a*, d*)-
H-antimagic total graph of second order if there exist a bijective function f : V(G) U E(G) —
{1,2,...,|V(G)|+|E(G)|} such that for all subgraphs of G isomorphic to H, the total H-weights
w(H) =3 evm f(v) + X cepm) f(e) form an arithmetic sequence of second order {a*, a* +d*,

a*+3d*, a* +6d*, ..., a" + ("QTfn) *}, where a and d are positive integers and n is the number
of all subgraphs of G isomorphic to H. If such a function exist then f is called an (a*,d*)-H-
antimagic total labeling of second order of G. An (a*, d*)-H-antimagic total labeling of second
order f is called super if f : V(G) — {1,2,...,|V(G)|}. By this notion, the super (a,d) — H
antimagic total labeling is classified as the super (a,d) — H antimagic total labeling of first order.

We initiate to study this concept, thus we have not found any relevant results yet. But for
the super (a,d) — H antimagic total labeling, we can find many published results, some of them
can be cited in [2, 3, 8, 9] and [10, 11, 12, 13, 15]. Inayah et al. in [8] proved that, for H is
a non-trivial connected graph and k > 2 is an integer, shack(H,v,k) which contains exactly
k subgraphs isomorphic to H is H-super antimagic. All this papers only dealt with d derived
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from the sequence of order one. Our paper attempt to solve a super (a*,d*)-H antimagic total
labeling of order two of G = shack(H,v,n).

To show those existence, we will use a special technique, namely an integer set partition
technique. We consider the partition and(i?j) of the set {1,2,...,mn} into n columns with
n > 2, m-rows such that the difference between the sum of the numbers in the (j + 1)th
m-rows and the sum of the numbers in the jth m-rows is always equal to the constant
d, where j = 1,2,...,n — 1. We need to establish some lemmas related to the partition
P”md(z', j). Furthermore, the partition will be developed into a second order partition. These
lemmas are useful to develop the super (a*,d*)-H antimagic total labeling of second order of
G = shack(H,v,n).

Let G be a shackle of graph denoted by G = shack(H,v,n). Let G and H be a connected
graph with |V(G)| = pa, |E(G)| = qa, |V(H)| = pu, and |E(H)| = qi. The vertex set and edge
set of the graph G = shack(H,v,n) can be split into following sets: V = {z;;1 <j<n+1}U
{zij;1 <i<prp—2,1<j<n}and FE={ej;1<i<qu,1 <j<n} Letn,i, jbe positive
integers with n > 2. Thus pg = |V(G)| =n+1+ (pg —2)n = 1+npg+n—2n=1+n(py —1)
and ¢¢ = |E(G)| = nqn.

We recall a partition Py, (i, ) introduced in [4]. We will use the partition for a linear
combination in developing a bijection of vertex and edge label of the main theorem.

Lemma 1.1. [4] Let n and m be positive integers. The sum of Pl i (t,7)={(t—=Dn+j, 1<

m
i <m} and P? , (i,7) ={(—1)m+1i; 1<i<m} form an aritmatic sequence of difference

m,do
di =m and dy = m?, respectively.

2. Main Results
Lemma 2.1. Let G be a simple graph of order p and size q. If G is super (a*,d*)-H -antimagic
total labeling of second order then d < Pe=PHPHIWG=an)an — for . — V(G)|, qc¢ = |E(G)],

By
pa = |V(H)|, qu = |E(H)|, and n = |H|.

Proof. Given the function f(V) =1,2,3,...,pg and f(F) = pac+1,pc+2,pc+3,...,pc+4qc-
Let (pg,qc) admit a super (a*,d*) — H antimagic total labeling with the total second
order function, f(total) = 1,2,3,...,pc + qc then the set of edge weight of a graph is

{a*,a* +d*,a* + 3d*,a* + 6d*,...,a + (#T_”)d} with a* is the smallest weight thus:

*

1+2+4-+pu+ e+ +pc+2)+ -+ (pe+eu) < a
<

ij(l +pr) + qaPG + q?H(l +qm)

2 2

bPH | PH qH 9 *
L 4 L 2H <
5 + 5 +qupc + 9 + 5 a

a

/
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a* +( ) ) < pa+(pa—1)+ e —2)+-+ (pec — (pr — 1))
+(pe+4qa) + (e +a9c — 1)+ (pa +a9c —2) + . ..
+(pe + 9¢ — (qu — 1))
PH —
= pHPG — (14 (py — 1)) + qupc + quqc
gy —1
— (¢+qu—1))
pr — 1 gy — 1
= PHPG — (pH) + qupc + quac — 5 (qu)
2
ne—mn. . pa — 1 qm — 1
( 5 ) < pupg — > (pE) + 9P + 9HqG — 5 (qu) —a
pg — 1 g — 1
< pHPG — 5 (pH) + qupc + qrqc — 3 (qm) —
2 2
PH | PH 91 | 9u
(2 += Tanpe + 5 + 2)
2 2
_ APy, e N | o
= PHPG 2+2+QHPG 2+2
2 2
b | Py 94 | 9H
(2+2+2+2)
pPHPG + qHdG — Pi — 4h
= pHPG — PH + qHIG — Tu
= (pc —pH)pH + (96 — qH)9H
¥ (pc¢ —pH)PH + (96 — 9H)9H
i

2 __
(*57)

Based on the inequality above, we get the upper bound of feasible difference d* <
(Pa—Pr)PH+(46=am)aH (o1 the

2
&)
of second order. O

graph G to be a super (a*,d*) — H — antimagic total covering

Corollary 2.2. If the graph G = shack(H,v,n) admits super (a*,d*) — H-antimagic total
2 2
labeling of second order for integer n > 2, then d < M
The following lemmas are useful for showing the existence of super (a*, d*)-H antimagic total
labeling G = shack(H,v,n).
Lemma 2.3. Let n and m be positive integers. For 1 < j < n, the sum of P’Tﬁl7d3(i,j) =
{1+ni—7;1<i<m} and P%,dél(z‘,j) = {mn+i—mj;1 <i < m} form an arithmetic sequence

of differences d3 = —m and dy = —m?.

Proof. By simple calculation, for j = 1,2,...,n, it gives > ;" Py (i,5) = fmdg(j) —
1) = (Bm2 £ m) b m—mg} —— P (5) = (30m + m), 2(m® + m) — m, 3(m? +

m) — 2m,...,2(m* + m)m — mn} and >, Prai0) = Ppa,(G) «— Ppa () =

{Z@2mn+m+1) — m%j} «— Pra,) = {Z@mn +m+ 1) - m2, 2(2mn + m + 1) —

2m?,. .., F2mn+m+1) - m2n}. Tt is easy to see that the differences of those sequences

are d3 = —m,dy = —m?. It concludes the proof. O

Lemma 2.4. Let n, m be positive integers and n = m. The sum of

i(2m+2j+1)—j(2m—1)—32— ;2 o
“n N Z(m+j+)]2(m )=t L fori—j>m—1
mds (7)) = m2—m+j(2m+1—7)+i(—2m+2j+1—i
2

); form—1>i—3j
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form an arithmetic sequence of second order with common difference ds = m.

Proof. By simple calculation, for j = 1,2,...,n, it gives >.*, P d (i,5) = fmdg(j) —

mas (1) = {5(m* +m) +m —mj} «— Pp () = {5(m® +m), §(m* + m) —m, §(m* +
m) — 2m,. ..,Q(m + m)m — mn} and Y ;°, ”m7d4(i,j) = "mdz(j) — Pmd4(j) =
{Z@2mn+m+1) — m%j} «— Pra,) = {Z@mn +m+1) - m?, 2(2mn + m + 1) —
2m?,. .., F@2mn+m+1)—m Zp}. Tt is easy to see that the differences of those sequences
are d3 = —m,dy = —m?. It concludes the proof. O

Lemma 2.5. Let n, m be positive integers and n = m. The sum of

27 on g 9 ; . o .
P (i) = g 2"”;” 2 ) <i<myi+j<m+1
d = S =ity & Mgt ) o
m,ae \" Am*+4m—4msi 4m]2 3i—7+2i54+1“+7 +2;1 <i< m,m + 1< i+
form an arithmetic sequence of second order with common difference dg = —m.

PROOF. By simple calculation, for j = 1,2,...,n, it gives >, P d*(i i) =Pl dg(j) —

n N 4mB2—3m2—(352—9j+1)m 2 5m  2m3 m? 5m 2m3
Pm,dg(J)—{ 6 } md*()—{i_*‘i'* 3~ 2 T 613

2 3 2 2_ 2 2. B
%—%,...,%—%—W,%—%—W}. It is easy to see that the
differences of those sequences are di = —m. It concludes the proof. O

Lemma 2.6. Let d* be the common difference of arithmetic sequence of second order and d be
the common difference of arithmetic sequence of first order, the sum of corresponding terms will
form an arithmetic sequence of second order with common difference d*.

Proof. An arithmetic sequence of first order is a sequence of the form:
a,a+d,a+2d,a+3d,...,a+ (n—1)d

where a is the first term and d is common difference of the sequence. Whilst an arithmetic

sequence of second order is of the form a*, a* + d*, a* + 3d*,a* + 6d*,...,a* + ((n “)d*, where
a* and d* are the first term and common difference of the sequence, respectlvely Now, add the
corresponding terms of these two expression:

Sequence a a+d a+2d . at+(n=1)d
Sequence a* a* +d* a* + 3d* o (" > )d* +
Sequence a+a* a+a” a+a* . ata*+(n—1)d

+d+d* +2d+3d*  +3d + 6d* +(Eom)yge
First order d+d* d+ 2d* d + 3d* . (n—=1)d
difference

n?—n *
+(5)d
Second order  d* dr dr Lo dr
difference
It conclude the proof. O

Theorem 2.7. Let H be a connected graph, then the shackle of the connected graph G =
shack(H,v,n) admits super (a*,d*) — H antimagic total labeling.
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Proof. Let G be a shackle of graph denoted by G = shack(H,v,n). Let G and H be
a connected graph with |V(G)| = pq, |E(G)| = qa, |V(H)| = pu, and |E(H)| = qu. The
vertex set and edge set of the graph G = shack(H,v,n) can be split into following sets:
V=Az;;1<j<n+1}U{z;;;1<i<pg—2,1<j<n}and E={ej;1<i<qy,1<j<n}
Let n, i, j be positive integers with n > 2. Thus pg = |[V(G)| = n+ 1+ (pg — 2)n =
1+ npg+n—2n =1+ n(pg — 1) and ¢g¢ = |E(G)| = ngu. Construct a total labeling
fof + V(shack(H,v,n)) U E(shack(H,v,n)) — {1,2,...,1 + n(pg + qug — 1)} constitute the
following set:

[1Vpy) = {51<ji<n+1}
(Vo) = {P" 0 a:(6,0) ®n+ 1 U{Py, 4 (i,7) @ n(my +1) + 1}
f(Egy) = {P"0a:(4,0) ® (pr — DUn+ 1} U{PL, 4.(5,5) ® (pu + 711 — L)n+ 1}

where m1 + mo = pyg — 2, ¢1 + c2 = qy, dy and d. depends on py — 2 and qp, respectively.
Furthermore the weight of the subgraphs H;, i = 1,2,...,pr in the following way:

W o= > f+ > f(e

’UEV(Hi) EEE(HZ')
mi ma2
= 2+10)+ O _ Pra@en+t)+ O (Pha @) @nim +1)+1)
i=1 1=1
@l Cc2
+(O) (P2 () ® (pr — Un+ D) (PR 0. () ® (par + 1 — Dn+1)
i=1 1=1

JE= g2

= 2+ (O + (S

) +mi(n+ D] +[Ch, 4, +doj +

F2=j+2

225) 4 eal(on — D+ 1))

ma(nfimy + 1) + 1) + [CF, g™ + d(
+[ ZLQ,de + dej + CQ(H(pH +7r — 1) + 1)]

based on Lemma 2.6 we obtained:

= 1+Cpn, 4" +Cmypa,” + 05 "+ Cop 0. +mi(n+ 1) + ma(n(mi +1) +1)
+e1((pr — 1)n+ 1+ co(n(pg + 71 — 1) + 1) + [d}, + d + 2]5

3. Special Families
Theorem 3.1. Suppose G = shack(Cy,,v,n), with s > 3 dan 2s > n+1, graph G admits super

(a*,d* )-H-antimagic total covering of second order with a = 3 + [2m13+4m1—g(3m1—3m1) +my(n+
1)] + [25722 4 +mg(n(ma + 1)+ 1)] + [M2575 +1m52 + ma(n(mg +ma +1) + 1) + [2(m3 +
ma) +ma—ma+ma(n( me+1) + 1)) + [ (2msn +ms + 1) = mZ +ms (n(3 -y me+ 1) +
1)) [2etetBaie) 4o (n(mo 1)+ 1))+ 22520 4 ep(n(meer+1)+1)] 4+ 2527 ey (n(mte+eat

D4+ 1D)]+[2(3+ca) +eatea(n(m+30_ ) e+ 1)+1)]+[S (2c5n+c5+1) +es(n(m+ 1, e +1)+1)]
and d = m7 + cj.

Proof. The graph G = shack(Cy,,v,n) have vertex set V = {z;;1 < j <n+ 1} U{z;;1 <
i < m—21 < j < n} and edge set E = {¢;;1 < ¢ < m,1 < j < n}. Thus
pa =|V(G)| =mn—n+1and ¢q¢ = |E(G)| = mn where py = m — 2 and gy = m respectively
are the cardinality of the vertex and edge on one cover H. We can define the vertex labeling
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*10
mm*? m,—m™*»

By Lemma 1.1,2.3,2.4 and 2.5 we use m; and ¢y for the

fi: V(G)UE(G) — {1,2,...,pc + qg} by using the linear combination of
Phms Phy—ms P) 2 and PP ..

partition P*7 .. (i,7), ma and co for the partition P, ., (7,7), ms and c3 for the partition

momz2(1>7); ma and ¢4 for the partition P*7, _.(i,7), ms and ¢5 for the partition Py, m(z 7)
and we use mg and cg for the partition Pm mQ(z j). Fori=1,2,...,m,1 =1,2,...,c and
j=1,2,...,n, the total labels can be expressed as follows

filVpy) = {i1<j<n+1}
(Vo) = AP myas(6:5) @ n+ 13 U{PL, g, (6:,5) ©n(ma +1) + 1}
F(Bay) = P (i) ® (o — Dn+ 1} U{P o (i) ® (prr + 71 — L+ 1}

The total vertex and edge-weights of G = shack(Cy,,v,n) under the labeling fi, for 1 < j < n,
constitute the following sets:

W= > f+ > f(e

’UEV(HZ‘) EEE(HZ')
mi m2
= G+1)+Q_Pra@en+t )+ (Pr,q0) ®&nimi+1)+1)
i=1 1=1
@l Cc2
+(O) (P2 a:(6) ® (pr — On+ DO (PR 0. () ® (par + 1 — Dn+1)
i=1 1=1

2—j+2

= 2+ (O + (S

) +mi(n+1)] +[Ch, 4 + dvj +

(ﬂ—j+2

ma(n(m1 +1) + 1) + [C7, " +df >

+[ Cn%de + dej + CQ(H(pH +7r — 1) + 1)]

) +ei((pr — 1)n +1)]

The total weights of G = shack(C),,v,n) constitute the following sets:
Wy = wjlcl +wj2"1 +w§1
= [2j+ 1] +w} +w}
3m1j — 3m1 2 3Clj — 361

27 —
5 +m2+m3 my m5+ 5

teatg—c—cElj;1<j<n

=L C"+C+1+2F

By simple calculation, for j = 1,2,...,n, it gives Wy, = C*+C+1+[2+ M +ma+m3 —
mMg—m +M+C2+Cs 04—05]] — {C*+C+1+m2—|—m3 m4—m5+02—|—c3 C4—C5,C +
C+1+my+c1+ma+m3—my— m5+62+03 cy—c2, C*+C+1+3(my+ec1)+ma+m3 —my—m2+
cotci—cy—c2,...,C*+C+1+3 3man? +3Cl%2)_mm A% L mo+mi—myg—mE+co+ci—cy—c2. with
C* = 2l |y (n 4 1)) 4 29259 46 (n(m1) +1)] C = [2225720 g (n(my 4+1) +1)] +
[m?’%m?’z +mg(n(my+ma+ 1)+ 1))+ [2(mF +ma) +ma+ma(n(3S5_ me+1)+1)]+ [ (2msn +
1) 4 ms(n(Sy 4 1)+ D]+ 25528 1 ep(mlmbe1-+ 1)+ D] + (5552 +en(m-+ ey e +
D+ D)]+[2(cF+ca) +eates(n(m+35_ e+ 1) +1)]+[S (2c5n+c5+1)+es(n(m+3 0, c+1)+1)]
It is easy that the set of total edge-weights Wy, consists of an arithmetic sequence of second
(2l G =sm) 4y (4 1)) 4 [mR25men 4oy,

order with the smallest value a = 3 +
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ma(n(my + 1) 4+ 1)] + [2357% 4 me? 4 mg(n(my +ma + 1) + 1)] + [2(m2 + ma) + ma — my +
3 —
ma(n(3X5 me+1)+1)] 4+ 22 (2msn+ms+1) —m2+ms(n(3h my+1)+1)][2atatBasa) |
2 2
ex(n(m + 1) + 1)) + [22522 4 cafn(m + e + 1) + D] + 5522 + eofn(m + 1 4 ca + 1) + 1] +
(

[5(ct+ ca) + e+ ealn(m+ 300 o+ 1) + D] +[F2esn+ 5 +1) +es(n(m + 3y e +1) + 1)
when the total edge weights at j = 1 and the difference d = [2 + m] + ¢}]. It concludes the
proof. O

4. Concluding Remarks

We have shown the existence of super antimagic labeling of second order for graph operation
G = shack(H,v,n). We have found that G = shack(H,v,n) admits a super(a*, d*)-H antimagic
labeling of second order for all differences d = 2+d; +d} where d}, and d}; are respectively feasible
difference of second order of integer set partition. We have not found the result for another graph
operations. Thus, we propose the following open problems.

Open Problem 4.1. Analyse the ezistence of super (a*,d*)-H antimagic total labeling of second
order of other graph operations.
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