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Abstract

Let G be a connected graph with vertex set V(G) and W =
{wy, Wy, ..., w; } © V(G). The representation of a vertex veV(G) with
respect to W is the ordered k-tuple +(v| W) = (d(v, w), d(v, wy), ...,
d(v, w)), where d(v, w) represents the distance between vertices v

and w. The set W is called a resolving set for G if every vertex of G

has a distinct representation. A resolving set containing a minimum
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number of vertices is called basis for G. The metric dimension of G,

denoted by dim(G), is the number of vertices in a basis of G. If every

two adjacent vertices of G have a distinct representation with respect
to W, then the set W is called a local resolving set for G and the
minimum local resolving set is called a local basis of G. The
cardinality of a local basis of G is called local metric dimension

of G, denoted by dim;(G). In this paper, we study the local metric

dimension of rooted product graph and the similarity of metric
dimension and local metric dimension of rooted product graph.

1. Introduction

Let G be a finite and simple connected graph. The vertex and edge sets
of the graph G are denoted by V(G) and E(G), respectively. The distance
between vertices v and w in G, denoted by d(v, w), is the length of a shortest
path between them. For the ordered set W = {wy, wy, ..., w;} < V(G) and v
is a vertex on the graph G, then the representation of v with respect to W
is k-tuple, r(v|W) = (d(v, wy), d(v, wp), ..., d(v, wy.)). The set W is called
a resolving set of G if every vertex of G has a distinct representation and
minimum resolving set is called basis of G. The cardinality of basis is called
metric dimension of G, denoted by dim(G) [1].

The W set is called a local resolving set of G if every two adjacent
vertices of G have a distinct representation with respect to W, that is,
if u,veV(G) such that uv € E(G), then r(u|W) # r(v|W). The local

resolving set of G with minimum cardinality is called local basis of G,
the cardinality of basis local of G is called local metric dimension of G,
denoted by dim;(G). In [5], Rodriguez-Velazquez and Fernau observed the

relationship between local metric dimension and metric dimension of a graph
G, that is,

Observation 1.1 [5]. dim;(G) < dim(G).

Godsil and McKay [3] defined the rooted product graph as follows. Let
G be a graph on n vertices and ‘H be a sequence of n rooted graphs H;, H,,
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Hs, ..., H,. The rooted product graph of G by H denoted by GoH isa
graph obtained by grafting the root of H; with the ith vertex of G [3]. If
H,, Hy, Hs, ..., H, are isomorphic to a graph of order »’, Saputro et al.

called this notion by comb product [7]. Rodriguez-Velazquez et al. [6]
observed the local metric dimension of rooted product graph as follows:

Theorem 1.2 [6]. Let G be a connected graph of order n > 2 and let H
be a sequence of n connected bipartite graphs H|, H,, Hs, ..., H,. Then

for any rooted product graph G o H, dim;(G o H) = dim;(G).

Theorem 1.3 [6]. Let G be a connected graph of order n > 2 and let H
be a sequence of n connected non-bipartite graphs H,, H,, H5, ..., H,,.

Then for any rooted product graph G o H,,
dim; (G o H) = D "_y(dim; (H ;) - ),

where o.; =1 if the root of H ; belongs to a local basis of H ; and o.; =0

otherwise.

The known results on metric dimension and local metric dimension of
some particular classes of graphs have been discovered by Chartrand et al.

[1] and Okamoto et al. [4] as given below.

Theorem 1.4 [1]. Let G be a connected graph of order n > 2. Then:

(i) dim(G) =1 ifand only if G = P,.

(i) dim(G) = n -1 ifand only if G = K,,.

(iii) For n >4, dim(G)=n~-2 if and only if G =K, ¢ (r;s>1),
G=K,+K,, (r=1;5>2),0or G=K, +(K;UKy), (r, s > 1).

(iv) For n > 3, dim(C,,) = 2.

Theorem 1.5 [1]. If G is a connected graph of order n > 2 and diameter
k, then dim(G) < n — k.
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Theorem 1.6 [4]. Let G be a connected graph of order n = 2. Then:
(i) dim;(G) =n—1ifand only if G = K,,,
(ii) dim;(G) =1 if and only if G is bipartite graph.

Theorem 1.7 [4]. Let G be a connected graph of order n and diameter k.
Then dim;(G) < n — k.

In this paper, we study the local metric dimension of rooted product
graph to complete the results of Rodriguez-Velazquez et al. presented in [6].
In Theorem 1.2 and Theorem 1.3 of the paper, they observed that the local
metric dimension of rooted product graph G o ‘H, for H, is a sequence of n
connected bipartite and non-bipartite graphs, respectively, as a consequence
of the theorem of local metric dimension of point attaching graph.
Rodriguez-Velazquez et al. [6] presented those theorems as corollary without
the proofs. The detail of the proofs will be shown in this paper. We also
show the local metric dimension of rooted product graph G o “‘H, where H
is a sequence of the combined of n connected bipartite and non-bipartite
graphs. Furthermore, we observe the similarity of metric dimension and local
metric dimension of rooted product graph. Before presenting the main results
of this paper, we present diameter and twin equivalence class of graph and
their relation with metric and local metric dimension of graph, as described
in the following section.

2. The Similarity of Metric Dimension and Local
Metric Dimension of Graph

Two distinct vertices u and v of graph G are called twin if u and v have
the same neighbourhood in V(G) — {u, v}, and they are called true twin or

false twin if u and v are adjacent and twin or u and v are not adjacent and
twin, respectively, [4]. The following two lemmas describe the properties of
twin that are discovered by Hernando et al. [2].

Lemma 2.1 [2]. If u and v are twin in graph G, then d(u, x) = d(v, x)
for every vertex in V(G) — {u, v}.
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Lemma 2.2 [2]. Let u, v and w be distinct vertices in graph G. If u and

v are twin, v and w are twin, then u and w are also twin.

In other words, twin is an equivalence relation on V(G). The twin
vertices produce the equivalence twin class.
In general, the twin relation divides the vertex set V(G) into the partition

of twin equivalence classes. There are three types of twin equivalence
classes, namely, true twin equivalence class, false twin equivalence class, and

singleton.

In this paper, we say that graph G has twin equivalence classes if G
has true twin equivalence classes or false twin equivalence classes without
singleton. Also, we say that graph G has true twin equivalence classes if G

has true twin equivalence classes only.

Lemma 2.3. Let G be a connected graph. If G has true twin equivalence

classes or false twin equivalence classes By, By, Bs, ..., B,,, then dim(G) =
m
Zi:l (l Bi | - 1)

Proof. Let B; for i =1, 2, ..., m be equivalence classes of connected
graph G. Take B; —{u;}, u; € B; for every i =1, 2, ..., m. We see that
every vertex in G has the distinct representation with respect to B =

"1 B; —{u;}. Thus, B is resolving set of G. Suppose that there is B; for
some i =1, 2, ..., m such that two elements of B; are not element B. By
Lemma 2.1, B is not resolving set. This means that B = UL B; — {u;} is the
minimum resolving set or basis of G. Therefore, dim(G) = Zlm:1 (B;|-1).

U
Lemma 2.4. Let G be a connected graph. If G has true twin equivalence

classes By, By, B, ..., By,, then dim(G) = diml(G)Z;":l (B;|-1).

By Theorem 1.4 and Theorem 1.6, we obtain
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Corollary 2.5. (a) dim;(G) = dim(G) = n -1 ifand only if G = K,,,
(b) dim;(G) = dim(G) =1 ifand only if G = P,.

Lemma 2.6. Let G be a connected graph with diameter k having [ twin

equivalence classes. Then k < 1.

Proof. Suppose that / < k. By Lemma 2.1, d(x, y) < < k, for every

x, y in G. This contradicts with maximum distance of G which is £. O

Theorem 2.7. Let G be a connected graph of order n >3 having twin

equivalence classes and diameter k. If | = k, then k =1 or 2.

Proof. Let G be a connected graph of order n > 3 and diameter k. The
number of twin equivalence classes is [ = k. There exist two vertices u, v in
G such that d(u, v) = k. This leads to the two possibilities, either u and v are

in the same class or u and v are in the distinct classes.

Suppose that « and v are in the distinct classes. Then / > 1 and £ =/ > 1
and there is path u, v|, v5, v3, ..., V;_1, v = v. Since the diameter is k, each
U, V|, Vo, V3, ooy V1, Vi =V 1S in the Kk +1 distinct twin equivalence
classes. Thus, G has / = k£ +1 twin equivalence classes, contradiction with
[ + k. Therefore, the only chance is that ¥ and v are in the same twin
equivalence class. This leads to the two possibilities, either # and v are
adjacent or # and v are non-adjacent.

a. If vertices u and v are adjacent, then & =1 and every vertex in G is
adjacent. In other words, G = K,,, and every vertex in G forms one true twin

equivalence class.

b. If vertices u and v are non-adjacent, then d(u, v) = k > 1. If vertices u

are v are the same false twin equivalence class, then, by Lemma 2.1, « and v
have the same neighbourhood. So d(u, v) = k = 2. O

Corollary 2.8. There is no connected graph with diameter k having k

twin equivalence classes for k > 3.
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Theorem 2.9. Let G be a connected graph of order n > 3 and diameter
k having k twin equivalence classes. Then dim(G) = n —k if and only if
k=1ork=2.

Proof. Let G be a connected graph of order n > 3 and diameter k£ having
k twin equivalence classes. If dim(G) = n — k, then, by Theorem 2.7, k =1
or k = 2. Conversely, let the diameter of G be £ =1 or k =2, and has k
twin equivalence classes. Thus:

For k =1, then G = K,,, so dim(G)=n—-1=n—k.

For k =2, then there are two vertices, say u and v, in G such that
d(u, v) = 2. Suppose that u and v in the distinct twin equivalence class.
Then d(u,v)=1, a contradiction. So u and v must be in one twin
equivalence class. Let Sy, S, be the twin equivalence classes in G. By
Lemma 2.3, dim(G) =|S; |- 1+|S,|-1=n-2=n—k. O

Consequently, we have

Corollary 2.10. Let G be a connected graph of order n >4 and

diameter k. Then G has k twin equivalence classes if and only if G = K,, or
G=K, orG=K+K,.

Theorem 2.11. Let G be a connected graph of order n > 3 without end
vertex, diameter k and G + K + (K, U K;), where s, t > 1. If G has k + 1

true twin equivalence classes or true twin equivalence classes and singleton,
then dim(G) = dim;(G) = n — (k +1).

Proof. Let G be a connected graph of order n > 3 without end vertex,
diameter k and G # K, + (K, UKj), s,t>1. Let G has k +1 true twin
equivalence classes or has the combination of £ + 1 true twin equivalence
classes and singleton. Let By, By, Bj3, ..., By, By 41 be true twin equivalence
classes or singleton. Let the distance of vertices in B; to vertices in B;,; be
one for i=1,2,..,k and |B|+|By|+|Bs|+ - +|By|+|Brs1|=n.

There are two cases:
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(i) There are | B; | =1 for some i, G has no end vertex, so i # 1, k + 1.
Without loss of generality, let i = 2 and 4. Choose | B; | -1 vertices in B;,
for i # 2, 4 as elements of set . Thus,

k+1 B k+1 _
|W|=Zi¢2’4zBl-—(k+1—2)—zi¢2,413,-+2—(k+1)—n—(k+1).

By Lemma 2.3 and Lemma 2.4, we get W is basis and local basis of G. Thus,
dim(G) = dim;(G) = n — (k +1).

(ii) If | B;| > 1 for all i, choose |B;|—1 vertices in B;, for all i as
elements of set W, so | W | = n — (k +1). By Lemma 2.3 and Lemma 2.4, we
get W is basis and local basis of G. Thus, dim(G) = dim;(G) = n — (k +1).

O

3. The Similarity of Metric Dimension and Local Metric
Dimension of Rooted Product Graph

Before presenting the main results, we first present local metric
dimensions of cycle graph and properties of rooted product graphs, that are
used to prove the main theorems as described in lemmas and observations
below.

Lemma 3.1. Let C,, be a cycle on n > 3 vertices. Then

1, for even n

dim;(C,,) = {2 for odd n

Proof. For even n, C,, is bipartite graph, by Theorem 1.6(ii), we get
dim;(C,,) = 1. For odd n, C, is not bipartite graph. Choose W = {x, y},
xy € E(C,)). 1t easy to see that every two adjacent vertices have the distinct
representation with respect . By Theorem 1.6(ii), W is a local basis of C,
and dim;(C,,) = 2. O

Observation 3.2. Every two adjacent vertices in C, for odd n, form

local basis of C,,.
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Observation 3.3. Let G be a graph of order » > 2 and ‘H be a sequence

of n connected graphs H,

j=12,3,... n In the rooted product graph
GoH, if every H is connected bipartite graph, then every two adjacent
vertices in # ; have distinct distance to the root of /; and to all vertices in
GoH.

Lemma 3.4. Let G be a graph of order n > 2 and H be a sequence of
n connected graphs H ;, j =1, 2, ..., n. In the rooted product graph G o H,

if 0j istherootof H;, and U is alocal basis of H ;, then:

(1) if 0oj € U, then there are two adjacent vertices x,y in H; such

that r(x|S) = r(y|S) for every S < H]-,|S|S |Uj|—2,

(1) if o; & U, then there are two adjacent vertices x, y in H ; such that
r(x|S) = r(y|S) forevery S < H;,|S|<|U;|-1.
The following two theorems are similar with Theorem 1.2 and Theorem

1.3 presented by Rodriguez-Velazquez et al. [6], but the proofs shall be
completed in this paper.

Theorem 3.5. Let G be a connected graph of order n > 2, and let H be
a sequence of the connected bipartite graphs Hy, H,, ..., H, and o; is the

root of H ;. Then dim;(G o H) = dim;(G).

Proof. Let G be a connected graph of order n > 2 and let H be a
sequence of the bipartite graphs H,, H,, H3, ..., H,. Let o; be the root
of H ;. Choose I as a local basis of G. Take any two adjacent vertices x, y
in H; j=12,..,n Since H; bipartite, by Observation 3.3, we get
d(x, z) #d(x, z) forevery z € GoH, so r(x|W) = r(y|W).

Take any two adjacent roots o;, 0; in G o . Since IV is a local basis of
G, r(0;|W) # (0 |W), and W is a local basis of G o H. Thus, dim;(G o H)
= dim,;(G). O
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Theorem 3.6. Let G be a connected graph of order n > 2 and let H be
a sequence of n connected non-bipartite graphs Hy, H,, H5, ..., H,, and

0; is the root of H ;. Then

Zn (dim;(H ;)= 1), if o; is element of local basis of H;,

dim;(G o H) = { =/~

Z . 1diml (H ), otherwise.
Jj= :

Proof. Let G be a connected graph of order n > 2 and ‘H be a sequence
of the connected non-bipartite graphs H,, H,, Hj, ..., H,. Let o; be the

root of Hj, j=12,3, .., n First, let 0; be an element of a local basis of
H ;. Choose W =U"_;(W; —10;}), where W, is a local basis of #; and

0; € W;. Then |W |= z;l.zl(diml(Hj) -1).

Take any two adjacent vertices x, y in H Iz j =12, .., n There are two
possibilities, that is, either d(x, 0;) =d(y,0;) or d(x,0;)# d(y, 0;).
Since W; is a local basis of H; and o; € W;, for d(x, 0;)=d(y, 0;),
there exist u; € W; —{o;} such that d(x, u;)# d(y, u;) which implies
that r(x|W) = r(y |W).

For d(x, 0;) # d(y, 0;), then d(x, s) # d(y, s) for every

s € V(G H)/(V(H;) - {o;}),
implies r(x|W) = r(y|W).

Take any two adjacent roots o;, 0; in G o H, then d(o;, z) # d(o;, z)
for every z € V(H ;). Since W; < H; and W; c W, r(o;|W) = r(o;|W).
Thus, W is a local resolving set of G o H.

To show that W is a minimum local resolving set of G o ‘H, take any
set § < V(G o #H) with | S| <|W | This means that there is H; such that

(dim;(H ;) — 2) vertices of that be elements of S. By Lemma 3.4(i), we get
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that there are two adjacent vertices x, y in H; such that r(x|S) = r(y|S).
So W is a minimum local resolving set of Go#H and dim;(GoH) =
> (dimy (H ;) = 1).

Second, let o ;i be not element of a local basis of H ;- Choose W =
Ui ;, where W is a local basis of H; and o; € W;. Then |W|=
Z;’.:ldiml(Hj). Take any two adjacent vertices x, y in H;, j=1,2,...,n.
Since W; is a local basis of H ;, r(x|W;)# r(y|W;). Thus, r(x|W) =
r(y|W), and W = U7_ W, is a local resolving of G o H.

To show that W is a minimum local resolving set of G o H, take any set
S cV(Go#) with [S|<|W|. This means that there is H; such that
(dim;(H ;) —1) vertices of H; be elements of S. By Lemma 3.4(ii), we get
that there are two adjacent vertices x, y in H ; such that r(x[S) = r(y]S).

So W is a minimum local resolving set of GoH and dim;(GoH)=
>y (dimy (H ). O

Theorem 3.7. Let G be a connected graph of order n > 2, and let ‘H be

a sequence of the combined n connected non-bipartite Hy, H,, ..., H; and

bipartite graphs H .y, Hg,>, ..., H,, and o is the root of H ;. Then

dim;(G o H)
s .
:Z. l(dlml(H/)—Olj), for G=C,,nodd,s >1or
Jj= :
G bipartite or G = K, s =n—1
:ZS- l(diml(Hj)—(xj)+1, for G=C,,nodd,s=1
]:

L ijl(diml(Hj)— o) +dim/(G)~s, for G=K,,s<n-1

N . )
< ijl(dlml(Hj) e )+ 1 ik otherwise,

where o ; =1 if 0; belongs to a local basis of H ; and o.; = 0 otherwise.
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Proof. Let G be a connected graph of order » > 2 and ‘H be a sequence

of the combined n connected non-bipartite H, H,, H3, ..., H and bipartite
graphs H .y, Hgyo, Hgy3, ..., H,. Let T be the local basis of G and U ; is

local basis of Hj, j=12,..s, and 0; 1s the root of Hj.

Case 1. For G = C,, nodd, s >1 or G bipartiteor G = K,,, s =n —1,

Jj in GoH.

If G=C,, for n odd and s > 1, by Observation 3.2, we get r(o; |W) #
r(o; |W). If G bipartite, by Theorem 1.6(ii), we get r(o; [W) = r(o; |[W). If

choose W = Uj_;(U; —{0;}). Take any two adjacent roots o;, o

G = K,, s = n -1, by Theorem 1.6(i), we obtain r(o; |W) # r(o; |W).

Take any two adjacent vertices x,y in H;,j=1,2,...,s. Then r(x|U)
2 1r(y|U;), so r(x|W) = r(y|W), for G = C,, n odd, s > 1 or G bipartite
orG=K,,s=n-1.

Take any two adjacent vertices x, y in H;, j=s+1,s+2, .., n by

Observation 3.3, we get r(x|W) # r(y|W), for G=C,, n odd, s >1 or G
bipartite or G = K,,, s = n —1.

So W =U’1(U; —1{o;}) is a local resolving set of G o H, by Lemma
3.4, we get W =U5_(U; —1{0;}) is alocal basis of GoH, and dim;(GoH)
- Zj‘:l (dim;(H ;) —a ), where o ; =1 if o; belongs to a local basis of

Hj and o = 0 otherwise.

Case 2. For G=C,, n odd, s =1 choose W =U’(U; —1{o;})U
{z} = (U —{o}))U{z}, ze H; forany i=s+1,5+2,..,n and x # o;.
Without loss of generality, let z € H,. Take any two adjacent roots o;, o;
in Go#. Then d(o;, 01)# d(o;, 0) so that r(o;|U;) # r(o;|U;) and

r(o; |[W) = r(o; |W).
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Take any two adjacent vertices x, y in H;, j =1, then r(x|U;)=
r(y|U1), so r(x|W) = r(y|W).

Take any two adjacent vertices in H s j=2,3, .., n, there are exactly
two vertices x, y in H;, for some j=2,3,..,n such that d(x, 0y) =
d(y, o), but d(x, 0y) # d(y, 05), so d(x, z) # d(y, z), implies r(x|W) #
r(y 7).

So W =U(U; —{o;)U{z} = (U; ~{o;})U{z}, for z € H;, is a local
resolving set of G oH. By Lemma 3.4, take any set S < G o H, where

| S| <|W|. Then there are two adjacent vertices in H; or two adjacent root

vertices that have the same representation with respect to S. Thus, W is a
local basis of Go#H and dim;(GoH)= ijl(diml(Hj) —a;), where

a; =11if o; belongs to a local basis of H; and a.; = 0 for otherwise.

Case 3. For G = K,,, s <n—1, choose W = U’_(U; —{o;}) U {u; |u;
#0;,i=s+1,5+2,.., k<n}. Without loss of generality, let s = n — 2.
It means that H;, j =1, 2, .., n—2 is non-bipartite graph and H, ; and
H, are bipartite graphs, and W = U'}-;%(Uj {0 DU {up_1}s uyg # 0yt

Take any two adjacent roots in G o ‘H, there are three possibilities:

First, two adjacent roots are 0,_y, 0,, so d(0,_1,0;)=d(o,, 0;) for
all j=1,2,..,n-2. This implies that (o, |U;) = r(0, |U ;). However,
r(0,_110,-1) # r(0,]0,_1), so r(o,_1|W) # r(o, |W). Second, one of the
roots is element of H,_; or H, and one of the roots is element of H s
Jj=12,.., n—-2. Without loss of generality, let 0,, and 0; for some j, so
that d(o;, 0,) # d(0j, 0;). Then (0, |W) # r(0; |W). Third, two adjacent
roots are o;, 07 in Hj, j=1,2,..,n—2. 1t is obvious that r(o; | W) #

(o [W).
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Take any two adjacent vertices x, y in H;, j=n—1, n Since H, 4

and H, are bipartite, by Observation 3.3, we get r(x|W) = r(y|W).
Take any two adjacent vertices in Hj, j=2,3,.., n-2. Since Uj, for

J=2,3,..,n=2, isbasisof H}, r(x|W) = r(y|W).

So W =U,(U; —{o; DU lu; # 0;i =5 +1,5+2,..., k <n} is a local
resolving set of GoH. By Lemma 3.4, take any set S — GoH, where
| S| <|W|. Then there are two adjacent vertices in Hj, j=23.,n-2
or two adjacent root vertices that have the same representation with respect
to S. Thus, W is a local basis of G o# and |W|=)" % (dim;(H;)-a;)
+n—1-5. Since G is complete graph K, and dim;(K,)=n-1,
dim;(G o H) = Zj.zl(dim,(Hj) —a;)+dimy(G) - s, where a; = 1if o;

belongs to a local basis of H Iz and a; = 0 otherwise.

Case 4. For G otherwise, dim;(G o H)= Zj‘:l (dim;(H ;) - o ;) +

n —s —1. It is obvious because K, is the graph with the biggest local metric
dimension. ]

Observation 3.8. Let G be a connected graph of order n, H be a
sequence of n connected graphs Hy, H,, Hs, ..., H,. Then G o H is a path
if and only if G is a path of order n < 2, where H is a sequence of paths

and the root of H j 1s element of basis of H e

The relationship between metric dimension and local metric dimension
of rooted product of two connected graphs is given as follows.

Theorem 3.9. Let G be a connected graph of order n > 3. If ‘H is a
sequence of nodd cycle graphs, then dim(G o H) = dim;(G o H) = |V(G)|.

H

n

Proof. Let H be a sequence of n odd cycle graphs H,, H,, Hs, ...,

and a; is the root of H;. Choose W =U/_|{u;|u;0; € E(Hi)}. Then

there are two vertices x, y in H; that are adjacent to u;, and d(x, o;) #
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d(y, a;). This implies that x and y have distinct distance to all vertices in
V(GoH)/V(H;). Thus, W is a resolving set of G o H. Suppose that there is
H; such that no vertex in H; that belongs to W. Then there are two vertices
x, y in V(H;) that are adjacent to the root of H;. Thus, x and y have the
same distance to the root H;. This implies that x and y have the same
distance to all vertices in V(G oH)/V(H;). Therefore, W is minimum
resolving set of G oH and dim(G o H) =|V(G)|.

Since W is a resolving set of G o ‘H, W is a local resolving set of G o H.
Suppose that there is /; such that no vertex in /; that belongs to W. Since

H; is odd cycle, there are exactly two adjacent vertices u, v in H; such that
du, a;)=d(v, o;) = mT—l Then d(u, s) = d(v, s) forall s € V(G o H)/
V(H;), so W is a minimum local resolving set of G o H and
dim;(G o H) =n =|V(G)|
So dim(G o H) = dim;(G - H) = | V(G)|. O
As a consequence of Corollary 2.5(b) and Observation 3.8, we obtain

sufficient and necessary condition of similarity metric dimension and local
metric dimension of rooted product graph.

Corollary 3.10. Let G be a connected graph of order n, H be a
sequence of n connected graphs Hy, Hy, Hs, ..., H,. Then dim(GoH)=
dim;(G o H) =1 if and only if G is a path of order n <2, H is a sequence
of n paths and the root of H ; is element of basis of H ;.

Proof. Let G be a path of order » <2, H be a sequence of n path
graphs, and the root of H; is element of basis of H ;. Then (GoH) isa
path too. By Corollary 2.5(b), dim(G o #) = dim;(G o #)=1. Conversely,
let dim(G o H) = dim;(G o H) = 1. By Corollary 2.5(b), G o H is path. By
Observation 3.8, G is a path of order n <2, ‘H is a sequence of n path

graphs, and the root of H; is element of basis of H ;. O
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As the consequence of Corollary 2.5(a) and Theorem 1.7, we get

Corollary 3.11. If ‘H is a sequence of n path graphs, then dim(K, o H)

= dim;(K,, o H)=n—1.
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