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Abstract

The complexity in building massive scale parallel processing systems has re-

sulted in a growing interest in the study of interconnection networks design.

Network design affects the performance, cost, scalability, and availability of

parallel computers. Therefore, discovering a good structure of the network is

one of the basic issues.

From modeling point of view, the structure of networks can be naturally stud-

ied in terms of graph theory. Several common desirable features of networks,

such as large number of processing elements, good throughput, short data com-

munication delay, modularity, good fault tolerance and diameter vulnerability

correspond to properties of the underlying graphs of networks, including large

number of vertices, small diameter, high connectivity and overall balance (or

regularity) of the graph or digraph.

The first part of this thesis deals with the issue of interconnection networks ad-

dressing system. From graph theory point of view, this issue is mainly related

to a graph labeling. We investigate a special family of graph labeling, namely

antimagic labeling of a class of disconnected graphs. We present new results in

super (a, d)-edge antimagic total labeling for disjoint union of multiple copies

of special families of graphs.

The second part of this thesis deals with the issue of regularity of digraphs

with the number of vertices close to the upper bound, called the Moore bound,

which is unobtainable for most values of out-degree and diameter. Regularity

of the underlying graph of a network is often considered to be essential since

the flow of messages and exchange of data between processing elements will

be on average faster if there is a similar number of interconnections coming in

and going out of each processing element. This means that the in-degree and

out-degree of each processing element must be the same or almost the same.

Our new results show that digraphs of order two less than Moore bound are

either diregular or almost diregular.
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INTRODUCTION

In the early days of computer networks, interprocessor communication and

scalability of applications was hampered by the high latency and the lack of

bandwidth of the network. The IBM supercomputing project, which was begun

in 1999, has proposed a new solution to the problem and built a new family of

supercomputers optimizing the bandwidth, scalability and the ability to handle

large amounts of transferring data. One of the world’s fastest supercomputers

was officially inaugurated at IBM’s Zurich Research Laboratory (ZRL). The

so-called BlueGene system, which is the IBM supercomputing project solution,

has the same performance as the computer ranked 21st on the current list of

the world’s top 500 supercomputers (for more detail, see [68]). It will be used

to address some of the most demanding problems faced by scientists regarding

the future of information technology, such as, how computer chips can be made

even smaller and more powerful. However, in massive parallel computers, the

robustness of supercomputers is not the only factor. One of the most significant

factors is the design of parallel processing systems circuits and, more precisely,

the construction of their interconnection networks. Therefore, there has been

a growing interest in the study of the design of large interconnection networks.

In communication network design, Fiol and Lladó [56] identified several fac-

tors which should be considered. Some of these factors seem fundamental, for

instance, there must always exist a path from any processing element to an-

other. Also, the data communication delay during processing must be as short

1



INTRODUCTION 2

as possible. Another factor we may consider in the design of an interconnection

network is a modularity, a good fault tolerance, a diameter vulnerability and

a vertex-symmetric interconnection network. We may also require an overall

balance (or regularity) of the system.

A communication network can be modelled as a graph or a directed graph

(digraph, for short), where each processing element is represented by a vertex

and the connection between two processing elements is represented by an edge

(or, in the case of a digraph, by a directed arc). The number of vertices is

called the order of the graph or digraph. The number of connections incident

to a vertex is called the degree of the vertex. If the connections are one way

only then we distinguish between in-coming and out-going connections and we

speak of the in-degree and the out-degree of a vertex. The distance between

two vertices is the length of the shortest path, measured by the number of

edges or arcs that need to be traversed in order to reach one vertex from

another vertex. In either case, the largest distance between any two vertices,

called the diameter of the graph or digraph, represents the maximum data

communication delay in a communication network.

In the first part of this thesis we deal with graph labeling. Graph labelings

provide useful mathematical models for a wide range of applications, such

as radar and communication network addressing systems and circuit design,

bioinformatics, various coding theory problems, automata, x-ray crystallogra-

phy and data security. More detailed discussions about applications of graph

labelings can be found in Bloom and Golomb’s papers [27] and [28].

Many studies in graph labeling refer to Rosa’s research in 1967 [104] and

Golomb’s research in 1972 [61]. Rosa introduced a kind of labeling, called

β-valuation and Golomb independently studied the same type of labeling and

called this labeling graceful labeling. Surprisingly, in 1963 Sedláček [105] had

already published a paper which introduced another type of graph labeling,
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namely, magic labeling. Stewart [112] called magic labeling supermagic if the

set of edge labels consists of consecutive integers.

Motivated by Sedláček and Stewart’s research, many other labelings of graphs

have been studied since then, and many new results have been published.

However, there still exist many interesting open problems and conjectures.

No polynomial time bounded algorithm is known for determining whether or

not the various types of graph labelings exist for particular classes of graphs.

Therefore, the question of whether a specific family of graphs admits a property

of a specific labeling is still widely open. In the first part of this thesis we

present new results in super graph labeling for disjoint unions of multiple

copies of special families of graphs.

In the second part of this thesis we mainly consider the topology of networks.

There are two aspects which should be considered in communication networks

design. Firstly, the number of processing elements in an interconnection net-

work should be as large as possible, given that each processing element can be

connected only to a limited number of other processing elements. Secondly,

the data communication delay among processing elements should be as short

as possible.

For undirected case of networks, translating the above required conditions

in terms of the underlying graphs, the problem is to find large graphs with

given maximum degree and diameter. This naturally leads to the well-known

fundamental problem called the N(∆, D)-problem: For given numbers ∆ and

D, construct graphs of maximum degree ∆ and diameter ≤ D, with the largest

possible number of vertices n∆,D. The N(∆, D)-problem is also known as the

degree/diameter problem. The directed version of the problem differs only

in that ‘degree’ is replaced by ‘out-degree’ in the statement of the problem,

namely, N(d, k)-problem: For given numbers d and k, construct digraphs of

maximum out-degree d and diameter ≤ k, with the largest possible number of



INTRODUCTION 4

vertices nd,k.

In the degree/diameter problem, the values of N(∆, D) and N(d, k) are not

known for most values of ∆, D and d, k, respectively. Therefore, it is useful to

investigate the lower and upper bounds on N(∆, D) and N(d, k). A natural

number nl∆,D
(respectively, nld,k

) is a lower bound of N(∆, D) (respectively,

N(d, k)) if we can prove the existence of a graph of maximum degree at most

∆, diameter D and exactly nl∆,D
vertices; or alternatively, the existence of

a digraph of maximum out-degree at most d, diameter k and exactly nld,k

vertices. A natural number nu∆,D
(respectively, nud,k

) is an upper bound of

N(∆, D) (respectively, N(d, k)) if we can prove that there are no graphs of

maximum degree at most ∆, diameter D, and with the number of vertices

more than nu∆,D
; or that there are no digraphs of maximum out-degree at

most d, diameter k, and with the number of vertices more than nud,k
.

A natural general upper bound on the order n∆,D (respectively, nd,k) of a

graph (respectively, a digraph) is the Moore bound. However, there are very

few graphs or digraphs of order attaining the Moore bound. This gives rise

to two directions of research connected to the N(∆, D)-problem and N(d, k)-

problem:

(i) Proving the non-existence of graphs or digraphs of order ‘close’ to the

Moore bound and so lowering the upper bound nu∆,D
or nud,k

;

(ii) Constructing large graphs or digraphs and so incidentally obtaining bet-

ter lower bounds nl∆,D
or nld,k

.

To prove the non-existence of digraphs of order close to the Moore bound, we

may first wish to establish some useful structural properties of such potential

digraphs. Knowing structural properties of potential digraphs can also be

helpful in the construction of such digraphs. The second part of this thesis

makes a contribution concerning one such property, namely, the diregularity
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of digraphs of order close to the Moore bound.

The thesis is organised as follows. We provide basic terminology in Chapter

1. In Chapter 2 we present an introduction to graph labeling. In Chapters

3, 4 and 5, we present new results on super edge antimagic total labeling

of disjoint union of cycles and paths, stars, complete tripartite graphs and

complete s-partite graphs. In Chapters 6 and 7, we provide literature review

of the degree/diameter problem. In Chapters 8 and 9 we present new results

on the diregularity of digraphs of defect at most two. Finally, we conclude the

thesis in the last chapter.

The main contributions of this thesis are to be found in Chapters 3, 4, 5, 8, 9.

All original results (lemmas, theorems and corollaries) are flagged by 3.



Chapter 1

Basic Terminology

1.1 Undirected graphs

By an undirected graph, or a graph, we mean a structure G = (V (G), E(G)),

where V (G) is a finite nonempty set of elements called vertices, and E(G)

is a set (possibly empty) of unordered pairs {u, v} of vertices u, v ∈ V (G),

called edges. The number of vertices of a graph G is the order of G, commonly

denoted by |V (G)|. The number of edges is the size of G, often denoted by

|E(G)|. A graph G that has order p = |V (G)| and size q = |E(G)| is sometimes

called a (p, q)-graph.

Let u, v ∈ V (G). Vertex u is said to be adjacent to v if there is an edge e

between u and v, that is, e = uv. Vertex v is then called a neighbour of u.

The set of all neighbours of u is called the neighbourhood of u and is denoted

by N(u). We also say that u and v are incident with edge e. For example, in

Figure 1.1, vertex v1 is adjacent to vertex v4; vertex v4 is incident with edges

v4v5 and v4v6; and the neighbours of vertex v4 are v1, v3, v5 and v6.

The number of neighbours of v is called the degree of a vertex v of G. If a

vertex v has degree 0, that is, v is not adjacent to any other vertex, then v

6
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v7

v4

v1 v2 v3

v6v5

Figure 1.1: Example of a graph with isolated vertex.

is called an isolated vertex. A vertex of degree 1 is called an end vertex, or a

leaf. If all the vertices of a graph G have the same degree d then G is said to

be regular of degree d, or d-regular.

v1

v8

v7

v9

v3v6

v5 v4

v2

Figure 1.2: Example of a graph

A v0−vk walk of a graph G is a finite alternating sequence v0, e1, v1, e2, ..., ek, vk

of vertices and edges in G such that ei = vi−1vi for each i, 1 ≤ i ≤ k. Such a

walk may also be denoted by v0v1...vk. We note that there may be repetition

of vertices and edges in a walk. The length of a walk is the number of edges

in the walk. A closed walk has v0 = vk. If all the vertices of a v0− vk walk are

distinct, then the walk is called a path. A cycle Ck of length k is a closed walk

of length k > 2 with all vertices are distinct (except v0 = vk). In Figure 1.2,

v1v2v7v6v5v8v2v3v9 is a walk of length 8 which is not a path, v1v8v4v3v7v6v9 is
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a path of length 6, and v5v6v7v3v9v5 is a cycle of length 5.

The distance from vertex u to v, denoted by δ(u, v), is the length of a shortest

path from vertex u to vertex v. For any vertices u, v, w in G, we have δ(u,w) ≤
δ(u, v) + δ(v, w) and if δ(u, v) ≥ 2 then there is a vertex z in G such that

δ(u, v) = δ(u, z) + δ(z, v). For example, the distance from vertex v1 to v4 of

the graph in Figure 1.2 is 2. The eccentricity of v, denoted by e(v), is defined

by e(v) = max{δ(u, v) : u ∈ V, u 6= v} and the radius of G, denoted by

rad G, is defined by rad G = min{e(v) : v ∈ V }. The diameter of a graph

G is the longest distance between any two vertices in G and is denoted diam

G = max{e(v) : v ∈ V } and the girth of a graph G is the length of the shortest

cycle in G. For example, the graph in Figure 1.2 has diameter 2 and girth 3.

A graph H is a subgraph of G if every vertex of H is a vertex of G, and every

edge of H is an edge of G. In other words, V (H) ⊂ V (G) and E(H) ⊂ E(G).

We say that a subgraph H is a spanning subgraph of G if H contains all the

vertices of G. Let F be a nonempty subset of the vertex set V (G). The induced

subgraph G[F ] is a subgraph of G consisting of the vertex-set F together with

all the edges uv of G, where u, v ∈ F . In Figure 1.3, F1 is a spanning subgraph

of G, F2 is an induced subgraph of G, and F3 is a subgraph of G but not an

induced subgraph (because in F3, v2, v6 ∈ V (G) but there is no edge between

v2 and v6, while v2v6 ∈ E(G)).

Let G(V, E) be a graph. An automorphism of the graph G is a one-to-

one mapping f from V onto itself which preserves vertex adjacency, that

is, {f(u), f(v)} ∈ E(G) if and only if {u, v} ∈ E(G). Two graphs G1 and

G2, each with n vertices, are said to be isomorphic if there exists a one-to-

one mapping f : V (G1) → V (G2) which preserves vertex adjacency, that is,

{f(u), f(v)} ∈ E(G2) if and only if {u, v} ∈ G1. In Figure 1.4, graphs G1

and G2 are isomorphic under the mapping f(ui) = vi, for every i = 1, 2, ..., 12.

However, graphs G1 and G3 are not isomorphic because G1 contains cycles of
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F2

v2

v3

v5

v6

F3

v3

v5

v1

v2

v4

v6

v7

v8

G

v3

v5

v1

v2

v4

v6

v7

v8

F1

v1

v8

v7

v2

v6

v4

Figure 1.3: Graph and three of its subgraphs

length three while G3 does not and consequently there cannot be any one-to-

one mapping preserving adjacencies.

w12

w5

w6

w10
w3

w2

G3

v11

u2

w4

v8

v10

v1

v2v6

v5 v3

v4

v9

G2

u8

u9

u11 u10

u7

u1

u4

G1

v12

u12

u6

v7

u5

w1

u3

w9

w8

w7

w11

Figure 1.4: Isomorphism in graphs

The adjacency matrix of a graph G and vertex-set V (G) = {v1, v2, ..., vn} is

the n× n matrix A = [aij], where

aij =





1 if vivj ∈ E(G),

0 otherwise.
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Figure 1.5 shows a graph of order 5 with its adjacency matrix.

A =




0 1 0 0 1 0

1 0 1 1 0 1

0 1 0 0 1 0

0 1 0 0 1 0

1 0 1 1 0 1

0 1 0 0 1 0




v1 v2 v3

v6 v5 v4

Figure 1.5: Graph and its adjacency matrix

A graph G is connected if for any two distinct vertices u and v of G there is a

path between u and v. Otherwise, G is disconnected. The disjoint union (or

union, for short) of two or more graphs G1, . . . Gm, denoted by G1 ∪ · · · ∪Gm,

is defined as the graph with vertex set V1∪· · ·∪Vm and edge set E1∪· · ·∪Em.

This type of a graph is disconnected and often referred to as a graph with m

components. Figure 1.4 also shows an example of a disjoint union of three

graphs G1 ∪G2 ∪G3.

1.2 Directed graphs

By a directed graph, or a digraph, we mean a structure G = (V (G), A(G)),

where V (G) is a finite nonempty set of distinct elements called vertices, and

A(G) is a set of ordered pairs (u, v) of distinct vertices u, v ∈ V (G), called

arcs.

The order of a digraph G is the number of vertices in G. An in-neighbour (re-

spectively, out-neighbour) of a vertex v in G is a vertex u (respectively, w) such

that (u, v) ∈ A(G) (respectively, (v, w) ∈ A(G)). The set of all in-neighbours

(respectively, out-neighbours) of a vertex v is called the in-neighbourhood (re-

spectively, the out-neighbourhood) of v and denoted by N−(v) (respectively,

N+(v)).
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The in-degree (respectively, out-degree) of a vertex v is the number of its in-

neighbours (respectively, out-neighbours), and is denoted by d−(v) (respec-

tively, d+(v)). If every vertex of a digraph G has the same in-degree (respec-

tively, out-degree) then G is said to be in-regular (respectively, out-regular). A

digraph G is called a diregular digraph of degree d if G is in-regular of in-degree

d and out-regular of out-degree d. For example, the digraph G1 in Figure 1.6

is diregular of degree 2, but the digraph G2 is not diregular (G2 is out-regular

but not in-regular).

A digraph H is a subdigraph of G if every vertex of H is a vertex of G, and every

arc of H is an arc of G. In other words, V (H) ⊂ V (G) and A(H) ⊂ A(G).

We say that a subdigraph H is a spanning subdigraph of G if H contains all

the vertices of G. Let F be a nonempty subset of the vertex set V (G). The

induced subdigraph G[F ] is a subdigraph of G consisting of the vertex-set F

together with all the arcs uv of G, where u, v ∈ F .

v2

v3

G1
v4 v5

v1

G2

v2 v3

v4 v5

v1

Figure 1.6: Diregular and non-diregular digraphs.

An alternating sequence v0a1v1a2...akvk of vertices and arcs in G such that

ai = (vi−1, vi), for each i, 1 ≤ i ≤ k, is called a walk of length k in G. A walk

is closed if v0 = vk. If all the vertices of a v0−vk walk are distinct, then such a

walk is called a path. A cycle is a closed walk of length k > 1 with all vertices

are distinct (except v0 = vk). A digon is a cycle of length 2.
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The distance from vertex u to vertex v, denoted by δ(u, v), is the length of a

shortest path from u to v, if any; otherwise, δ(u, v) = ∞. Note that, in general,

δ(u, v) is not necessarily equal to δ(v, u). The in-eccentricity of v, denoted by

e−(v), is defined as e−(v) = max{δ(u, v) : u ∈ V } and out-eccentricity of v,

denoted by e+(v), is defined as e+(v) = max{δ(v, u) : u ∈ V }. The radius of G,

denoted by rad(G), is defined as rad(G)= min{e−(v) : v ∈ V }. The diameter

of G, denoted by diam(G), is defined as diam(G)= max{e−(v) : v ∈ V }. Note

that, equivalently, we could have defined the radius and the diameter of a

digraph in terms of out-eccentricity instead of in-eccentricity. The girth of a

digraph G is the length of the shortest cycle in G. For example, both digraphs

in Figure 1.6 have radius 1, girth 2 and diameter 2.

w4

u5

u6 u7G1

v2

v1 v4

v5v3

v6

G2

v7 v8

u4

w1 w2

w8w5

w6 w7G3

u3 w3

u1 u2

u8

Figure 1.7: Isomorphism in digraphs.

Let G(V, A) be a digraph. An automorphism of the digraph G is a one-to-

one mapping f from V onto itself which preserves all the adjacencies, that

is, (f(u), f(v)) ∈ A(G) if and only if (u, v) ∈ A(G). Two digraphs G1 and

G2, each with n vertices, are said to be isomorphic if there exists a one-to-

one mapping f : V (G1) → V (G2) which preserves all the adjacencies, that is,

(f(u), f(v)) ∈ A(G2) if and only if (u, v) ∈ A(G1). In Figure 1.7, digraphs G1

and G2 are isomorphic under the mapping f(ui) = vi, for every i = 1, 2, ..., 8.

However, digraphs G1 and G3 are not isomorphic since G3 contains two vertices



Chapter 1. Basic Terminology 13

of in-degree 3 while G1 does not, and consequently, a one-to-one mapping

preserving adjacencies cannot exist.

The adjacency matrix of a digraph G with vertex-set V (G) = {v1, v2, ..., vn} is

the n× n matrix A = [aij], where

aij =





1 if vivj ∈ A(G),

0 otherwise.

Figure 1.8 shows a digraph of order 5 with its adjacency matrix.

v3

v2

v5 v4

v6 A =




0 1 0 0 1 1

0 0 1 0 0 0

0 1 0 1 0 1

0 0 1 0 0 0

1 0 0 1 0 1

0 1 0 1 0 0




v1

Figure 1.8: Digraph and its adjacency matrix.

In the second part of this thesis, we will use two special digraphs, namely, line

digraphs and Kautz digraphs. The line digraph of a digraph G = G(A, V ) is,

L(G) = (A,N), where N is the set of walks of length 2. The set of vertices

of L(G) is equal to the set of arcs of G. This means that a vertex uv of

L(G) is adjacent to a vertex wx if and only if v = w. The order of the

line digraph L(G) is equal to the number of arcs in the digraph G. For a

diregular digraph G of out-degree d ≥ 2, the sequence of line digraph iterations

L(G), L2(G) = L(L(G)), ..., Li(G) = L(Li−1(G)), ... is an infinite sequence of

diregular digraphs of degree d. One family of line digraphs which is very

important in the degree/diameter problem is the Kautz digraph. We denote

Kautz digraph of degree d and diameter k by Ka(d, k). Let Kn be a complete

digraph of order n. A Kautz digraph Ka(d, k) can be defined as the line
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digraph Lk(Kd+1).

Ka(2, 2)

v1 v3

v23

v2

K3

v32

v12 v21

v13v31

Figure 1.9: An example of Kautz digraph Ka(2, 2) obtained from K3.

For example, Figure 1.9(b) shows the Kautz digraph Ka(2, 2) of degree 2,

diameter 2 and order 6 obtained by applying the line digraph technique (once)

to the complete digraph K3.



PART I



Chapter 2

Super Edge-antimagic Total

Graphs

2.1 Motivation

A labeling for a graph G is a mapping that sends some set of graph elements to

a set of non-negative integers. If the domain is the vertex-set or the edge-set,

the labeling is called a vertex labeling or an edge labeling, respectively. If the

domain is the set of all vertices and edges then the labeling is called a total

labeling.

Graph labelings provide useful mathematical models for a wide range of ap-

plications. Qualitative labelings of graph elements have inspired research in

diverse fields of human enquiry such as conflict resolution in social psychology,

electrical circuit theory, and energy crisis. Quantitative labelings of graphs

have led to quite intricate fields of applications such as radar and communi-

cation network addressing system and circuit design, bioinformatics, various

coding theory problems, automata and x-ray crystallography. More detailed

discussions about applications of graph labelings can be found in [27] and [28].

16
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Many studies in graph labeling refer to Rosa’s research in 1967 [104]. Rosa

introduced a function f from a set of vertices in a graph G to the set of integers

{0, 1, 2, . . . , |E(G)|} so that each edge xy is assigned the label |f(x) − f(y)|,
with all labels distinct. Rosa called this labeling β-valuation. Independently,

Golomb [61] studied the same type of labeling and called this labeling graceful

labeling.

Surprisingly, in 1963 Sedláček [105] had already published a paper which in-

troduced another type of graph labeling, namely, magic labeling. His definition

was motivated by the magic square notion in number theory. A magic labeling

is a mapping from the set of edges of graph G into non-negative real numbers,

so that the sums of the edge labels around any vertex in G are all the same.

Note that Sedláček’s definition allowed for any real numbers to be used but

usually only integers are used. Stewart [112] called magic labeling supermagic

if the set of edge labels consisted of consecutive integers.

Motivated by Sedláček and Stewart’s research, many other labelings of graphs

have been studied, including labeling of faces of planar graphs, and many new

results have been found. Unaware of the work done by each other, similar

concepts have been reintroduced a few times, and some results have been

rediscovered independently. For example, Enomoto et al. [46] call edge-magic

total labelings of a graph G super edge-magic total labelings if the set of vertex

labels is {1, 2, . . . , |V (G)|}. Wallis [119] calls these labelings strongly edge-

magic.

Although there is a large number of publications on magic-type graph label-

ings, there still exist many interesting open problems and conjectures. This is

due to the fact that to decide whether G admits a vertex-magic or an edge-

magic labeling is equivalent to the problem of deciding whether a set of lin-

ear homogeneous Diophantine equations has a solution. No polynomial time

bounded algorithm is known for determining whether G is vertex-magic or
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edge-magic. Therefore, the question of whether a particular family of graphs

admits a particular labeling is still open.

2.2 Magic and antimagic labelings

As mentioned in the previous section, Sedláček introduced the magic label-

ing concept in 1963. The notion of an antimagic graph was introduced by

Hartsfield and Ringel in 1989 [63]. Subsequently, as mentioned by Nicholas

et al. [97], Bodendiek and Walther in 1996 [30] were the first to introduce

the concept of (a, d)-vertex-antimagic edge labeling; they called this labeling

(a, d)-vertex-antimagic labeling.

All graphs in this chapter are finite, undirected, and simple. For a graph G,

V (G) and E(G) denote the vertex-set and the edge-set, respectively. A (p, q)-

graph G is a graph such that |V (G)| = p and |E(G)| = q. In both magic and

antimagic labelings, the sum of all labels associated with a graph element is

called a ‘weight’.

Formal definitions of (a, d)-vertex antimagic edge labeling and (a, d)-vertex

antimagic total labeling of graphs are as follows.

A bijective function f : E(G) → {1, 2, ..., q} is called an (a, d)-vertex-antimagic

edge labeling, if the set of vertex weights under edge labeling, w(u) = Σv∈N(u)f(uv),

of all the vertices in G is {a, a + d, ..., a + (p − 1)d}, where a > 0 and d ≥ 0

are two fixed integers. A bijective function f : V (G)∪E(G) → {1, 2, ..., p+ q}
is called an (a, d)-vertex-antimagic total labeling, if the set of vertex weights

under total labeling, w(u) = f(u) + Σv∈N(u)f(uv), of all the vertices in G is

{a, a + d, ..., a + (p− 1)d}, where a > 0 and d ≥ 0 are two fixed integers.

A total labeling f is called a super (a, d)-vertex-antimagic total if f(V ) =

{1, 2, . . . , p}. If d = 0 then (a, d)-vertex-antimagic total labeling is called simi-



Chapter 2. Super Edge-antimagic Total Graphs 19

larly a vertex-magic total labeling.

Other types of antimagic labelings are (a, d)-edge-antimagic vertex labeling

and super (a, d)-edge-antimagic total labeling. These notions were introduced

by Simanjuntak, Bertault and Miller in [106]. They are natural extensions

of the notions of edge magic labeling which was introduced by Kotzig and

Rosa [76, 77], and super edge magic labeling which was defined by Enomoto

et al. in [46]. Hegde (1989) in his thesis also introduced the concept of a

strongly (k, d)-indexable labeling which is equivalent to (a, d)-edge-antimagic

vertex labeling (see [1]) and Wallis et al. [119, 118, 80, 81] use the term

strongly edge magic total labeling in place of super edge magic total labeling.

Many other researchers investigated different forms of antimagic graphs. For

example, see Bodendiek and Walther [31] and [32], and Hartsfield and Ringel

[64]. Sugeng [114] studied properties of (a, d)-edge-antimagic total labeling and

found many families of connected graphs which admit (a, d)-edge-antimagic

total labeling.

Formal definition of (a, d)-edge antimagic vertex labeling and (a, d)-edge an-

timagic total labeling of graphs are as follows.

A bijective function f : V (G) → {1, 2, ..., p} is called an (a, d)-edge-antimagic

vertex labeling if the set of edge weights under vertex labeling, w(uv) = f(u) +

f(v), of all the edges in G is {a, a + d, ..., a + (q− 1)d}, where a > 0 and d ≥ 0

are two fixed integers. A bijective function f : V (G)∪E(G) → {1, 2, ..., p+ q}
is called an (a, d)-edge-antimagic total labeling, if the set of edge weights under

total labeling, w(uv) = f(u) + f(v) + f(uv), of all the edges in G is {a, a +

d, ..., a + (q − 1)d}, where a > 0 and d ≥ 0 are two fixed integers.

We use the term ‘weight’ to denote any of the weights defined in this section,

whenever it is clear from the context.

A total labeling f is called a super (a, d)-edge-antimagic total if f(V ) =

{1, 2, . . . , p}. If d = 0 then the labeling is called similarly a super edge-magic
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total labeling.

For brevity’s sake, we often refer to an edge-antimagic vertex labeling as an

EAV labeling, super edge-antimagic total labeling as a SEAT labeling, and

super edge-magic total labeling as a SEMT labeling, see [114] for details.

Furthermore, a graph G is called (a, d)-vertex-antimagic total or super (a, d)-

vertex-antimagic total if there exists an (a, d)-vertex-antimagic total labeling

or super (a, d)-vertex-antimagic total labeling of G. A graph G is called (a, d)-

edge-antimagic total or super (a, d)-edge-antimagic total if there exists an (a, d)-

edge-antimagic total labeling or super (a, d)-edge-antimagic total labeling of

graph G.

In this part of the thesis we investigate the super edge-antimagicness of dis-

connected graphs. We are studying the following problem: if a graph G is

super (a, d)-edge-antimagic total, is the disjoint union of multiple copies of the

graph G super (a, d)-edge-antimagic total as well?

2.3 Known results on super edge-antimagic

total graphs

The study of super (a, d)-EAT labelings is relatively new. As mentioned above,

these notions were introduced by Simanjuntak, Bertault and Miller in 2000.

Since 2000, there have been many related publications. In [50], Figueroa-

Centeno, Ichishima and Muntaner-Batle gave a necessary and sufficient con-

dition for a graph to be super (a, 0)-EAT. Bača, Lin, Miller and Simanjuntak

[9] also give a necessary condition for a graph to be super (a, d)-EAT: if (p, q)

graph G has an (a, d)-EAV labeling then G has a super (a + p + 1, d + 1)-EAT

labeling and a super (a+p+q, d−1)-EAT labeling. By using the adjacency ma-

trices of EAV graphs, Sugeng and Miller [115] studied the relationship between
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EAV labeling and super (a, d)-EAT labeling.

Many SEAT graphs have been found. Bača, Baskoro, Simanjuntak and Sugeng

[5] proved the following: cycle Cn is SEAT if and only if either d ∈ {0, 2} and

n ≥ 3 odd or d = 1 and n ≥ 3; generalised Petersen graph P (n,m) is also

SEAT for certain values of m,n, and they conjectured that P (n,m) is SEAT

if n ≥ 9 odd and d ∈ {0, 2}. In [7], Bača, Lin, Miller and Youssef proved

that several families of graphs admit SEAT: friendship graph Fn is SEAT if

n ∈ {1, 3, 4, 5, 7} and d ∈ {0, 2}, and if n ≥ 1 and d = 1; fan Fn is SEAT

if 2 ≤ n ≤ 6 and d ∈ {0, 1, 2}; wheel Wn is SEAT if and only if d = 1 and

n 6≡ 1 (mod 4); Kn is SEAT if and only if either d = 0 and n = 3, or d = 1

and n ≥ 3, or d = 2 and n = 3; and Kn,n is SEAT if and only if d = 1 and

n ≥ 2. MacDougall and Wallis [81] investigated the existence of super (a, 0)-

edge antimagic total labeling of graphs Ct
n derived from cycles by adding one

chord.

Furthermore, Bača and Murugan [10] obtained the values of t for which there

exists a SEAT labeling of Ct
n and they conjectured that Ct

n is a super (a, 1)-

EAT if n ≡ 0 (mod 4) for t ≡ 0 (mod 4), and if n ≡ 2 (mod 4) for t even. Bača,

Lin and Muntaner-Batle [8] found a necessary and sufficient condition for path

and path-like tree to be SEAT: path Pn is SEAT if and only if d ∈ {0, 1, 2, 3}
and n ≥ 2; and path-like tree T is SEAT if and only if d ∈ {0, 1, 2, 3};

Sugeng, Miller and Bača [116] proved that ladder Ln is SEAT for certain values

of n, and they conjectured that Ln is SEAT if n ≥ 2 even and d ∈ {0, 2};
triangular ladder Ln is SEAT if and only if d ∈ {0, 1, 2} and n ≥ 2; generalised

prism Cm×Pn is SEAT if m ≥ 3 odd and n ≥ 2 for d ∈ {0, 1, 2}, and if n ≥ 4

even, n ≥ 2 for d = 1, and they conjectured that Cm × Pn is SEAT if m ≥ 4

even, n ≥ 3 and d ∈ {0, 2}; and generalised antiprism An
m is SEAT if and only

if d = 1 and m ≥ 3, n ≥ 2. Furthermore, in [117], Sugeng, Miller, Slamin

and Bača proved that star Sn is SEAT if and only if either d ∈ {0, 1, 2} and
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n ≥ 1, or d = 3 and 1 ≤ n ≤ 2; and caterpillar Sn1,n1,...,nr is also SEAT for

special value of parameter r. For the latest results in super edge-antimagic

total labelings, see the dynamic survey by Gallian [59].

For disconnected graphs, there are only a few families of SEAT graphs known

so far. This problem is considered quite difficult as the number of nodes which

must be assigned a label is much larger than in each connected component

graph separately, and there is no guarantee that if a graph G is super (a, d)-

EAT then the disjoint union of multiple copies of the graph G is super (a′, d′)-

EAT. Therefore, more research is required and even partial solutions would be

significant contributions in this area.

Sudarsana, Ismaimuza, Baskoro and Assiyatun [113] proved that Pn ∪ Pn+1

is SEAT if n ≥ 2 and d ∈ {1, 3}, and if n ≥ 3 odd and d = 2. Bača and

Barrientos [3] proved that mKn is SEAT if and only if either d ∈ {0, 2} and

n ∈ {2, 3},m ≥ 3 odd, or d = 1 and m,n ≥ 2, or d ∈ {3, 5} and n = 2,m ≥ 2,

or d = 4 and n = 2,m ≥ 3 odd. In [6], Bača and Brankovic proved that mKn,n

is SEAT for (i) d ∈ {3, 5} if and only if n = 1 and m ≥ 2, (ii) d = 4 if and

only if n = 1 and m ≥ 3 odd, (iii) d = 1 and for every n ≥ 1 and m ≥ 2, (iv)

d = 2 if n = 1 and m ≥ 3 odd.

We summarise the known results in super (a, d)-edge-antimagic total labeling

for connected and disconnected graphs in Tables 2.1 and 2.2 for all feasible

values of d.

Table 2.1: Summary of super edge (a, d)-antimagic total la-

belings of connected graphs.

Graph d Notes

Cn d ≤ 2 iff either

(i) d ∈ {0, 2} and n ≥ 3 odd, or

(ii) d = 1 and n ≥ 3 [5]

P (n,m) d ≤ 2 (i) d ∈ {0, 2} and n ≥ 3 odd, m ∈ {1, 2, n−1
2 } [5]

Continued on the next page
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Table 2.1 – Continued.

Graph d Notes

(ii) d = 1 and n ≥ 3, 1 ≤ m < n
2 [98]

Conjecture:

• d ∈ {0, 2}, n ≥ 9 odd, 3 ≤ m ≤ n−3
2 [5]

Fn d ≤ 2 (i) d ∈ {0, 2} and n ∈ {1, 3, 4, 5, 7}
(ii) d = 1 and n ≥ 1 [7]

Open problem:

• d ∈ {0, 2} for n > 7

Fn d ≤ 2 for 2 ≤ n ≤ 6 [7]

Wn d = 1 for n 6≡ 1 (mod 4) [7]

Kn d ≤ 2 iff either

(i) d = 0 and n = 3, or

(ii) d = 1 and n ≥ 3, or

(iii) d = 2 and n = 3 [7]

Kn,n d = 1 for n ≥ 2 [7]

Ct
n d ≤ 2 (i) if d ∈ {0, 2}

(a) for n ≥ 5 odd and for all possible values t

(b) for n ≡ 0 (mod 4) and for all t ≡ 2 (mod 4)

(c) for n = 10 and n ≡ 2 (mod 4), n ≥ 18,

and for all t ≡ 3 (mod 4) and t = 2, 6

(ii) if d = 1 [81][10]

(a) for n ≥ 5 odd and for all possible values t

(b) for n ≥ 6 even and for all t ≥ 3 odd

(c) for n ≡ 0 (mod 4) and for t ≡ 2 (mod 4) [10]

Pn d ≤ 3 for n ≥ 2 [8]

Path-like tree d ≤ 3 for n ≥ 4 [8]

Ln d ≤ 2 (i) d ∈ {0, 1, 2} n ≥ 1 odd

(ii) d = 1 n ≥ 1 even

Conjecture:

• d ∈ {0, 2} n ≥ 1 even [114], [116]

Ln d ≤ 2 for n ≥ 2 [114], [116]

Cm × Pn d ≤ 2 (i) d ∈ {0, 1, 2} and m ≥ 3 odd, n ≥ 2

(ii) d = 1 and m ≥ 4 even, n ≥ 2

Continued on the next page



Chapter 2. Super Edge-antimagic Total Graphs 24

Table 2.1 – Continued.

Graph d Notes

Conjecture:

• d ∈ {0, 2} and m ≥ 4 even and n ≥ 3 [114], [116]

An
m d = 1 for m ≥ 3 and n ≥ 2 [114], [116]

Sn d ≤ 3 iff either

(i) d ∈ {0, 1, 2} and n ≥ 1, or

(ii) d = 3 and 1 ≤ n ≤ 2 [114], [117]

Sn1,n1,...,nr d ≤ 3 (i) d ∈ {0, 1, 2}
(ii) for d = 3 if r is even and N1 = N2 or |N1 −N2| = 1

(iii) for d = 3 if r is odd and N1 = N2 or N1 = N2 + 1

where N1 =
d r
2
e∑

i=1
n2i−1 and N2 =

b r
2
c∑

i=1
n2i [114], [117]

Open problem:

• d = 3 for odd r and N2 = N1 + 1

Table 2.2: Summary of super (a, d)-edge-antimagic total la-

belings of disconnected graphs.

Graph d Notes

Pn ∪ Pn+1 1 ≤ d ≤ 3 (i) d ∈ {1, 3} and n ≥ 2

(ii) d = 2 and n ≥ 3 is odd [113]

Open problem:

• d = 2 for even n

nP2 ∪ Pn 1 ≤ d ≤ 3 d ∈ {1, 2} and n ≥ 2 [113]

Open problem:

• d = 3 for n ≥ 2

nP2 ∪ Pn+2 1 ≤ d ≤ 4 d ∈ {1, 2} and n ≥ 1 [113]

Open problem:

• d ∈ {3, 4} for n ≥ 1

mKn d ≤ 5 iff either

(i) d ∈ {0, 2} and n ∈ {2, 3},m ≥ 3 odd, or

(ii) d = 1 and m,n ≥ 2, or

(iii) d ∈ {3, 5} and n = 2,m ≥ 2, or

(iv) d = 4 and n = 2,m ≥ 3 odd [3]

Continued on the next page
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Table 2.2 – Continued.

Graph d Notes

mKn,n d ≤ 5 (i) if d = 1 for all m and n

(ii) if d ∈ {0, 2} for n = 1 and m ≥ 3 odd

(iii) iff d ∈ {3, 5} for n = 1 and all m ≥ 2

(iv) iff d = 4 for n = 1 and all m ≥ 3 odd [3]

Open problem:

• if d ∈ {0, 2} for n = 3 and m ≥ 3 odd



Chapter 3

SEATL of Disconnected Graphs

In this chapter we present new results in super edge antimagic total labeling for

some particular families of disconnected graphs. As mentioned in the previous

chapter, our main problem is the following: if a graph G is super (a, d)-edge-

antimagic total, is the disjoint union of multiple copies of the graph G super

(a, d)-edge-antimagic total as well? We will answer this question for the case

when the graph G is either a cycle or a path. We start this chapter by providing

a necessary condition for a graph to be super (a, d)-edge-antimagic total which

will provide a least upper bound for the feasible value of d.

Lemma 3.0.1 [116] If a (p, q)-graph is super (a, d)-edge-antimagic total then

d ≤ 2p+q−5
q−1

.

Proof. Assume that a (p, q)-graph has a super (a, d)-edge-antimagic total

labeling f : V (G) ∪ E(G) → {1, 2, . . . , p + q}. The minimum possible edge

weight in the labeling f is at least 1+2+p+1 = p+4. Thus, a ≥ p+4. On the

other hand, the maximum possible edge weight is at most (p−1)+p+(p+q) =

3p+ q−1. Hence a+(q−1)d ≤ 3p+ q−1. From the last inequality, we obtain

the desired upper bound for the difference d. 2

26
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The following lemma, proved by Figueroa-Centeno et al. in [50], gives a nec-

essary and sufficient condition for a graph to be super (a, 0)-edge-antimagic

total or super edge-magic total labeling.

Lemma 3.0.2 [50] A (p, q)-graph G is super edge-magic if and only if there

exists a bijective function f : V (G) → {1, 2, . . . , p} such that the set S =

{f(u)+f(v) : uv ∈ E(G)} consists of q consecutive integers. In such a case, f

extends to a super edge-magic labeling of G with magic constant a = p + q + s,

where s = min(S) and S = {a− (p + 1), a− (p + 2), . . . , a− (p + q)}.

In our terminology, the previous lemma states that a (p, q)-graph G is super

(a, 0)-edge-antimagic total if and only if there exists an (a − p − q, 1)-edge-

antimagic vertex labeling.

Next, we restate the following lemma which is mentioned in [117]. This lemma

is very useful especially for finding a super (a, 1)-edge-antimagic total labeling.

Lemma 3.0.3 [117] Let A be a sequence A = {c, c + 1, c + 2, . . . c + k}, k

even. Then there exists a permutation Π(A) of the elements of A such that

A + Π(A) = {2c + k
2
, 2c + k

2
+ 1, 2c + k

2
+ 2, . . . , 2c + 3k

2
− 1, 2c + 3k

2
}.

Proof. Let A be a sequence A = {ai| ai = c + (i− 1), 1 ≤ i ≤ k + 1} and k

be even. Define a permutation Π(A) = {bi| 1 ≤ i ≤ k + 1} of the elements of

A as follows:

bi =





c + k
2

+ 1−i
2

if i is odd, 1 ≤ i ≤ k + 1

c + k + 2−i
2

if i is even, 2 ≤ i ≤ k.

By direct computation, we obtain that

A + Π(A) = {ai + bi| 1 ≤ i ≤ k + 1} =

{2c + k
2

+ i−1
2
| i odd, 1 ≤ i ≤ k + 1} ∪ {2c + k + i

2
| i even, 2 ≤ i ≤ k} =

{2c + k
2
, 2c + k

2
+ 1, . . . , 2c + 3k

2
− 1, 2c + 3k

2
},

and we arrive at the desired result. 2
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3.1 Cycles

In [5], it is proved that the cycle Cn has super (a, d)-edge-antimagic total

labeling if and only if either (i) d ∈ {0, 2} and n is odd, n ≥ 3; or (ii) d = 1

and n ≥ 3. Now, we will study super edge-antimagicness of a disjoint union of

m copies of Cn, denoted by mCn. mCn is the disconnected graph with vertex

set V (mCn) = {xj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(mCn) = {xj

ix
j
i+1 :

1 ≤ i ≤ n− 1, 1 ≤ j ≤ m} ∪ {xj
nx

j
1 : 1 ≤ j ≤ m}.

If the disjoint union of m copies of Cn is super (a, d)-edge-antimagic total then,

for p = q = mn, it follows from Lemma 3.0.1 that d ≤ 3− 2
mn−1

. If m ≥ 2 and

n ≥ 3 then 2
mn−1

> 0 and thus d < 3.

3 Theorem 3.1.1 The graph mCn has an (mn+3
2

, 1)-edge-antimagic vertex

labeling if and only if m and n are odd, m,n ≥ 3.

Proof. Assume that mCn has an (a, 1)-edge-antimagic vertex labeling α :

V (mCn) → {1, 2, . . . , mn} and W = {w(uv) : uv ∈ E(mCn)} = {a, a + 1, a +

2, . . . , a + mn− 1} is the set of edge-weights. The sum of the edge-weights in

the set W is
∑

uv∈E(mCn)

w(uv) = mna +
mn(mn− 1)

2
. (3.1)

In the computation of the edge-weights of mCn, the label of every vertex is

used twice. The sum of all vertex labels used to calculate the edge-weights is

equal to

2
∑

u∈V (mCn)

α(u) = mn(mn + 1). (3.2)

Since (3.1) and (3.2) gives the following equation

∑

uv∈E(mCn)

w(uv) = 2
∑

u∈V (mCn)

α(u), (3.3)
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it immediately follows that

a =
mn + 3

2
.

The minimum edge weight a is an integer if and only if m and n are odd.

Now, define the vertex labeling α1 : V (mCn) → {1, 2, . . . ,mn} in the following

way:

α1(x
j
i ) =





j+1
2

+ i−1
2

m if i is odd, 1 ≤ i ≤ n− 2, and j is odd

mi+1+j
2

if i is odd, 1 ≤ i ≤ n− 2, and j is even

n+i+1
2

m− j + 1 if i is even and 1 ≤ j ≤ m

mn+j
2

if i = n and j is odd

m(n−1)+j
2

if i = n and j is even.

We can see that the vertex labeling α1 is a bijective function. The edge-weights

of mCn, under the labeling α1, constitute the sets

W 1
α1

= {w1
α1

(xj
ix

j
i+1) = m(n+2i+1)+3−j

2
: if 1 ≤ i ≤ n− 2, and j is odd},

W 2
α1

= {w2
α1

(xj
ix

j
i+1) = m(n+2i+2)+3−j

2
: if 1 ≤ i ≤ n− 2, and j is even},

W 3
α1

= {w3
α1

(xj
n−1x

j
n) = 3mn+2−j

2
: if j is odd},

W 4
α1

= {w4
α1

(xj
n−1x

j
n) = m(3n−1)+2−j

2
: if j is even},

W 5
α1

= {w5
α1

(xj
nxj

1) = mn+1
2

+ j : if 1 ≤ j ≤ m}.

Hence, the set
⋃5

r=1 W r
α1

= {mn+3
2

, mn+5
2

, . . . , 3mn+1
2

} consists of consecutive

integers. Thus α1 is a (mn+3
2

, 1)-edge-antimagic vertex labeling. 2

Let α : V (mCn)∪E(mCn) → {1, 2, . . . , 2mn} be a super (a, d)-edge-antimagic

total labeling of mCn. The sum of all vertex and edge labels used to calculate

the edge-weights is equal to the sum of the edge-weights:

2
∑

u∈V (mCn)

α(u) +
∑

uv∈E(mCn)

α(uv) =
∑

uv∈E(mCn)

w(uv)

which is equivalent to the equation

5mn + 3 = 2a + (mn− 1)d. (3.4)
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If d = 0 then, from (3.4), it follows that a = 5mn+3
2

. The value a is an integer

if and only if m and n are odd.

In the previous theorem we proved that the vertex labeling α1 is a (mn+3
2

, 1)-

edge-antimagic vertex labeling. With respect to Lemma 3.0.2, the labeling α1

extends to a super (a, 0)-edge-antimagic total labeling, where, for p = q = mn,

the value a = 5mn+3
2

. Thus the following theorem holds.

3 Theorem 3.1.2 The graph mCn has a super (5mn+3
2

, 0)-edge-antimagic to-

tal labeling if and only if m and n are odd, m,n ≥ 3.

3 Theorem 3.1.3 The graph mCn has a super (3mn+5
2

, 2)-edge-antimagic to-

tal labeling if and only if m and n are odd, m,n ≥ 3.

Proof. Suppose that mCn has a super (a, 2)-edge-antimagic total labeling

α : V (mCn)∪E(mCn) → {1, 2, . . . , 2mn} and W = {w(uv) : uv ∈ E(mCn)} =

{a, a + 2, a + 4, . . . , a + (mn − 1)2} is the set of the edge-weights. For d = 2,

Equation (3.4) gives a = 3mn+5
2

. Since a is an integer, it follows that m and n

must be odd.

We construct a total labeling α2 as follows:

α2(x
j
i ) = α1(x

j
i ), for every i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ m

α2(x
j
nxj

1) = mn + j, if 1 ≤ j ≤ m

α2(x
j
ix

j
i+1) =





m(2n+2i+1)+2−j
2

if 1 ≤ i ≤ n− 2, and j is odd

(n + i + 1)m + 2−j
2

if 1 ≤ i ≤ n− 2, and j is even

α2(x
j
n−1x

j
n) =





2mn + 1−j
2

if j is odd

m(2n− 1) + m−j+1
2

if j is even.

The total labeling α2 is a bijective function from mCn onto the set {1, 2, . . . , 2mn}.
The edge-weights of mCn, under the labeling α2, constitute the sets
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W 1
α2

= {w1
α2

(xj
ix

j
i+1) = w1

α1
(xj

ix
j
i+1)+α2(x

j
ix

j
i+1) : if 1 ≤ i ≤ n−2, and j is odd}

= {3mn+4im+2m−2j+5
2

: if 1 ≤ i ≤ n− 2, and j is odd},
W 2

α2
= {w2

α2
(xj

ix
j
i+1) = w2

α1
(xj

ix
j
i+1)+α2(x

j
ix

j
i+1) : if 1 ≤ i ≤ n−2, and j is even}

= {3mn+4im+4m−2j+5
2

: if 1 ≤ i ≤ n− 2, and j is even},
W 3

α2
= {w3

α2
(xj

n−1x
j
n) = w3

α1
(xj

n−1x
j
n) + α2(x

j
n−1x

j
n) : if j is odd}

= {7mn−2j+3
2

: if j is odd},
W 4

α2
= {w4

α2
(xj

n−1x
j
n) = w4

α1
(xj

n−1x
j
n) + α2(x

j
n−1x

j
n) : if j is even}

= {7mn−2m−2j+3
2

: if j is even},
W 5

α2
= {w5

α2
(xj

nxj
1) = w5

α1
(xj

nx
j
1) + α2(x

j
nxj

1) : if 1 ≤ j ≤ m}
= {3mn+4j+1

2
: if 1 ≤ j ≤ m}.

It is not difficult to see that the set
⋃5

r=1 W r
α2

= {3mn+5
2

, 3mn+9
2

, . . . , 7mn+1
2

}
contains an arithmetic sequence with the first term 3mn+5

2
and common dif-

ference 2. Thus α2 is a super (3mn+5
2

, 2)-edge-antimagic total labeling. This

concludes the proof. 2
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Figure 3.1: Super (55, 2)-edge-antimagic total labeling of 5C7.
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3 Theorem 3.1.4 The graph mCn has a super (2mn + 2, 1)-edge-antimagic

total labeling for every m ≥ 2 and n ≥ 3.

Proof. Assume that mCn has a super (a, 1)-edge-antimagic total labeling

α : V (mCn)∪E(mCn) → {1, 2, . . . , 2mn} and W = {w(uv) : uv ∈ E(mCn)} =

{a, a + 1, a + 2, . . . , a + mn − 1} is the set of edge-weights. Putting d = 1,

Equation (3.4) gives a = 2mn+2 and this is an integer for all m and n, m ≥ 2

and n ≥ 3.

Construct the bijection α3 : V (mCn) ∪ E(mCn) → {1, 2, . . . , 2mn} as follows:

α3(x
j
i ) = j + (i− 1)m, if 1 ≤ i ≤ n and 1 ≤ j ≤ m

α3(x
j
ix

j
i+1) = (2n− i + 1)m + 1− j, if 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m

α3(x
j
nx

j
1) = (n + 1)m + 1− j, if 1 ≤ j ≤ m.

The edge-weights of mCn, under the labeling α3, constitute the sets

W 1
α3

= {w1
α3

(xj
ix

j
i+1) = 2mn + im + 1 + j : if 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m},

W 2
α3

= {w2
α3

(xj
nxj

1) = 2mn + j + 1 : if 1 ≤ j ≤ m}.

Hence, the set
⋃2

r=1 W r
α3

= {2mn+2, 2mn+3, . . . , 3mn+1} consists of consec-

utive integers. Thus α3 is a super (2mn + 2, 1)-edge-antimagic total labeling.

2

Independently, Ngurah, Baskoro and Simanjuntak in [99] also gave an alter-

native proof of Theorem 3.1.4. Finally, we summarise the results presented in

this subsection in the following theorem.

3 Theorem 3.1.5 The graph mCn has a super (a, d)-edge-antimagic total la-

beling if and only if either

(i) d ∈ {0, 2} and m, n are odd, m,n ≥ 3; or

(ii) d = 1, for every m ≥ 2 and n ≥ 3.
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3.2 Paths

In [8], it is shown that the path Pn, n ≥ 2, has a super (a, d)-edge-antimagic

total labeling if and only if d ∈ {0, 1, 2, 3}. Let us now consider a disjoint union

of m copies of Pn and denote it by mPn. The graph mPn is disconnected with

vertex set V (mPn) = {xj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(mPn) = {xj

ix
j
i+1 :

1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}.

From Lemma 3.0.1, it follows that if mPn is super (a, d)-edge-antimagic total,

p = mn and q = (n− 1)m, then

d ≤ 3 +
2m− 2

mn−m− 1
.

If n = 2 and m ≥ 2 then 2m−2
mn−m−1

= 2 and thus d ≤ 5. If n ≥ 3 and m ≥ 2

then 0 < 2m−2
mn−m−1

< 1 and thus d < 4.

3 Theorem 3.2.1 If m is odd, m ≥ 3, and n ≥ 2, then the graph mPn has

an (a, 1)-edge-antimagic vertex labeling.

Proof.

Case 1. n odd

We construct a vertex labeling β1 of mPn, m ≥ 3 and n ≥ 3, in the following

way:

β1(x
j
i ) =





mn+j
2

if i = 1 and j is odd

m(n−1)+j
2

if i = 1 and j is even

m(i−2)+1+j
2

if i is even and j is odd

m(i−1)+1+j
2

if i is even and j is even

m(n+i)
2

+ 1− j if i is odd, 3 ≤ i ≤ n, and 1 ≤ j ≤ m.

We can see that the vertex labeling β1 is a bijective function from V (mPn)

onto the set {1, 2, . . . , mn}. The edge-weights of mPn under the labeling β1

constitute the sets
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W 1
β1

= {w1
β1

(xj
1x

j
2) = mn+1

2
+ j : if 1 ≤ j ≤ m},

W 2
β1

= {w2
β1

(xj
ix

j
i+1) = m(n+2i−1)+3−j

2
: if 2 ≤ i ≤ n− 1, and j is odd},

W 3
β1

= {w3
β1

(xj
ix

j
i+1) = m(n+2i)+3−j

2
: if 2 ≤ i ≤ n− 1, and j is even}.

Hence, the set
⋃3

r=1 W r
β1

= {mn+3
2

, mn+5
2

, . . . , 3mn−2m+1
2

} consists of consecutive

integers. Thus β1 is a (mn+3
2

, 1)-edge-antimagic vertex labeling.

Case 2. n even

For m ≥ 3 and n ≥ 2, define the bijection β2 : V (mPn) → {1, 2, . . . , mn} as

follows:

β2(x
j
i ) =





m(n+1)+j
2

if i = 1 and j is odd

mn+j
2

if i = 1 and j is even

m(i−2)+1+j
2

if i is even and j is odd

m(i−1)+1+j
2

if i is even and j is even

m(n+i+1)
2

+ 1− j if i is odd, 3 ≤ i ≤ n− 1, and 1 ≤ j ≤ m.

Then for the edge-weights of mPn we have:

W 1
β2

= {w1
β2

(xj
1x

j
2) = m(n+1)+1

2
+ j : if 1 ≤ j ≤ m},

W 2
β2

= {w2
β2

(xj
ix

j
i+1) = m(n+2i)+3−j

2
: if 2 ≤ i ≤ n− 1, and j is odd},

W 3
β2

= {w3
β2

(xj
ix

j
i+1) = m(n+2i+1)+3−j

2
: if 2 ≤ i ≤ n− 1, and j is even}

and
⋃3

r=1 W r
β2

= {m(n+1)+3
2

, m(n+1)+5
2

, . . . , m(3n−1)+1
2

} consists of consecutive in-

tegers. This implies that β2 is a (m(n+1)+3
2

, 1)-edge-antimagic vertex labeling.

2

We utilize the vertex labelings β1 and β2 from the proof of Theorem 3.2.1 to

prove the following theorem.

3 Theorem 3.2.2 If m is odd, m ≥ 3, and n ≥ 2, then the graph mPn has

a super (a, 0)-edge-antimagic total labeling and a super (a′, 2)-edge-antimagic

total labeling.
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Proof.

First, let us turn to d = 0.

For m and n odd, we consider the vertex labeling β1 which is a (mn+3
2

, 1)-

edge-antimagic vertex labeling. According to Lemma 3.0.2, by completing the

edge labels p + 1, p + 2, . . . , p + q, we are able to extend labeling β1 to a super

(a, 0)-edge-antimagic total labeling, where, for p = mn and q = nm −m, the

value a = 5mn−2m+3
2

.

For m odd and n even, the vertex labeling β2 is a (m(n+1)+3
2

, 1)-edge-antimagic

vertex labeling. It follows from Lemma 3.0.2 that the labeling β2 can be

extended, by completing the edge labels p+1, p+2, . . . , p+q, to a super (a, 0)-

edge-antimagic total labeling, where, in the case p = mn and q = nm − m,

the value a = m(5n−1)+3
2

. Thus for m odd, m ≥ 3 and n ≥ 2, mPn has a super

(a, 0)-edge-antimagic total labeling.

For d = 2, we distinguish two cases.

Case 1. n odd

Label the vertices and edges of mPn in the following way:

β3(x
j
i ) = β1(x

j
i ), for every i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ m

β3(x
j
ix

j
i+1) =





mn + j if i = 1 and 1 ≤ j ≤ m

m(2n+2i−1)+2−j
2

if 2 ≤ i ≤ n− 1 and j is odd

2−j
2

+ mn + im if 2 ≤ i ≤ n− 1 and j is even.

The total labeling β3 is a bijective function from V (mPn) ∪ E(mPn) onto the

set {1, 2, . . . , 2mn−m}. For the edge-weights of mPn, under the total labeling

β3, we have:

W 1
β3

= {w1
β3

(xj
1x

j
2) = w1

β1
(xj

1x
j
2) + β3(x

j
1x

j
2) : if 1 ≤ j ≤ m}

={3mn+1
2

+ 2j : if 1 ≤ j ≤ m},
W 2

β3
= {w2

β3
(xj

ix
j
i+1) = w2

β1
(xj

ix
j
i+1)+β3(x

j
ix

j
i+1) : if 2 ≤ i ≤ n−1, and j is odd}

= {m(3n+4i−2)+5
2

− j : if 2 ≤ i ≤ n− 1, and j is odd},
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W 3
β3

= {w3
β3

(xj
ix

j
i+1) = w3

β1
(xj

ix
j
i+1)+β3(x

j
ix

j
i+1) : if 2 ≤ i ≤ n−1, and j is even}

= {m(3n+4i)+5
2

− j : if 2 ≤ i ≤ n− 1, and j is even}.

Hence,
⋃3

r=1 W r
β3

= {3mn+5
2

, 3mn+9
2

, . . . , 7mn−4m+1
2

} and this implies that β3 is

a super (3mn+5
2

, 2)-edge-antimagic total labeling.
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Figure 3.2: Super (55, 2)-edge-antimagic total labeling of 5P7.

Case 2. n even

Label the vertices and edges of mPn as follows:

β4(x
j
i ) = β2(x

j
i ), for every i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ m

β4(x
j
ix

j
i+1) = β3(x

j
ix

j
i+1), for every i and j with 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m.

Clearly, the total labeling β4 : V (mPn) ∪ E(mPn) → {1, 2, . . . , 2mn−m} is a

bijection. The edge-weights of mPn under the labeling β4 constitute the sets

W 1
β4

= {w1
β4

(xj
1x

j
2) = w1

β2
(xj

1x
j
2) + β4(x

j
1x

j
2) : if 1 ≤ j ≤ m}

= {m(3n+1)+1
2

+ 2j : if 1 ≤ j ≤ m},
W 2

β4
= {w2

β4
(xj

ix
j
i+1) = w2

β2
(xj

ix
j
i+1)+β4(x

j
ix

j
i+1) : if 2 ≤ i ≤ n−1, and j is odd}

= {m(3n+4i−1)+5
2

− j : if 2 ≤ i ≤ n− 1, and j is odd},
W 3

β4
= {w3

β4
(xj

ix
j
i+1) = w3

β2
(xj

ix
j
i+1)+β4(x

j
ix

j
i+1) : if 2 ≤ i ≤ n−1, and j is even}
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= {m(3n+4i+1)+5
2

− j : if 2 ≤ i ≤ n− 1, and j is even}.

It can be seen that the total labeling β4 is super (m(3n+1)+5
2

, 2)-edge-antimagic

total. 2

3 Theorem 3.2.3 The graph mPn has a (m + 2, 2)-edge-antimagic vertex

labeling, for every m ≥ 2 and n ≥ 2.

Proof. Now, for m ≥ 2 and n ≥ 2, consider the following function β5 :

V (mPn) → {1, 2, . . . , mn}, where if 1 ≤ i ≤ n and 1 ≤ j ≤ m, then

β5(x
j
i ) = j + (i− 1)m.

We conclude that β5 is a bijective function and the edge-weights under this

function constitute the set

Wβ5 = {wβ5(x
j
ix

j
i+1) = m(2i− 1) + 2j : if 1 ≤ i ≤ n− 1, and 1 ≤ j ≤ m},

which implies that β5 is a (m + 2, 2)-edge-antimagic vertex labeling. 2

3 Theorem 3.2.4 The graph mPn has a super (2mn + 2, 1)-edge-antimagic

total labeling and a super (mn + m + 3, 3)-edge-antimagic total labeling, for

every m ≥ 2 and n ≥ 2.

Proof. Let m ≥ 2 and n ≥ 2. We distinguish two cases, according to whether

d = 1 or d = 3.

Case 1. d = 1

Define β6 : V (mPn) ∪ E(mPn) → {1, 2, . . . , 2mn − m} to be the bijective

function such that

β6(x
j
i ) = β5(x

j
i ), for every i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ m

β6(x
j
ix

j
i+1) = m(2n− i) + 1− j, if 1 ≤ i ≤ n− 1, and 1 ≤ j ≤ m.
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Thus Wβ6 = {wβ6(x
j
ix

j
i+1) = β6(x

j
i ) + β6(x

j
i+1) + β6(x

j
ix

j
i+1) = wβ5(x

j
ix

j
i+1) +

β6(x
j
ix

j
i+1) : if 1 ≤ i ≤ n − 1, and 1 ≤ j ≤ m} = {m(2n + i − 1) + 1 + j :

if 1 ≤ i ≤ n − 1, and 1 ≤ j ≤ m} is a set of m(n − 1) consecutive integers

2mn + 2, 2mn + 3, . . . , 3mn−m + 1. It follows that the total labeling β6 is a

super (2mn + 2, 1)-edge-antimagic total.

Case 2. d = 3

Consider the labeling β7 : V (mPn)∪E(mPn) → {1, 2, . . . , 2mn−m} such that

β7(x
j
i ) = β5(x

j
i ), for every i and j with 1 ≤ i ≤ n, 1 ≤ j ≤ m

β7(x
j
ix

j
i+1) = m(n + i− 1) + j, if 1 ≤ i ≤ n− 1, and 1 ≤ j ≤ m.

It suffices to observe that β7 is a bijection and the set

Wβ7 = {wβ7(x
j
ix

j
i+1) = β7(x

j
i ) + β7(x

j
i+1) + β7(x

j
ix

j
i+1) = wβ5(x

j
ix

j
i+1) +

β7(x
j
ix

j
i+1) : if 1 ≤ i ≤ n− 1, and 1 ≤ j ≤ m} = {m(n + 3i− 2) + 3j : if 1 ≤

i ≤ n − 1, and 1 ≤ j ≤ m} consists of an arithmetic sequence with the first

term a = m(n + 1) + 3 and common difference d = 3. This completes the

proof. 2

Let mP2, m ≥ 2, be super (a, d)-edge-antimagic total with a super (a, d)-

edge-antimagic total labeling β : V (mP2) ∪ E(mP2) → {1, 2, . . . , 3m}. Thus

{w(uv) = β(u) + β(uv) + β(v) : uv ∈ E(mP2)} = {a, a + d, a + 2d, . . . , a +

(m− 1)d} is the set of edge-weights.

In the computation of the edge-weights of mP2, the label of each vertex and

each edge is used once. The sum of all vertex and edge labels used to calculate

the edge-weights is equal to the sum of edge-weights. Thus the equation

∑

u∈V (mP2)

β(u) +
∑

uv∈E(mP2)

β(uv) =
∑

uv∈E(mP2)

w(uv)

is equivalent to the equation

9m + 3 = 2a + (m− 1)d. (3.5)
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3 Theorem 3.2.5 The graph mP2, m ≥ 3, has a super
(

5m+7
2

, 4
)
-edge-antimagic

total labeling if and only if m is odd.

Proof. Let β : V (mP2) ∪ E(mP2) → {1, 2, . . . , 3mn} be a super (a, 4)-edge-

antimagic total labeling. If d = 4 then from (3.5) it follows that

a =
5m + 7

2
.

The minimum edge weight a is an integer if and only if m is odd. We define the

required super
(

5m+7
2

, 4
)
-edge-antimagic total labeling in the following way:

β8(x
j
i ) =





j if i = 1 and 1 ≤ j ≤ m+1
2

2j − m+1
2

if i = 1 and m+3
2
≤ j ≤ m

m+1
2

+ 2j − 1 if i = 2 and 1 ≤ j ≤ m+1
2

m + j if i = 2 and m+3
2
≤ j ≤ m

β8(x
j
1x

j
2) = 2m + j, if 1 ≤ j ≤ m. 2

3 Theorem 3.2.6 The graph mP2 has a super (2m + 4, 5)-edge-antimagic

total labeling, for every m ≥ 2.

Proof. Assume that mP2 has a super (a, 5)-edge-antimagic total labeling.

Then, for d = 5, Equation (3.5) gives

a = 2m + 4

and this is an integer for all m ≥ 2. The required super (2m + 4, 5)-edge-

antimagic total labeling can be defined as follows:

β9(x
j
i ) = 2j + i− 2, if i = 1, 2 and 1 ≤ j ≤ m

β9(x
j
1x

j
2) = β7(x

j
1x

j
2), for every j with 1 ≤ j ≤ m. 2

The graph mPn has a super (a, d)-edge-antimagic total labeling for almost all

feasible values of the parameters m, n and d. The only unsolved problem is to
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answer whether or not the graph mPn has a super (a, d)-edge-antimagic total

labeling for d ∈ {0, 2} and m even. Therefore, we propose the following open

problem.

Open Problem 3.2.1 For mPn, m ≥ 2 even, n > 2, determine if there is a

super (a, d)-edge-antimagic total labeling with d ∈ {0, 2}.

3.3 Paths and cycles

In the previous sections, we studied super edge-antimagicness of a disjoint

union of m copies of paths and m copies of cycles. Now we will consider super

edge-antimagicness of a disjoint union of a combination of them, denoted by

mPn ∪µCn. It is the disconnected graph with the vertex set V (mPn ∪µCn) =

{xj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m + µ} and the edge set E(mPn ∪ µCn) = {xj

ix
j
i+1 :

1 ≤ i ≤ n − 1, 1 ≤ j ≤ m + µ} ∪ {xj
nxj

1 : m + 1 ≤ j ≤ m + µ}. Thus

p = |V (mPn ∪ µCn)| = (m + µ)n and q = |E(mPn ∪ µCn)| = (m + µ)n−m.

If the disjoint union of mPn ∪ µCn is super (a, d)-edge-antimagic total then,

from Lemma 3.0.1, it follows that d ≤ 3 + 2m−2
(m+µ)n−m−1

. If m ≥ 1, µ ≥ 1 and

n ≥ 3 then 2m−2
(m+µ)n−m−1

< 1 and thus d < 4.

3 Theorem 3.3.1 If (m + µ) and n are odd, m ≥ 1, µ ≥ 1 and n ≥ 3, then

the graph mPn ∪ µCn has an
(

(m+µ)n+2m+3
2

, 1
)
-edge-antimagic vertex labeling.

Proof. Let 1 ≤ j ≤ m + µ and define χ1 : V (mPn ∪ µCn) → {1, 2, . . . , (m +
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µ)n} to be the vertex labeling such that

χ1(x
j
i ) =





j+1
2

+ i−1
2

(m + µ) if i is odd, 1 ≤ i ≤ n− 2, and j is odd

(m+µ)i+1+j
2

if i is odd, 1 ≤ i ≤ n− 2, and j is even

n+i+1
2

(m + µ)− j + 1 if i is even, 2 ≤ i ≤ n− 1

(m+µ)n+j
2

if i = n and j is odd

(m+µ)(n−1)+j
2

if i = n and j is even.

We can see that the vertex labeling χ1 is a bijective function. The edge-weights

of mPn ∪ µCn, under the labeling χ1, constitute the sets

W 1
χ1

= {w1
χ1

(xj
ix

j
i+1) = χ1(x

j
i ) + χ1(x

j
i+1) = (m+µ)(n+2i+1)

2
+ 3−j

2
: if 1 ≤ i ≤

n− 2, and j is odd, 1 ≤ j ≤ m + µ},
W 2

χ1
= {w2

χ1
(xj

ix
j
i+1) = χ1(x

j
i ) + χ1(x

j
i+1) = (m+µ)(n+2i+2)+3−j

2
: if 1 ≤ i ≤

n− 2, and j is even, 2 ≤ j ≤ m + µ− 1},
W 3

χ1
= {w3

χ1
(xj

n−1x
j
n) = χ1(x

j
n−1)+χ1(x

j
n) = 3(m+µ)n+2−j

2
: if j is odd, 1 ≤ j ≤

m + µ},
W 4

χ1
= {w4

χ1
(xj

n−1x
j
n) = χ1(x

j
n−1)+χ1(x

j
n) = (m+µ)(3n−1)+2−j

2
: if j is even, 2 ≤

j ≤ m + µ− 1},
W 5

χ1
= {w5

χ1
(xj

nxj
1) = χ1(x

j
n)+χ1(x

j
1) = (m+µ)n+1

2
+ j : if m+1 ≤ j ≤ m+µ}.

The set
⋃5

r=1 W r
χ1

= { (m+µ)n+2m+3
2

, (m+µ)n+2m+5
2

, . . . , 3(m+µ)n+1
2

} consists of

consecutive integers, which implies that χ1 is a
(

(m+µ)n+2m+3
2

, 1
)
-edge-antimagic

vertex labeling. 2

Bača, Lin, Miller and Simanjuntak (see [9], Theorem 5) have proved that if

(p, q)-graph G has an (a, d)-edge-antimagic vertex labeling then G has a super

(a + p + q, d− 1)-edge-antimagic total labeling and a super (a + p + 1, d + 1)-

edge-antimagic total labeling. With the Theorem 3.3.1 in hand, and using

Theorem 5 from [9], we obtain the following result.

3 Theorem 3.3.2 If (m + µ) and n are odd, m,µ ≥ 1 and n ≥ 3, then the
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graph mPn ∪µCn has a super
(

5(m+µ)n+3
2

, 0
)
-edge-antimagic total labeling and

a super
(

3(m+µ)n+2m+5
2

, 2
)
-edge-antimagic total labeling.
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Figure 3.3: Super (73, 2)-edge-antimagic total labeling of 3P9 ∪ 2C9.

Figure 3.3 gives an example of super (a, d)-edge-antimagic total labeling of

3P9 ∪ 2C9 for d = 2.

The result that mPn ∪ µCn has a super
(

5(m+µ)n+3
2

, 0
)
-edge-antimagic total

labeling when (m + µ)n is odd, is not new. It follows as a corollary from a

theorem of Ivančo and Lučkaničová (see Theorem 1 in [71]).

Directly from Theorem 3.3.1, with respect to Lemma 3.0.3, it follows that the

graph mPn ∪ µCn has a super
(

4(m+µ)n+m+4
2

, 1
)
-edge-antimagic total labeling

for (m + µ)n odd and m even. The following theorem also covers this case.
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3 Theorem 3.3.3 For m even, m ≥ 2, and for every µ ≥ 1 and n ≥ 3, the

graph mPn ∪µCn has a super (2n(m + µ) + 2, 1)-edge-antimagic total labeling.

Proof. Let m be an even integer. Consider a bijective function χ2 : V (mPn ∪
µCn) ∪ E(mPn ∪ µCn) → {1, 2, . . . , 2(m + µ)n−m} defined by

χ2(x
j
i ) =





(m + µ)(i− 1) + j if 1 ≤ i ≤ n, and 1 ≤ j ≤ m
2

(m + µ)(i− 1) + µ + j if 1 ≤ i ≤ n, and m
2

+ 1 ≤ j ≤ m

(m + µ)(i− 1)− m
2

+ j if 1 ≤ i ≤ n, and m + 1 ≤ j ≤ m + µ

χ2(x
j
ix

j
i+1) =





(m + µ)(2n− i + 1)−m + 1− j if 1 ≤ i ≤ n− 1, and 1 ≤ j ≤ m
2

(m + µ)(2n− i) + 1− j if 1 ≤ i ≤ n− 1, and m
2

+ 1 ≤ j ≤ m

(m + µ)(2n− i + 1)− m
2

+ 1− j if 1 ≤ i ≤ n− 1, and m + 1 ≤ j ≤ m + µ

χ2(x
j
nxj

1) = (m + µ)(n + 1) + 1− j, if m + 1 ≤ j ≤ m + µ.

It is a matter for routine checking to see that the set of the edge-weights consists

of the consecutive integers {2n(m+µ)+2, 2n(m+µ)+3, . . . , 3n(m+µ)−m+1}
and the labeling χ2 is super (2n(m + µ) + 2, 1)-edge-antimagic total. 2

Finally, we summarize that the graph mPn ∪ µCn has a super (a, d)-edge-

antimagic total labeling for (i) d ∈ {0, 2}, if m + µ and n are odd; and (ii)

d = 1, if m is even. In the case when d ∈ {0, 2} and (m + µ)n is even; and

when d = 1 and m is odd, we do not have the complete answer. We list here

the following open problems.

Open Problem 3.3.1 For the graph mPn∪µCn, (m+µ)n is even, determine

if there is a super (a, d)-edge-antimagic total labeling with d ∈ {0, 2}.
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Open Problem 3.3.2 For the graph mPn∪µCn, m is odd, determine if there

is a super (a, 1)-edge-antimagic total labeling.

In the case when d = 3 we do not have any answer. So, we present another

problem for further investigation.

Open Problem 3.3.3 For the graph mPn ∪µCn, m, µ ≥ 1 and n ≥ 3, deter-

mine if there is a super (a, 3)-edge-antimagic total labeling.



Chapter 4

SEATL of Disjoint Union of

Stars

As mentioned in Chapter 2, given a graph G, the problem of deciding whether

G admits a vertex-magic or an edge-magic labeling is equivalent to the problem

of deciding whether or not a set of linear homogeneous Diophantine equations

has a solution. For this, there is no polynomial time bounded algorithm. In

the disjoint union of multiple copies of stars, the only vertices which have the

highest degree are the centers of each star. In 2002, Lee and Kong [79] proposed

a conjecture of a super edge-magicness of a disjoint union of multiple copies of

stars. In this chapter we present new results on the super edge-antimagicness

of disjoint union of multiple copies of stars and so settle this conjecture. In

the first section we show that the disjoint union of two stars admits super

(a, d)-edge-antimagic total labeling, and we generalise this result for m copies

of stars in the second section.

45
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4.1 Two stars

It is proved in [117] that the star K1,n has a super (a, d)-edge-antimagic total

labeling if and only if either (i) d ∈ {0, 1, 2} and n ≥ 1, or (ii) d = 3 and 1 ≤
n ≤ 2. Now, we study super edge antimagic of the disjoint union of two stars,

denoted by K1,m∪K1,n. The disjoint union of K1,m and K1,n is the disconnected

graph with vertex set V (K1,m ∪ K1,n) = {x1,j : j = 0, 1, . . . , m} ∪ {x2,i :

i = 0, 1, . . . , n} and edge set E(K1,m ∪ K1,n) = {x1,0x1,j : j = 1, 2, . . . , m} ∪
{x2,0x2,i : i = 1, 2, . . . , n}.

If the graph K1,m ∪ K1,n is super (a, d)-edge-antimagic total then, according

to Lemma 3.0.1, for p = m + n + 2 and q = m + n, we have d ≤ 3 + 2
m+n−1

.

We can see that:

(i) if m ≥ 2 and n ≥ 2 then there is no super (a, d)-edge-antimagic total

labeling of K1,m ∪K1,n with d > 3;

(ii) if m + n = 3 then there is no super (a, d)-edge-antimagic total labeling

of K1,m ∪K1,n with d > 4;

(iii) if m + n = 2 then there is no super (a, d)-edge-antimagic total labeling

of K1,m ∪K1,n with d > 5.

If m + n = 2 then we have the graph K1,1 ∪K1,1. Assume that K1,1 ∪K1,1 has

a super (a, d)-edge-antimagic total labeling. This means that
6∑

k=1

k = 2a + d.

For d = 0, 2 and 4 the value a is not an integer. Therefore for the graph

K1,1 ∪K1,1, there is no super (a, d)-edge-antimagic total labeling.

For d = 1, 3 and 5 the requested super (a, d)-edge-antimagic total labeling δ1

is given in the following.
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d δ1(x1,0) δ1(x2,0) δ1(x1,1) δ1(x2,1) δ1(x1,0x1,1) δ1(x2,0x2,1)

1 2 1 3 4 5 6

3 1 2 3 4 5 6

5 2 4 1 3 5 6

3 Theorem 4.1.1 For the graph K1,m ∪K1,n, m + n = 3, there is no super

(a, 4)-edge-antimagic total labeling.

Proof. Assume that K1,m ∪ K1,n, for m + n = 3, has a super (a, 4)-edge-

antimagic total labeling δ2 : V (K1,m ∪K1,n) ∪E(K1,m ∪K1,n) → {1, 2, . . . , 8},
and W = {w(uv) : uv ∈ E(K1,m ∪ K1,n)} = {a, a + 4, a + 8} is the set of

edge-weights. In the computation of the edge-weights of K1,m ∪K1,n the label

of a vertex of degree two is used twice but the labels of the remaining vertices

are used once each. The label of every edge is used once. The sum of all vertex

and edge labels used to calculate the edge-weights is equal to the sum of the

edge-weights. If s1 is the label of the vertex of degree two then

s1 +
∑

u∈V (K1,m∪K1,n)

δ2(u) +
∑

uv∈E(K1,m∪K1,n)

δ2(uv) =
∑

uv∈E(K1,m∪K1,n)

w(uv)

and

a = 8 +
s1

3
.

Since a must be an integer, for s1 we have only one possible value, namely,

s1 = 3, which gives a = 9.

The smallest value of edge weight a = 9 can be obtained only from the triple

(1, 2, 6), where 1 and 2 are values of adjacent vertices of degree one and 6 is

the value of the edge. The remaining vertices of degree one must be labeled by

the values 4 and 5. Thus, we have the triples (3, 4, 7) and (3, 5, 8) or (3, 4, 8)

and (3, 5, 7). This contradicts the fact that K1,m ∪K1,n, for m + n = 3, has a

super (a, 4)-edge-antimagic total labeling. 2
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If m = t(n + 1) (respectively, n = t(m + 1)) then m is a multiple of (n + 1)

(respectively, n is a multiple of (m + 1)).

3 Theorem 4.1.2 The graph K1,m∪K1,n, m ≥ 2 and n ≥ 2, has a (t+4, 1)-

edge-antimagic vertex labeling if and only if either m is a multiple of n + 1 or

n is a multiple of m + 1.

Proof. Assume that K1,m ∪ K1,n, m ≥ 2 and n ≥ 2, has a (a, 1)-edge-

antimagic vertex labeling δ3 : V (K1,m ∪ K1,n) → {1, 2, . . . , m + n + 2} and

that W = {w(uv) : uv ∈ E(K1,m∪K1,n)} = {a, a+1, a+2, . . . , a+m+n− 1}
is the set of the edge-weights. The sum of the elements of W is

∑

uv∈E(K1,m∪K1,n)

w(uv) = (m + n)a +
(m + n)(m + n− 1)

2
.

In the computation of the edge-weights of K1,m ∪K1,n, the label of the central

vertices, δ3(x1,0) and δ3(x2,0), is used m and n times, respectively, and the

labels of the remaining vertices are used once each. Let s1 = δ3(x1,0) and

s2 = δ3(x2,0). The sum of all vertex labels used to calculate the edge-weights

is equal to

(m− 1)δ3(x1,0) + (n− 1)δ3(x2,0) +
m+n+2∑

k=1

k =

(m− 1)s1 + (n− 1)s2 +
(m + n + 3)(m + n + 2)

2
.

The sum of the vertex labels used to obtain the edge-weights is naturally equal

to the sum of all the edge-weights. Thus,

(m + n)a = 3(m + n + 1) + (m− 1)s1 + (n− 1)s2. (4.1)

Clearly, s1 + s2 /∈ {a, a + 1, a + 2, . . . , a + m + n − 1} because exactly one

endpoint of any edge belongs to {x1,0, x2,0}. Without loss of generality, we

may assume that s1 + s2 < a. If s1 + s2 > a + m + n − 1 then we consider
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(a′, 1)-edge-antimagic vertex labeling g, given by g(v) = m + n + 3− δ3(v), for

all v ∈ V (K1,m ∪K1,n).

If 1 /∈ {s1, s2} then a > s1 + s2 > min
1≤j≤m

δ3(x1,j) + s2 ≥ 1 + s2 ≥ a or

a > s1 + s2 > s1 + min
1≤i≤n

δ3(x2,i) ≥ s1 + 1 ≥ a, a contradiction.

Suppose s1 = 2 and s2 = 1. Then, from (4.1), it follows that

(m + n)(a− 4) = m,

which implies that m is a multiple of m + n, a contradiction.

Suppose s1 > 2 and s2 = 1. We can say that a = s1+2 because if min
1≤i≤n

δ3(x2,i) =

2 then min
1≤i≤n

δ3(x2,i)+s2 < s1+s2 < a, thus the vertex labeled by 2 must belong

to K1,m. From (4.1), it follows that

(m + n)(s1 + 2) = 3(m + n + 1) + (m− 1)s1 + (n− 1) and

(s1 − 2)(n + 1) = m,

which means that m > n and m is a multiple of n + 1.

For the sake of completeness, we assume that m = t(n + 1), and consider the

vertex labeling δ3, described by Ivančo and Lučkaničová in [71].

δ3(x1,j) =





2 + t if j = 0

d j
t
e+ j if 1 ≤ j ≤ m

δ3(x2,i) =





1 if i = 0

1 + (i + 1)(t + 1) if 1 ≤ i ≤ n.

The vertex labeling δ3 is a bijective function from K1,m ∪ K1,n onto the set

{1, 2, . . . , m + n + 2}. The edge-weights of K1,m ∪K1,n, under the labeling δ3,

constitute the sets

W 1
δ3

= {w1
δ3

(x1,0x1,j) : if 1 ≤ j ≤ m} = {2 + t +
⌈

j
t

⌉
+ j : if 1 ≤ j ≤ m},

W 2
δ3

= {w2
δ3

(x2,0x2,i) : if 1 ≤ i ≤ n} = {2 + (i + 1)(t + 1) : if 1 ≤ i ≤ n}.
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Hence the set
⋃2

r=1 W r
δ3

= {t+4, t+5, . . . , m+n+t+3} consists of consecutive

integers. Thus δ3 is a (t + 4, 1)-edge-antimagic vertex labeling. 2

With respect to Lemma 3.0.2, the (t + 4, 1)-edge-antimagic vertex labeling δ3

extends to a super (a, 0)-edge-antimagic total labeling, where for p = m+n+2

and q = m + n, the value a = 2m + 2n + t + 6. Thus we have the following

theorem, which was proved by Ivančo and Lučkaničová in [71].

Theorem 4.1.3 [71] The graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, has a super

(2m + 2n + t + 6, 0)-edge-antimagic total labeling if and only if either m is a

multiple of n + 1 or n is a multiple of m + 1.

Furthermore, we obtain the following theorem.

3 Theorem 4.1.4 If either m is a multiple of n+1 or n is a multiple of m+1

then the graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, has a super (m + n + t + 7, 2)-

edge-antimagic total labeling.

Proof. Without loss of generality, we may assume that m is a multiple of n+1.

Let m = t(n + 1). Using the (t + 4, 1)-edge-antimagic vertex labeling δ3 from

Theorem 4.1.2, we define a total labeling δ4 : V (K1,m∪K1,n)∪E(K1,m∪K1,n) →
{1, 2, . . . , 2m + 2n + 2} as follows:

δ4(v) = δ3(v), for every vertex v ∈ V (K1,m ∪K1,n)

δ4(x1,0x1,j) = m + n + 1 +
⌈j

t

⌉
+ j, for 1 ≤ j ≤ m

δ4(x2,0x2,i) = m + n + 2 + i(t + 1), for 1 ≤ i ≤ n.

The edge-weights of K1,m ∪ K1,n, under the total labeling δ4, constitute the

sets

W 1
δ4

= {w1
δ4

(x1,0x1,j) = w1
δ3

(x1,0x1,j) + δ4(x1,0x1,j) : if 1 ≤ j ≤ m}
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15

1
x2,0

x2,1 x2,2 x2,3 x2,4

7 1310 16

19 22 25 28

4

x1,0

2 3 5 6 8
x1,2x1,1 x1,3 x1,4

9 11
x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

12 14

17 18 20 21 23 2624 27 29 30

Figure 4.1: Super (23, 2)-edge-antimagic total labeling of K1,10 ∪K1,4.

= {m + n + t + 3 + 2
⌈

j
t

⌉
+ 2j : if 1 ≤ j ≤ m},

W 2
δ4

= {w2
δ4

(x2,0x2,i) = w2
δ3

(x2,0x2,i) + δ4(x2,0x2,i) : if 1 ≤ i ≤ n}
= {m + n + 4 + (2i + 1)(t + 1) : if 1 ≤ i ≤ n}.

Hence the set
⋃2

r=1 W r
δ4

= {m + n + t + 7,m + n + t + 9, . . . , 3m + 3n + t + 5}
consists of an arithmetic sequence, with the first term m + n + t + 7 and the

common difference d = 2. Thus δ4 is a super (m + n + t + 7, 2)-edge-antimagic

total labeling. 2

We are not able to give an answer as to whether or not there exists a super

(a, 2)-edge-antimagic total labeling of K1,m∪K1,n for other values of m and n.

Therefore, we propose the following open problem.

Open Problem 4.1.1 For the graph K1,m ∪K1,n, m ≥ 2, n ≥ 2, if m is not

a multiple of n + 1 and n is not a multiple of m + 1, determine whether there

is a super (a, 2)-edge-antimagic total labeling.

By using the (t+4, 1)-edge-antimagic vertex labeling δ3, with respect to Lemma

3.0.3, we can claim

3 Theorem 4.1.5 If m+n is odd and either m is a multiple of n+1 or n is

a multiple of m + 1 then the graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, has a super
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(
3(m+n)+2t+13

2
, 1

)
-edge-antimagic total labeling.

Proof. From Theorem 4.1.2, the graph K1,m ∪ K1,n has a (t + 4, 1)-edge-

antimagic vertex labeling. Let A = {c, c + 1, c + 2, . . . , c + k} be a set of the

edge weights of the vertex labeling δ3, for c = t+4 and k = m+n−1. In light

of Lemma 3.0.3, there exists a permutation Π(A) of the elements of A such that

A+[Π(A)− c + m + n + 3] =
{
c + 3m+3n+5

2
, c + 3m+3n+5

2
+ 1, . . . , c + 5m+5n+3

2

}
.

If [Π(A)− c + m + n + 3] is an edge labeling of K1,m ∪K1,n then A + [Π(A)−
c+m+n+3] gives the set of the edge weights of K1,m∪K1,n, which implies that

the total labeling is super (a, 1)-edge-antimagic total, where a = c+ 3m+3n+5
2

=

3(m+n)+2t+13
2

. This concludes the proof. 2

Figure 4.2 illustrates an example of super (a, 1)-edge-antimagic total labeling

stated in Theorem 4.1.5.

18

1
x2,0

9 13 17
x2,1 x2,2 x2,3

31 29 27

5

x1,0

x1,2x1,1

2 3 4
x1,3

6
x1,4 x1,5

7
x1,6 x1,7

8 10
x1,8

11 12
x1,9

161514
x1,10 x1,11 x1,12

23 30 22 21 28 20 19 2625 32 24

Figure 4.2: Super (32, 1)-edge-antimagic total labeling of K1,12 ∪K1,3.

3 Theorem 4.1.6 If m = n then the graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2,

has a (4, 2)-edge-antimagic vertex labeling.

Proof. Let m = n and m ≥ 2. Consider the bijection δ5 : V (K1,m ∪K1,n) →
{1, 2, . . . , m + n + 2}, where

δ5(x1,j) =





1 if j = 0

2j + 1 if 1 ≤ j ≤ m
and δ5(x2,i) =





m + n + 2 if i = 0

2i if 1 ≤ i ≤ n.
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We observe that the edge-weights of K1,m ∪K1,n, under the vertex labeling δ5,

constitute the sets

W 1
δ5

= {w1
δ5

(x1,0x1,j) : if 1 ≤ j ≤ m} = {2j + 2 : if 1 ≤ j ≤ m},
W 2

δ5
= {w2

δ5
(x2,0x2,i) : if 1 ≤ i ≤ n} = {m + n + 2 + 2i : if 1 ≤ i ≤ n}.

Hence, the elements of the set
⋃2

r=1 W r
δ5

= {4, 6, . . . , m + 3n + 2} can be

arranged to form an arithmetic sequence, with first term 4 and common dif-

ference d = 2. Thus δ5 is a (4, 2)-edge-antimagic vertex labeling. 2

3 Theorem 4.1.7 If m = n then the graph K1,m ∪ K1,n, m ≥ 2, has super

(2m + 2n + 6, 1)-edge-antimagic total and super (m + n + 7, 3)-edge-antimagic

total labelings.

Proof. Let m = n and m ≥ 2. From Theorem 4.1.6, it follows that the graph

K1,m ∪ K1,n has a (4, 2)-edge-antimagic vertex labeling. We will distinguish

two cases, according to whether d = 1 or d = 3.

Case 1. d = 1

Define δ6 : V (K1,m ∪K1,n) ∪ E(K1,m ∪K1,n) → {1, 2, . . . , 2m + 2n + 2} to be

the bijective function

δ6(v) = δ5(v), for all vertices v ∈ V (K1,m ∪K1,n),

δ6(x1,0x1,j) = 2m + 2n + 3− j, for 1 ≤ j ≤ m,

δ6(x2,0x2,i) = m + 2n + 3− i, for 1 ≤ i ≤ n.

By direct computation, it is not difficult to verify that the edge-weights con-

stitute the arithmetic progression 2m + 2n + 6, 2m + 2n + 7, . . . , 3m + 3n + 5.

Thus δ6 is a super (2m + 2n + 6, 1)-edge-antimagic total labeling.

Case 2. d = 3

Consider the labeling δ7 : V (K1,m ∪K1,n) ∪E(K1,m ∪K1,n) → {1, 2, . . . , 2m +
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2n + 2}, such that

δ7(v) = δ5(v), for all vertices v ∈ V (K1,m ∪K1,n),

δ7(x1,0x1,j) = m + n + 2 + j, for 1 ≤ j ≤ m,

δ7(x2,0x2,i) = 2m + n + 2 + i, for 1 ≤ i ≤ n.

26

18
x2,0

x2,1

2 4
x2,2 x2,3 x2,4

6 8
x2,5 x2,6 x2,7 x2,8

10 12 14 16

27 28 29 32 33 3430 31

1

x1,0

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

3 5 7 9 1311 15 17

19 20 21 22 23 24 25

Figure 4.3: Super (23, 3)-edge-antimagic total labeling of K1,8 ∪K1,8.

We can see that the labeling δ7 uses each integer from the set {1, 2, . . . , 2m +

2n + 2} exactly once and the set of the edge-weights consists of an arithmetic

sequence with the first value m + n + 7 and common difference d = 3. Thus

δ7 is a super (m + n + 7, 3)-edge-antimagic total labeling. 2

In the case when m + n is even and m 6= n, we do not know if there exists

any super (a, 1)-edge-antimagic total labeling for K1,m ∪K1,n. Therefore, we

propose the following

Open Problem 4.1.2 For the graph K1,m ∪ K1,n, m ≥ 2, n ≥ 2, m + n

even and m 6= n, determine if there exists a super (a, 1)-edge-antimagic total

labeling.

From Theorem 4.1.7, we have that for m = n, m ≥ 2, the graph K1,m ∪K1,n

has a super (m+n+7, 3)-edge-antimagic total labeling but for m 6= n, m ≥ 2,

n ≥ 2, we do not know if such a labeling exists or not. Therefore, we propose
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Open Problem 4.1.3 For the graph K1,m ∪K1,n, m ≥ 2, n ≥ 2 and m 6= n,

determine if there exists a super (a, 3)-edge-antimagic total labeling.

To conclude this subsection, we prove the following theorem.

3 Theorem 4.1.8 For the graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, there is no

(a, 3)-edge-antimagic vertex labeling.

Proof. Assume that K1,m ∪ K1,n, m ≥ 2 and n ≥ 2, has a (a, 3)-edge-

antimagic vertex labeling δ : V (K1,m∪K1,n) → {1, 2, . . . , m+n+1,m+n+2}
and W = {w(uv) : uv ∈ E(K1,m∪K1,n)} = {a, a+3, a+6, . . . , a+(m+n−1)3}
is the set of edge-weights. The minimum possible edge weight is at least 3.

It follows that a ≥ 3. The maximum possible edge weight is no more than

(p− 1) + p = 2m + 2n + 3. Consequently, a + 3(m + n− 1) ≤ 2m + 2n + 3 and

3 ≤ 2 + 2
m+n−1

, which is impossible when m + n ≥ 4. 2

4.2 More than two stars

In Section 4.1, we studied super edge-antimagicness of a disjoint union of

two stars. Now we will provide new results on super edge-antimagicness of a

disjoint union of more than two copies of stars, denoted by K1,m∪2sK1,n. The

disjoint union of K1,m and 2sK1,n is the disconnected graph with vertex set

V (K1,m ∪ 2sK1,n) = {x1,j : 0 ≤ j ≤ m} ∪ {xi,k : 2 ≤ i ≤ 2s + 1, 0 ≤ k ≤ n}
and edge set E(K1,m ∪ 2sK1,n) = {x1,0x1,j : 1 ≤ j ≤ m} ∪ {xi,0xi,k : 2 ≤ i ≤
2s + 1, 1 ≤ k ≤ n}. Thus p = |V (K1,m ∪ 2sK1,n)| = m + 2s(n + 1) + 1 and

q = |E(K1,m ∪ 2sK1,n)| = m + 2sn.

If the graph K1,m ∪ 2sK1,n is super (a, d)-edge-antimagic total then, from

Lemma 3.0.1, we have that

d ≤ 3 +
4s

m + 2sn− 1
. (4.2)
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By applying Equation (4.2) for values of m,n and s, we obtain the following.

(i) for K1,m ∪ 2sK1,n,m = n = 1, s ≥ 1, there is no super (a, d)-edge-

antimagic total labeling with d > 5;

(ii) for K1,m∪2sK1,n, n+m = 3, s ≥ 1, there is no super (a, d)-edge-antimagic

total labeling with d > 4;

(iii) for K1,m ∪ 2sK1,n, n ≥ 2,m ≥ 2 and s ≥ 1, there is no super (a, d)-edge-

antimagic total labeling with d > 3.

If m = n = 1 then the graph K1,m∪2sK1,n is a disjoint union of 2s+1 copies of

P2, denoted by (2s + 1)P2. We have proved in Section 3.2 that for every s ≥ 1

and d ∈ {0, 1, 2, 3, 4, 5}, the graph (2s+1)P2 has a super (a, d)-edge-antimagic

total labeling.

3 Theorem 4.2.1 The graph K1,m∪ 2sK1,n, m ≥ 1, n ≥ 1 and s ≥ 1, has an

(3s + 3, 1)-edge-antimagic vertex labeling.

Proof. We distinguish two cases.

Case 1. m ≥ n

Define the vertex labeling φ1 : V (K1,m∪2sK1,n) → {1, 2, . . . , m+2s(n+1)+1}
in the following way:

φ1(xi,0) =





s + i if 1 ≤ i ≤ s + 1

i− s− 1 if s + 2 ≤ i ≤ 2s + 1

φ1(x1,j) =





(2s + 1)j + 1 if 1 ≤ j ≤ n + 1

2s(n + 1) + j + 1 if n + 2 ≤ j ≤ m

φ1(xi,k) = (2s + 1)k + i, for 2 ≤ i ≤ 2s + 1 and 1 ≤ k ≤ n.
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Clearly, the values of φ1 are 1, 2, . . . , m + 2s(n + 1) + 1. The edge-weights of

K1,m ∪ 2sK1,n, under the labeling φ1, constitute the sets

W 1
φ1

= {w1
φ1

(x1,0x1,j) = φ1(x1,0) + φ1(x1,j) : 1 ≤ j ≤ n + 1}
= {(2s + 1)j + s + 2 : 1 ≤ j ≤ n + 1},

W 2
φ1

= {w2
φ1

(x1,0x1,j) = φ1(x1,0) + φ1(x1,j) : n + 2 ≤ j ≤ m}
= {(2n + 3)s + j + 2 : n + 2 ≤ j ≤ m},

W 3
φ1

= {w3
φ1

(xi,0xi,k) = φ1(xi,0) + φ1(xi,k) : 2 ≤ i ≤ s + 1 and 1 ≤ k ≤ n}
= {(2s + 1)k + 2i + s : 2 ≤ i ≤ s + 1 and 1 ≤ k ≤ n},

W 4
φ1

= {w4
φ1

(xi,0xi,k) = φ1(xi,0) + φ1(xi,k) : s + 2 ≤ i ≤ 2s + 1 and 1 ≤ k ≤ n}
= {(2s + 1)k + 2i− s− 1 : s + 2 ≤ i ≤ 2s + 1 and 1 ≤ k ≤ n}.

It is not difficult to check that the set
⋃4

r=1 W r
φ1

= {3s + 3, 3s + 4, . . . , (3 +

2n)s + m + 2}.

Case 2. m < n

For m ≥ 1, n ≥ 1 and s ≥ 1, define the bijection φ2 : V (K1,m ∪ 2sK1,n) →
{1, 2, . . . , m + 2s(n + 1) + 1} as follows:

φ2(xi,0) = φ1(xi,0)

φ2(x1,j) = (2s + 1)j + 1, for 1 ≤ j ≤ m

φ2(xi,k) =





(2s + 1)k + i if 2 ≤ i ≤ 2s + 1 and 1 ≤ k ≤ m

2sk + m + i if 2 ≤ i ≤ 2s + 1 and m + 1 ≤ k ≤ n.

Then for the edge-weights of K1,m ∪ 2sK1,n we have:

W 1
φ2

= {w1
φ2

(x1,0x1,j) = φ2(x1,0) + φ2(x1,j) : 1 ≤ j ≤ m} = {(2s + 1)j + s + 2 :

1 ≤ j ≤ m},
W 2

φ2
= {w2

φ2
(xi,0xi,k) = φ2(xi,0) + φ2(xi,k) : 2 ≤ i ≤ s + 1 and 1 ≤ k ≤ m} =

{(2s + 1)k + 2i + s : 2 ≤ i ≤ s + 1 and 1 ≤ k ≤ m},
W 3

φ2
= {w3

φ2
(xi,0xi,k) = φ2(xi,0) + φ2(xi,k) : s + 2 ≤ i ≤ 2s + 1 and 1 ≤ k ≤

m} = {(2s + 1)k + 2i− s− 1 : s + 2 ≤ i ≤ 2s + 1 and 1 ≤ k ≤ m},
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W 4
φ2

= {w4
φ2

(xi,0xi,k) = φ2(xi,0) + φ2(xi,k) : 2 ≤ i ≤ s + 1 and m + 1 ≤ k ≤
n} = {(2k + 1)s + 2i + m : 2 ≤ i ≤ s + 1 and m + 1 ≤ k ≤ n},

W 5
φ2

= {w5
φ2

(xi,0xi,k) = φ2(xi,0) + φ2(xi,k) : s + 2 ≤ i ≤ 2s + 1 and m + 1 ≤
k ≤ n} = {(2k−1)s+2i+m−1 : s+2 ≤ i ≤ 2s+1 and m+1 ≤ k ≤ n},

and
⋃5

r=1 W r
φ2

= {3s + 3, 3s + 4, . . . , (3 + 2n)s + m + 2} consists of consecutive

integers.

This implies that φ1 and φ2 are (3s + 3, 1)-edge-antimagic vertex labelings. 2

3 Theorem 4.2.2 For m ≥ 1, n ≥ 1 and s ≥ 1 the graph K1,m ∪ 2sK1,n

has a super ((4n + 5)s + 2m + 4, 0)-edge-antimagic total labeling and a super

((2n + 5)s + m + 5, 2)-edge-antimagic total labeling.

Proof. For d = 0, from Theorem 4.2.1, we have that for m ≥ 1, n ≥ 1 and

s ≥ 1, the graph K1,m∪2sK1,n has a (3s+3, 1)-edge-antimagic vertex labeling.

According to Lemma 3.0.2 for p = m + 2s(n + 1) + 1 and q = m + 2sn, there

is also a super ((4n + 5)s + 2m + 4, 0)-edge-antimagic total labeling.

For d = 2, we distinguish two cases.

Case 1. m ≥ n

Let us construct a vertex labeling φ3 of K1,m∪2sK1,n, m ≥ 2, n ≥ 2 and s ≥ 1,

in the following way:

φ3(x1,0x1,j) =





2s(j + n) + m + j + 1 if 1 ≤ j ≤ n + 1

2s(2n + 1) + m + j + 1 if n + 2 ≤ j ≤ m.

If 1 ≤ k ≤ n then

φ3(xi,0xi,k) =





2s(n + k) + m + 2i + k − 1 if 2 ≤ i ≤ s + 1

2s(n + k − 1) + 2i + m + k − 2 if s + 2 ≤ i ≤ 2s + 1.

We can see that the vertex labeling φ3 is a bijective function from K1,m∪2sK1,n

onto the set {1, 2, . . . , 2m+2s(2n+1)+1}. The edge-weights of K1,m∪2sK1,n,

under the labeling φ3, constitute the sets
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W 1
φ3

= {w1
φ3

(x1,0x1,j) = w1
φ1

(x1,0x1,j) + φ3(x1,0x1,j) : if 1 ≤ j ≤ n + 1} =

{(4j + 2n + 1)s + 2j + m + 3 : if 1 ≤ j ≤ n + 1},
W 2

φ3
= {w2

φ3
(x1,0x1,j) = w2

φ1
(x1,0x1,j) + φ3(x1,0x1,j) : if n + 2 ≤ j ≤ m} =

{(6n + 5)s + 2j + m + 3 : if n + 2 ≤ j ≤ m},
W 3

φ3
= {w3

φ3
(xi,0xi,k) = w3

φ1
(xi,0xi,k) + φ3(xi,0xi,k) : if 2 ≤ i ≤ s + 1 and 1 ≤

k ≤ n} = {(4k +2n+1)s+4i+2k +m− 1 : if 2 ≤ i ≤ s+1 and 1 ≤
k ≤ n},

W 4
φ3

= {w4
φ3

(xi,0xi,k) = w4
φ1

(xi,0xi,k) + φ3(xi,0xi,k) : if s + 2 ≤ i ≤ 2s +

1 and 1 ≤ k ≤ n} = {(4k + 2n− 3)s + 4i + 2k + m− 3 : if s + 2 ≤ i ≤
2s + 1 and 1 ≤ k ≤ n}.

Hence the set
⋃4

r=1 W r
φ3

= {(2n+5)s+m+5, (2n+5)s+m+7, . . . , (6n+5)s+

3m+3} consists of an arithmetic sequence, with the first term (2n+5)s+m+5

and the common difference d = 2. Thus φ3 is a ((2n + 5)s + m + 5, 2)-edge-

antimagic total labeling.

Case 2. m < n

For m ≥ 2, n ≥ 2 and s ≥ 1, define the bijection φ4 : V (K1,m ∪ 2sK1,n) →
{1, 2, . . . , 2m + 2s(2n + 1) + 1} as follows:

φ4(x1,0x1,j) = 2s(n + j) + m + j + 1 : if 1 ≤ j ≤ m

If 1 ≤ k ≤ m then

φ4(xi,0xi,k) =





2s(n + k) + m + 2i + k − 1 if 2 ≤ i ≤ s + 1

2s(n + k − 1) + 2i + m + k − 2 if s + 2 ≤ i ≤ 2s + 1.

If m + 1 ≤ k ≤ n then

φ4(xi,0xi,k) =





2s(n + k) + 2m + 2i− 1 if 2 ≤ i ≤ s + 1

2s(n + k − 1) + 2m + 2i− 2 if s + 2 ≤ i ≤ 2s + 1.

We can see that the vertex labeling φ4 is a bijective function from K1,m∪2sK1,n

onto the set {1, 2, . . . , 2m+2s(2n+1)+1}. The edge-weights of K1,m∪2sK1,n,

under the labeling φ4, constitute the sets
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W 1
φ4

= {w1
φ4

(x1,0x1,j) = w1
φ2

(x1,0x1,j) + φ4(x1,0x1,j) : if 1 ≤ j ≤ m} =

{(4j + 2n + 1)s + 2j + 3 : if 1 ≤ j ≤ m},
W 2

φ4
= {w2

φ4
(xi,0xi,k) = w2

φ2
(xi,0xi,k) + φ4(xi,0xi,k) : if 2 ≤ i ≤ s + 1 and 1 ≤

k ≤ m} = {(4k +2n+1)s+4i+2k +m− 1 : if 2 ≤ i ≤ s+1 and 1 ≤
k ≤ m},

W 3
φ4

= {w3
φ4

(xi,0xi,k) = w3
φ2

(xi,0xi,k)+φ4(xi,0xi,k) : if s+2 ≤ i ≤ 2s+1 and 1 ≤
k ≤ m} = {(4k+2n−3)s+4i+2k+m−3 : if s+2 ≤ i ≤ 2s+1 and 1 ≤
k ≤ m},

W 4
φ4

= {w4
φ4

(xi,0xi,k) = w4
φ2

(xi,0xi,k)+φ4(xi,0xi,k) : if 2 ≤ i ≤ s+1 and m+1 ≤
k ≤ n} = {(4k +2n)s+4i+k +3m−1 : if 2 ≤ i ≤ s+1 and m+1 ≤
k ≤ n},

W 5
φ4

= {w5
φ4

(xi,0xi,k) = w5
φ2

(xi,0xi,k) + φ4(xi,0xi,k) : if s + 2 ≤ i ≤ 2s +

1 and m+1 ≤ k ≤ n} = {(4k +2n− 2)s+4i−k +3m− 3 : if s+2 ≤
i ≤ 2s + 1 and m + 1 ≤ k ≤ n}.

Hence the set
⋃5

r=1 W r
φ4

= {(2n+5)s+m+5, (2n+5)s+m+7, . . . , (6n+5)s+

3m+3} consists of an arithmetic sequence, with the first term (2n+5)s+m+5

and the common difference d = 2. Thus φ4 is a ((2n + 5)s + m + 5, 2)-edge-

antimagic total labeling. 2

x5,2

1

x4,0

3

x1,0

4

x2,0

5

x3,0

2

1510

x5,0

x1,1 x1,2

6 11 16
x1,3

17
x1,4 x1,5 x1,6

18 19

20 25 30 31 32 33

7 12 8 13
x2,1 x2,2 x3,1

22 27 24

x3,2 x4,1 x4,2

9 14

2129 26 23 28

x5,1

Figure 4.4: Super (29, 2)-edge-antimagic total labeling of K1,6 ∪ 4K1,2.

3 Theorem 4.2.3 If m is odd then the graph K1,m∪2sK1,n, for m ≥ 1, n ≥ 1
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and s ≥ 1, has a super (s(3n + 5) + 3m+9
2

, 1)-edge-antimagic total labeling.

Proof. Consider the vertex labelings φ1 and φ2 of the graph K1,m ∪ 2sK1,n

from Theorem 4.2.1, which are (3s + 3, 1)-edge-antimagic vertex labelings.

The set of edge-weights gives the sequence A = {c, c + 1, c + 2, . . . , c + k}, for

c = 3s + 3 an k = 2ns + m − 1. The value k is even for m odd. According

to Lemma 3.0.3, there exists a permutation Π(A) of the elements of A, such

that A + [Π(A) − c + p + 1] = {s(3n + 5) + 3m+9
2

, s(3n + 5) + 3m+11
2

, s(3n +

5) + 3m+13
2

, . . . , s(5n + 5) + 5m+7
2
}. If [Π(A)− c + p + 1] is an edge labeling of

K1,m ∪ 2sK1,n for m odd, m ≥ 1, n ≥ 1, s ≥ 1, then A + [Π(A) − c + p + 1]

determines the set of edge-weights of the graph K1,m∪2sK1,n and the resulting

total labeling is super (s(3n + 5) + 3m+9
2

, 1)-edge-antimagic total. 2

29

5
x3,0

3
x1,0

4
x2,0

1
x4,0

2
x5,0

6 11 16 127 817 13 18 9 14 19 10 15 20
x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3 x4,2x4,1 x4,3 x5,1 x5,2 x5,3

28 33 23 27 32 22 26 31 21 35 25 30 34 24

Figure 4.5: Super (37, 1)-edge-antimagic total labeling of K1,3 ∪ 4K1,3.

For m even we have not yet found any super (a, 1)-edge-antimagic total label-

ing. Therefore, we propose the following open problem.

Open Problem 4.2.1 For m even, m ≥ 2, n ≥ 1 and s ≥ 1, determine if

there is a super (a, 1)-edge-antimagic total labeling of K1,m ∪ 2sK1,n.

3 Theorem 4.2.4 For s ≥ 1, the graph K1,2 ∪ 2sK1,1 has a super (5s+7, 4)-

edge-antimagic total labeling.
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Proof. For s ≥ 3 we consider the following function φ5 : V (K1,2 ∪ 2sK1,1) →
{1, 2, . . . , 4s + 3}, where

φ5(xi,0) =





3s + 3 if i = 1

s + 2i− 2 if 2 ≤ i ≤ s + 3.

2s + i + 1 if s + 4 ≤ i ≤ 2s + 1

φ5(x1,j) =





s + 3 if j = 1

4s + 3 if j = 2

φ5(xi,1) =





i− 1 if 2 ≤ i ≤ s + 2

2i− s− 1 if s + 3 ≤ i ≤ 2s + 1.

In the case s = 1, label φ6(x1,0) = 6, φ6(x1,1) = 4, φ6(x1,2) = 7, φ6(x2,0) =

3, φ6(x2,1) = 1, φ6(x3,0) = 5 and φ6(x3,1) = 2. If s = 2 then label φ7(x1,0) = 9,

φ7(x1,1) = 5, φ7(x1,2) = 11, φ7(x2,0) = 4, φ7(x2,1) = 1, φ7(x3,0) = 6, φ7(x3,1) =

2, φ7(x4,0) = 8, φ7(x4,1) = 3, φ7(x5,0) = 10 and φ7(x5,1) = 7.

It is a matter of routine checking to see that the vertex labelings φ5, φ6 and

φ7 are (s + 3, 3)-edge-antimagic vertex. In the same way as in Theorem 3.3.2,

with respect to Theorem 5 from [9], we have that, for p = 4s + 3 and s ≥ 1,

there is a super (5s + 7, 4)-edge-antimagic total labeling of K1,2 ∪ 2sK1,1. 2

Open Problem 4.2.2 For s ≥ 1, determine if there is a super (a, 4)-edge-

antimagic total labeling of K1,1 ∪ 2sK1,2.

In the case when d = 3, m ≥ 2, n ≥ 2 and s ≥ 1, we do not have any answer

for super edge-antimagicness of K1,m ∪ 2sK1,n. Therefore, we propose

Open Problem 4.2.3 For the graph K1,m∪2sK1,n, m ≥ 2, n ≥ 2 and s ≥ 1,

determine if there is a super (a, 3)-edge-antimagic total labeling.



Chapter 5

SEATL of Disjoint Union of

Complete s-partite Graphs

The study of antimagicness of complete s-partite graphs, for s = 1, began by

Bača and Barrientos in [3]. They proved that the graph mKn has a super (a, d)-

edge-antimagic total labeling if and only if either (i) d ∈ {0, 2}, n ∈ {2, 3} and

m is odd, m ≥ 3; or (ii) d = 1, n ≥ 2 and m ≥ 2; or (iii) d ∈ {3, 5}, n = 2

and m ≥ 2; or (iv) d = 4, n = 2 and m is odd, m ≥ 3. In [6] Bača and

Brankovic continued the study on antimagicness of complete s-partite graphs

when s = 2. They proved that the graph mKn,n has a super (a, d)-edge-

antimagic total labeling for (i) d = 1 if m ≥ 2 and n ≥ 1; (ii) for d = 2 if

n = 1 and m ≥ 3 is odd; (iii) for d ∈ {3, 5} if and only if n = 1 and m ≥ 2;

(iv) for d = 4 if and only if n = 1 and m ≥ 3 is odd. The question of whether

or not the disjoint union of multiple copies of complete s-partite graphs, for

general s, admits a super (a, d)-edge-antimagic total labeling, is still open. In

this chapter we present new results that partially answer this problem. In the

first section we show that disjoint union of complete tripartite graph admits

super (a, d)-edge-antimagic total labeling, and we generalise this result for m

copies of complete s-partite graph in the second section. However, for some

63
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values of parameter s,m and n, the question remains open.

5.1 Complete tripartite graphs

Let mKn,n,n be a disjoint union of m copies of tripartite graph Kn,n,n with

vertex set V (mKn,n,n) = {xl
i : 1 ≤ i ≤ n, 1 ≤ l ≤ m} ∪ {yl

j : 1 ≤
j ≤ n, 1 ≤ l ≤ m} ∪ {zl

k : 1 ≤ k ≤ n, 1 ≤ l ≤ m} and with edge set

E(mKn,n,n) =
⋃m

l=1{xl
iy

l
j, x

l
iz

l
k, y

l
jz

l
k : 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n}. Thus

p = |V (mKn,n,n)| = 3mn and q = |E(mKn,n,n)| = 3mn2. If mKn,n,n, m ≥ 2

and n ≥ 1, is super (a, d)-edge-antimagic total then, by Lemma 3.0.1, it follows

that d < 3.

3 Theorem 5.1.1 The graph mKn,n,n has an (a, 1)-edge-antimagic vertex la-

beling if and only if n = 1 and m is odd, m ≥ 3.

Proof. Assume that mKn,n,n has an (a, 1)-edge-antimagic vertex labeling λ1 :

V (mKn,n,n) → {1, 2, . . . , 3mn} and W = {w(uv) : uv ∈ E(mKn,n,n)} = {a, a+

1, a + 2, . . . , a + (3mn2 − 1)} is the set of edge-weights. The sum of the edge-

weights in the set W is

∑

uv∈E(mKn,n,n)

w(uv) = 3mn2

(
a +

3mn2 − 1

2

)
. (5.1)

In the computation of the edge-weights of mKn,n,n, the label of each vertex is

used 2n times. The sum of all vertex labels used to calculate the edge-weights

is equal to

2n
∑

u∈V (mKn,n,n)

λ1(u) = 3mn2(1 + 3mn). (5.2)

Since Equations (5.1) and (5.2) gives

∑

uv∈E(mKn,n,n)

w(uv) = 2n
∑

u∈V (mKn,n,n)

λ1(u),
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it immediately follows that

a =
3mn(2− n) + 3

2
.

The minimum edge weight a is a positive integer if and only if n = 1 and m is

odd, m ≥ 3.

The required

(
3m+3

2
, 1

)
-edge-antimagic vertex labeling λ1 can be defined in

the following way.

λ1(x
l
1) =





l+1
2

if l is odd

m+l+1
2

if l is even

λ1(y
l
1) =





3m+l
2

if l is odd

m + l
2

if l is even

λ1(z
l
1) = 3m− l + 1, for all 1 ≤ l ≤ m.

This completes the proof. 2

3 Theorem 5.1.2 For d ∈ {0, 2}, the graph mKn,n,n is super (a, d)-edge-

antimagic total if and only if n = 1 and m is odd, m ≥ 3.

Proof.

Case 1. d = 0

Figueroa-Centeno, Ichishima and Muntaner-Batle (see Lemma 3.0.2) showed

that a (p, q) graph G is super magic (super (a, 0)-edge-antimagic total) if and

only if there exists an (a−p−q, 1)-edge-antimagic vertex labeling. According to

Theorem 5.1.1, the graph mKn,n,n has
(

3m+3
2

, 1
)
-edge-antimagic vertex labeling

if and only if n = 1 and m is odd. With respect to Lemma 3.0.2, and for

p = 3mn, q = 3mn2, we have that the graph mKn,n,n has a super (15m+3
2

, 0)-

edge-antimagic total labeling if and only if n = 1 and m is odd.

Case 2. d = 2

Assume that mKn,n,n, m ≥ 2, n ≥ 1, has a super (a, d)-edge-antimagic to-

tal labeling λ2 : V (mKn,n,n) ∪ E(mKn,n,n) → {1, 2, . . . , 3mn + 3mn2} and
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{w(uv) = λ2(u)+λ2(uv)+λ2(v) : uv ∈ E(mKn,n,n)} = {a, a+d, a+2d, . . . , a+

(3mn2 − 1)d} is the set of the edge-weights. Then

∑

uv∈E(mKn,n,n)

w(uv) = 3mn2
(
a +

(3mn2 − 1)d

2

)
(5.3)

is the sum of all the edge-weights. In the computation of the edge-weights of

mKn,n,n, under the labeling λ2, the label of each vertex is used 2n times and

the label of each edge is used once. Thus

2n
m∑

l=1

( n∑
i=1

λ2(x
l
i) +

n∑
j=1

λ2(y
l
j) +

n∑

k=1

λ2(z
l
k)

)
+

m∑

l=1

( n∑
i=1

n∑
j=1

λ2(x
l
iy

l
j) +

n∑
i=1

n∑

k=1

λ2(x
l
iz

l
k) +

n∑
j=1

n∑

k=1

λ2(y
l
jz

l
k)

)
=

9mn2
(mn2 + 4mn + 1

2

)
. (5.4)

Since we assume that λ2 is a super (a, d)-edge-antimagic total labeling, the sum

of edge-weights is equal to the sum of the vertex and edge labels. Combining

(5.3) and (5.4) gives the following equation

a =
3mn2 + 12mn + 3− (3mn2 − 1)d

2
. (5.5)

The minimum possible edge weight under the labeling λ2 is at least 3mn + 4.

So, for d = 2, Equation (5.5) gives the following inequalities

3mn + 4 ≤ 12mn− 3mn2 + 5

2

mn(n− 2) ≤ −1.

The last inequality is true if and only if n = 1. Then, from Equation (5.5), it

follows that a = 9m+5
2

and this is an integer if and only if m is odd.

In the same way as in Theorem 3.3.2, since labeling λ1 from the proof of

Theorem 5.1.1 is a
(

3m+3
2

, 1
)
-edge-antimagic vertex labeling of mK1,1,1 when

m is odd, with respect to Theorem 5 from [9], we have that mK1,1,1, for m

odd, m ≥ 3, has a super
(

9m+5
2

, 2
)
-edge-antimagic total labeling. 2
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3 Theorem 5.1.3 The graph mKn,n,n has a super (6mn+2, 1)-edge-antimagic

total labeling for every m ≥ 2 and n ≥ 1.

Proof. If d = 1 then, from Equation (5.5), it follows that a = 6mn+2. Define

the bijective function λ3 : V (mKn,n,n)∪E(mKn,n,n) → {1, 2, . . . , 3mn+3mn2},
for m ≥ 2 and n ≥ 1, in the following way:

λ3(x
l
i) = (3i− 3)m + l, for 1 ≤ i ≤ n and 1 ≤ l ≤ m

λ3(y
l
j) = (3j − 2)m + l, for 1 ≤ j ≤ n and 1 ≤ l ≤ m

λ3(z
l
k) = (3k − 1)m + l, for 1 ≤ k ≤ n and 1 ≤ l ≤ m.

If 1 ≤ l ≤ m then

λ3(x
l
iy

l
j) = 3mn(n + 1− 2j + 2i) + 3m

∑j−i−1
t=0 (1 + 2t) + 1− l − 3m(i− 1),

for 1 ≤ i ≤ n and i ≤ j ≤ n,

λ3(x
l
iy

l
j) = 3mn(n + 2− 2i + 2j) + 6m

∑i−j−1
t=0 t + 1− l − 3m(j − 1),

for 1 ≤ j ≤ n− 1 and j + 1 ≤ i ≤ n,

λ3(y
l
jz

l
k) = 3mn(n + 1− 2k + 2j) + 3m

∑k−j−1
t=0 (1 + 2t) + 1− l −m(3j − 2),

for 1 ≤ j ≤ n and j ≤ k ≤ n,

λ3(y
l
jz

l
k) = 3mn(n + 2− 2j + 2k) + 6m

∑j−k−1
t=0 t + 1− l −m(3k − 2),

for 1 ≤ k ≤ n− 1 and k + 1 ≤ j ≤ n,

λ3(z
l
kx

l
i) = 3mn(n + 3− 2i + 2k) + 3m

∑i−k−2
t=0 (1 + 2t) + 1− l −m(3k − 1),

for 1 ≤ k ≤ n− 1 and k + 1 ≤ i ≤ n,

λ3(z
l
kx

l
i) = 3mn(n− 2k + 2i) + 6m

∑k−i
t=0 t + 1− l −m(3i− 4),

for 1 ≤ i ≤ n and i ≤ k ≤ n.

Let Al = (al
ij) be a system of square matrices, for all l = 1, 2, . . . , m, where

al
ij = λ3(x

l
i)+λ3(y

l
j) for 1 ≤ i ≤ n, 1 ≤ j ≤ n and η = 3mn+2l, θ = 6mn+2l.
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Al =




m + 2l 4m + 2l 7m + 2l . . . η − 5m η − 2m

4m + 2l 7m + 2l 10m + 2l . . . η − 2m η + m

7m + 2l 10m + 2l 13m + 2l . . . η + m η + 4m
...

...
...

...
...

...

η − 5m η − 2m η + m . . . θ − 11m θ − 8m

η − 2m η + m η + 4m . . . θ − 8m θ − 5m




Let Bl = (bl
jk) be a system of square matrices for all l = 1, 2, . . . , m, where

bl
jk = λ3(y

l
j)+λ3(z

l
k) for 1 ≤ j ≤ n, 1 ≤ k ≤ n and η = 3mn+2l, θ = 6mn+2l.

Bl =




3m + 2l 6m + 2l 9m + 2l . . . η − 3m η

6m + 2l 9m + 2l 12m + 2l . . . η η + 3m

9m + 2l 12m + 2l 15m + 2l . . . η + 3m η + 6m
...

...
...

...
...

...

η − 3m η η + 3m . . . θ − 9m θ − 6m

η η + 3m η + 6m . . . θ − 6m θ − 3m




Let C l = (cl
ki) be a system of square matrices for all l = 1, 2, . . . , m, where

cl
ki = λ3(z

l
k)+λ3(x

l
i) for 1 ≤ k ≤ n, 1 ≤ i ≤ n and η = 3mn+2l, θ = 6mn+2l.

C l =




2m + 2l 5m + 2l 8m + 2l . . . η − 4m η −m

5m + 2l 8m + 2l 11m + 2l . . . η −m η + 2m

8m + 2l 11m + 2l 14m + 2l . . . η + 2m η + 5m
...

...
...

...
...

...

η − 4m η −m η + 2m . . . θ − 10m θ − 7m

η −m η + 2m η + 5m . . . θ − 7m θ − 4m




The systems of square matrices Al, Bl and C l, for l = 1, 2, . . . , m, describe the

edge-weights of mKn,n,n under the vertex labeling. The labels of the edges of

mKn,n,n, described by labeling λ3, can be exhibited by the systems of square



Chapter 5. SEATL of Disjoint Union of Complete s-partite Graphs 69

matrices H l = (hl
ij), P

l = (pl
jk) and Rl = (rl

ki) for l = 1, 2, . . . ,m, where

hl
ij = λ3(x

l
iy

l
j), for 1 ≤ i ≤ n and 1 ≤ j ≤ n

pl
jk = λ3(y

l
jz

l
k), for 1 ≤ j ≤ n and 1 ≤ k ≤ n

rl
ki = λ3(z

l
kx

l
i), for 1 ≤ k ≤ n and 1 ≤ i ≤ n, respectively.

For γ = 3mn2 + 1 − l, ξ = 3mn and ϑ = ξ + 1 − l, the systems of square

matrices are as follows:

H l =


γ + ξ γ − ξ + 3m γ − 3ξ + 12m . . . ϑ + 12m ϑ + 3m

γ γ + ξ − 3m γ − ξ . . . ϑ + 24m ϑ + 9m

γ − 2ξ + 6m γ − 3m γ + ξ − 6m . . . ϑ + 42m ϑ + 21m
...

...
...

...
...

...

ϑ + 18m ϑ + 33m ϑ + 54m . . . γ + 6m γ − ξ + 6m

ϑ + 6m ϑ + 15m ϑ + 30m . . . γ − ξ + 6m γ + 3m




,

P l =


γ + ξ −m γ − ξ + 2m γ − 3ξ + 11m . . . ϑ + 11m ϑ + 2m

γ −m γ + ξ − 4m γ − ξ −m . . . ϑ + 23m ϑ + 8m

γ − 2ξ + 5m γ − 4m γ + ξ − 7m . . . ϑ + 41m ϑ + 20m
...

...
...

...
...

...

ϑ + 17m ϑ + 32m ϑ + 53m . . . γ + 5m γ − 2ξ + 8m

ϑ + 5m ϑ + 14m ϑ + 29m . . . γ − ξ + 5m γ + 2m




,

Rl =


γ + m γ + ξ − 2m γ − ξ + m . . . ϑ + 25m ϑ + 10m

γ − 2ξ + 7m γ − 2m γ + ξ − 5m . . . ϑ + 43m ϑ + 22m

γ − 4ξ + 19m γ − 2ξ + 4m γ − 5m . . . ϑ + 67m ϑ + 40m
...

...
...

...
...

...

ϑ + 7m ϑ + 16m ϑ + 31m . . . γ − ξ + 7m γ + 4m

ϑ + m ϑ + 4m ϑ + 13m . . . γ − 3ξ + 13m γ − ξ + 4m




.
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All edge-weights of mKn,n,n, under the total labeling λ3, can be presented as

the systems of square matrices Sl = Al + H l, T l = Bl + P l, and U l = C l + Rl,

for l = 1, 2, . . . , m. It is not difficult to verify that the entries of square

matrices Sl, T l and U l, for l = 1, 2, . . . , m, are formed from consecutive integers

6mn + 2, 6mn + 3, 6mn + 4, . . . , 3mn2 + 6mn, 3mn2 + 6mn + 1. This implies

that the total labeling λ3 is super (6mn + 2, 1)-edge-antimagic total, for every

m ≥ 2 and n ≥ 1. 2

The edge labels can be exhibited by the following systems of square matrices.

H2 =

264 107 62 35

80 98 53

44 71 89

375H1 =

264 108 63 36

81 99 54

45 72 90

375
P 2 =

264 104 59 32

77 95 50

41 68 86

375 P 3 =

264 103 58 31

76 94 49

40 67 85

375P 1 =

264 105 60 33

78 96 51

42 69 87

375
R2 =

264 83 47 29

101 74 38

56 92 65

375 R3 =

264 82 46 28

100 73 37

55 91 64

375R1 =

264 84 48 30

102 75 39

57 93 66

375
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2724

6 9

18

1210 11 31 2

H3 =

264 106 61 34

79 97 52

43 70 88

375

Figure 5.1: Super (56, 1)-edge-antimagic total labeling of 3K3,3,3.
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5.2 Complete s-partite graphs

In Section 5.1, we proved that the disjoint union of multiple copies of complete

tripartite graph has a super (a, d)-edge-antimagic total labeling for (i) d ∈
{0, 2} if and only if n = 1 and m ≥ 3 is odd; and (ii) d = 1 if m ≥ 2 and n ≥ 1.

Now, we will study super edge-antimagicness of a disjoint union of m copies of

complete s-partite graphs, denoted by mKn, n, . . . , n︸ ︷︷ ︸
s

. This is a disconnected

graph with vertex set V (mKn, n, . . . , n︸ ︷︷ ︸
s

) =
m⋃

j=1

s⋃
t=1

{
xj

t,i : 1 ≤ i ≤ n
}

and edge

set E(mKn, n, . . . , n︸ ︷︷ ︸
s

) =
m⋃

j=1

s−1⋃
t=1

n⋃
i=1

{
xj

t,ix
j
t+k,r : 1 ≤ k ≤ s− t, 1 ≤ r ≤ n

}
, for

m ≥ 2, n ≥ 1 and s ≥ 2. Thus, let p = |V (mKn, n, . . . , n︸ ︷︷ ︸
s

)| = mns and

q = |E(mKn, n, . . . , n︸ ︷︷ ︸
s

)| = mn2s(s−1)
2

.

If the graph mKn, n, . . . , n︸ ︷︷ ︸
s

admits a super (a, d)-edge-antimagic total labeling

σ : V (mKn, n, . . . , n︸ ︷︷ ︸
s

) ∪ E(mKn, n, . . . , n︸ ︷︷ ︸
s

) → {
1, 2, . . . , mns

2
(n(s− 1) + 2)

}
,

then W =



w(uv) = σ(u) + σ(uv) + σ(v) : uv ∈ E(mKn, n, . . . , n︸ ︷︷ ︸

s

)



 =

{
a, a+

d, a+2d, . . . , a+
(

mn2s(s−1)
2

− 1
)

d
}

is the set of the edge-weights and the sum

of all the edge-weights in W is

∑

uv∈E(mKn, n, . . . , n︸ ︷︷ ︸
s

)

w(uv) =
mn2s(s− 1)

8

[
4a +

(
mn2s(s− 1)− 2

)
d
]
. (5.6)

In the computation of the edge-weights of mKn, n, . . . , n︸ ︷︷ ︸
s

, each edge label is

used once and the label of each vertex is used (s− 1)n times. The sum of all

the vertex labels and the edge labels used to calculate the edge-weights is thus
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equal to

(s− 1)n
∑

u∈V (mKn, n, . . . , n︸ ︷︷ ︸
s

)

σ(u) +
∑

uv∈E(mKn, n, . . . , n︸ ︷︷ ︸
s

)

σ(uv) =

mns + 1

2
mn2s(s− 1) +

mn2s(s− 1)

8

[
4mns + mn2s(s− 1) + 2

]
. (5.7)

The sum of all the vertex labels and the edge labels used to calculate the

edge-weights is equal to the sum of the edge-weights in the set W , under the

labeling σ. Thus combining Equations (5.6) and (5.7) gives

4a + (mn2s(s− 1)− 2)d = 8mns + mn2s(s− 1) + 6. (5.8)

At this point, we are ready to establish an upper bound on the parameter d.

3 Lemma 5.2.1 For the graph mKn, n, . . . , n︸ ︷︷ ︸
s

, m ≥ 2, n = 1 and s = 4,

there is no super (a, d)-edge-antimagic total labeling with d ≥ 3.

Proof. Since the minimum possible edge weight, under the labeling σ, is at

least mns + 4, from Equation (5.8) it follows that

d ≤ 1 +
4mns− 8

mn2s(s− 1)− 2
. (5.9)

It is easy to verify that 1 < 4mns−8
mn2s(s−1)−2

< 2 only when m ≥ 2, n = 1 and

s = 4, which completes the proof. 2

Since 4mns−8
mn2s(s−1)−2

< 1, for m ≥ 2, n ≥ 2 and s ≥ 4, Inequality (5.9) gives d < 2

and we have the following lemma.

3 Lemma 5.2.2 For the graph mKn, n, . . . , n︸ ︷︷ ︸
s

, m ≥ 2, n ≥ 2 and s ≥ 4,

there is no super (a, d)-edge-antimagic total labeling with d ≥ 2.
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First, we deal with super (a, 0)-edge-antimagic total labeling for the disjoint

union of m copies of complete s-partite graph.

3 Theorem 5.2.1 If either s ≡ 0, 1 (mod 4), s ≥ 4, m ≥ 2, n ≥ 1, or mn is

even, m ≥ 2, n ≥ 1, s ≥ 4, then there is no super (a, 0)-edge-antimagic total

labeling for mKn, n, . . . , n︸ ︷︷ ︸
s

.

Proof. Assume that mKn, n, . . . , n︸ ︷︷ ︸
s

admits a super (a, 0)-edge-antimagic total

labeling σ : V (mKn, . . . , n︸ ︷︷ ︸
s

)∪E(mKn, . . . , n︸ ︷︷ ︸
s

) → {
1, 2, . . . , mns

2
(n(s− 1) + 2)

}
.

From Equation (5.8) we have

a = 2mns +
mn2s(s− 1)

4
+

3

2
. (5.10)

If either s ≡ 0, 1 (mod 4), s ≥ 4, m ≥ 2, n ≥ 1, or mn is even, m ≥ 2, n ≥ 1

and s ≥ 4, then from Equation (5.10) it is easy to see that the value a is not

an integer, which is a contradiction. 2

The minimum edge weight in Equation (5.10) is an integer if and only if mn is

odd and s ≡ 2, 3 (mod 4). In this case we do not have any answer concerning

the super (a, 0)-edge-antimagicness of mKn, n, . . . , n︸ ︷︷ ︸
s

. Therefore, we propose

Open Problem 5.2.1 For the graph mKn, n, . . . , n︸ ︷︷ ︸
s

, mn odd, m ≥ 3, n ≥

1 and s ≡ 2, 3 (mod 4), s ≥ 6, determine if there is a super
(
2mns +

mn2s(s−1)+6
4

, 0
)
-edge-antimagic total labeling.

From Lemma 5.2.1, it follows that the graph mKn, n, . . . , n︸ ︷︷ ︸
s

may possibly be

super (a, 2)-edge-antimagic total only when m ≥ 2, n = 1 and s = 4. However,

our next result gives a negative answer.

3 Theorem 5.2.2 If m ≥ 2, n = 1 and s = 4, then there is no super (a, 2)-

edge-antimagic total labeling for the graph mKn, n, . . . , n︸ ︷︷ ︸
s

.
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Proof. Assume to the contrary that for m ≥ 2, n = 1 and s = 4, the graph

mKn, n, . . . , n︸ ︷︷ ︸
s

has a super (a, 2)-edge-antimagic total labeling σ : V (mKn,n,n,n)∪

E(mKn,n,n,n) → {1, 2, . . . , 10m}. From Equation (5.8), we get that 2a =

10m + 5. This contradicts the fact that a is an integer. 2

Now, we will concentrate on the existence of super (a, 1)-edge-antimagic total

labeling of disjoint union of m copies of complete 4-partite graph.

3 Theorem 5.2.3 The graph mKn,n,n,n has a super (8mn+2, 1)-edge-antimagic

total labeling for every m ≥ 2 and n ≥ 1.

Proof. If s = 4 and d = 1, then from Equation (5.8), it follows that a =

8mn + 2. Consider the bijective function

σ1 : V (mKn,n,n,n) ∪ E(mKn,n,n,n) → {1, 2, . . . , 2mn(3n + 2)}, where

σ1(x
j
t,i) = m(4i + t− 5) + j for 1 ≤ t ≤ 4, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

σ1(x
j
1,ix

j
2,r) =





2mn(3n + 8− 6i) + 6m
i−2∑
k=0

(1 + 2k) + 2m(1− r)− j + 1,

for 1 ≤ i ≤ n, 1 ≤ r ≤ n− i + 1 and 1 ≤ j ≤ m

2mn(6i− 3n− 2) + 4m
n−i∑
k=0

(1 + 3k)− 2m(r − 2 + i)− j + 1,

for 2 ≤ i ≤ n, n + 2− i ≤ r ≤ n and 1 ≤ j ≤ m

σ1(x
j
1,ix

j
3,r) =





6mn(n + 2− 2i) + 2m
i−1∑
k=1

(6k − 1) + m(3− 2r)− j + 1,

for 1 ≤ i ≤ n, 1 ≤ r ≤ n− i + 1 and 1 ≤ j ≤ m

6mn(2i− n) + 12m
n−1−i∑
k=0

(1 + k)−m(2r − 5 + 2i)− j + 1,

for 2 ≤ i ≤ n, n + 2− i ≤ r ≤ n and 1 ≤ j ≤ m
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σ1(x
j
1,ix

j
4,r) =





σ1(x
j
1,ix

j
2,r)−m,

for 1 ≤ i ≤ n, 1 ≤ r ≤ n− i + 1 and 1 ≤ j ≤ m

σ1(x
j
1,ix

j
2,r)−m,

for 2 ≤ i ≤ n, n + 2− i ≤ r ≤ n and 1 ≤ j ≤ m

σ1(x
j
2,ix

j
3,r) =





2mn(3n + 4− 6i) + 2m
i−1∑
k=1

(6k + 1) + m(5− 2r)− j + 1,

for 1 ≤ i ≤ n, 1 ≤ r ≤ n− i + 1 and 1 ≤ j ≤ m

2mn(6i− 3n + 2) + 4m
n−1−i∑
k=0

(2 + 3k)−m(2r − 3 + 2i)− j + 1,

for 2 ≤ i ≤ n, n + 2− i ≤ r ≤ n and 1 ≤ j ≤ m

σ1(x
j
2,ix

j
4,r) =





σ1(x
j
1,ix

j
3,r)−m,

for 1 ≤ i ≤ n, 1 ≤ r ≤ n− i + 1 and 1 ≤ j ≤ m

σ1(x
j
1,ix

j
3,r)−m,

for 2 ≤ i ≤ n, n + 2− i ≤ r ≤ n and 1 ≤ j ≤ m

σ1(x
j
3,ix

j
4,r) =





2mn(3n + 4− 6i) + 2m
i−1∑
k=1

(6k + 1) + m(4− 2r)− j + 1,

for 1 ≤ i ≤ n− 1, 1 ≤ r ≤ n− i and 1 ≤ j ≤ m,

2mn(6i− 3n + 2) + 4m
n−1−i∑
k=0

(2 + 3k)− 2m(r − 1 + i)− j + 1,

for 1 ≤ i ≤ n, n + 1− i ≤ r ≤ n and 1 ≤ j ≤ m.

It is not difficult to verify that the system of sets

m⋃
j=1

3⋃
t=1

n⋃
i=1

{
σ1(x

j
t,i) + σ1(x

j
t,ix

j
t+k,r) + σ1(x

j
t+k,r) : 1 ≤ k ≤ 4− t, 1 ≤ r ≤ n

}
con-

sists of consecutive integers of the form 8mn+2, 8mn+3, 8mn+4, . . . , 6n2m+

8mn, 6n2m + 8mn + 1. Thus σ1 is a super (8mn + 2, 1)-edge-antimagic total

labeling. 2

A natural question is whether we can say anything about super (a, 1)-edge-

antimagic total labeling for disjoint union of complete s-partite graphs for
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s ≥ 5. Although we have not yet found general formulas for vertex and

edge labelings of mKn, n, . . . , n︸ ︷︷ ︸
s

that will produce a required super (a, 1)-edge-

antimagic total labeling, the observed antimagic properties of mKn, n, . . . , n︸ ︷︷ ︸
s

lead us to suggest

Conjecture 5.2.1 There is a super (a, 1)-edge-antimagic total labeling for the

graph mKn, n, . . . , n︸ ︷︷ ︸
s

, for s ≥ 5 and for every m ≥ 2 and n ≥ 1.



PART II



Chapter 6

Graphs of Large Order

6.1 Motivation

In this part of the thesis, we will deal with another problem in graph theory,

namely, the degree/diameter problem. Interestingly, the problem is very dif-

ferent for undirected and directed graphs. Therefore, we consider separately

the undirected and directed version of this problem.

The design of large communication networks has become an issue of grow-

ing interest due to recent advances in very large scale integrated technology.

In such networks, it is desirable to have connections which achieve the most

efficient and reliable communication in view of practical economic constraint.

There are several factors which should be considered in communication network

design. Two of the factors which seem to appear most frequently, namely, (i)

the number of connections which can be attached to a processing element

is limited, and (ii) a short communication route between any two processing

elements is required. We would like to end up with a large network subject to

these constraints.

Another factor that may be considered when designing a communication net-

work is fault tolerance. The fault tolerance of an interconnection network is

78
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the capability of the network to continue working when a number of processing

elements and/or network links become faulty. The larger the number of faulty

processing elements and/or network links that can be tolerated the better the

fault tolerance. Together with this, we may add another constraint, called a

diameter vulnerability. In this case, besides requiring the interconnection net-

work to keep working under a faulty condition, the diameter of the resulting

network is desired to be the same as or ‘close to’ the original diameter.

We may require an overall balance of the system when designing a communi-

cation network. Given that all the processing elements have the same status,

the flow of information and exchange of data between processing elements will

be on average faster if there is a similar number of interconnections coming

in and going out of each processing element, that is, if there is a balance (or

regularity) in the network.

Translating the above required conditions in terms of the underlying graphs,

the problem is to find large graph with given maximum degree and diame-

ter. This naturally leads to the well-known fundamental problem, called the

N(∆, D)-problem: For given numbers ∆ and D, construct graphs of maximum

degree ∆ and diameter ≤ D with the largest possible number of vertices n∆,D.

The N(∆, D)-problem is also known as the degree/diameter problem.

In the degree/diameter problem, the value of N(∆, D) is not known for most

values of ∆ and D. Therefore, it is useful to investigate the lower and upper

bounds on N(∆, D). A natural number nl∆,D
is a lower bound of N(∆, D) if

we can prove the existence of a graph of maximum degree at most ∆, diameter

D and exactly nl∆,D
vertices. A natural number nu∆,D

is an upper bound of

N(∆, D) if we can show that there is no graph of maximum degree at most ∆,

diameter D and with the number of vertices more than nu∆,D
.

A natural general upper bound on the order n∆,D of a graph is the Moore bound.

However, there are only a few graphs of order equal to the Moore bound. This



Chapter 6. Graphs of Large Order 80

gives rise to two directions of research connected with the N(∆, D)-problem:

(i) Proving the non-existence of graphs of order ‘close’ to the Moore bound

and so lowering the upper bound nu∆,D
;

(ii) Constructing large graphs and so incidentally obtaining better lower

bounds nl∆,D
.

When working in either of these directions, it is useful to establish some general

structural properties of the graphs in question. For example, we may first wish

to establish the regularity of such graphs.

In the next sections we present known results concerning the existence of Moore

graphs and graphs of order close to the Moore bound. This section is largely

based on the survey by Miller and Širáň [89].

6.2 Moore graphs

For a given maximum degree ∆ and diameter D, consider a standard spanning

tree of the graph from an arbitrary vertex up to D levels. By counting the

vertices at each level, it is easy to derive a natural upper bound for the order

n∆,D of a graph of maximum degree d and diameter at most k, (see Figure

6.1). Let v be a vertex of the graph G and let ni, for 0 ≤ i ≤ D, be the number

of vertices at distance i from v. Then ni ≤ ∆(∆− 1)i−1, for 1 ≤ i ≤ D, and so

n∆,D =
D∑

i=0

ni ≤ 1 + ∆ + ∆(∆− 1) + · · ·+ ∆(∆− 1)D−1 (6.1)

The right-hand side of (6.1) is called the Moore bound and is denoted byM∆,D.

The bound was named after E. F. Moore who first proposed the problem, as

mentioned in [66]. A graph whose order is equal to the Moore bound M∆,D is

called a Moore graph; such a graph is necessarily regular of degree ∆.
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∆
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∆− 1∆− 1∆− 1

∆− 1 ∆− 1 ∆− 1 ∆− 1
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. . .. . . . . .
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. . .. . . . . .

D

v

Figure 6.1: A spanning tree of a Moore graph.

Moore graphs exist only for a few cases, namely, if diameter D = 1 and degree

∆ ≥ 1, or if diameter D = 2 and degree ∆ = 2, 3, 7 and possibly ∆ = 57

(proved by Hoffman and Singleton [66]), or if diameter D ≥ 3 and degree

∆ = 2 (proved by Damerell [39], and independently by Bannai and Ito [12]).

Figure 6.2: Petersen graph M3,2.

Moore graphs for diameter D = 1 and degree ∆ ≥ 1 are the complete graphs

K∆+1. For diameter D = 2, Moore graphs are the cycle C5 for degree ∆ = 2,

the Petersen graph for degree ∆ = 3 (Figure 6.2) and the Hoffman-Singleton

graph for degree ∆ = 7. The Hoffman-Singleton graph was first constructed

by analysing the eigenvalues of the graph which admits the graph’s adjacency

matrix. Since then, a number of authors have presented different ways of

constructing the Hoffman-Singleton graph. In [25], Robertson constructed
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the Hoffman-Singleton graph by grouping the 50 vertices of the graph into 5

pentagrams P0, . . . , P4 and pentagons Q0, . . . , Q4 and joining the edges between

vertices of the pentagrams and pentagons as follows: vertex i of pentagram Pj

is adjacent to vertex i + jk (mod 5) of pentagon Qk, see Figure 6.3. Finally,

for diameter D ≥ 3 and ∆ = 2, the Moore graphs are the cycles on 2D + 1

vertices C2D+1.
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Figure 6.3: Robertson’s construction of Hoffman-Singleton graph.

6.3 Graphs of order close to the Moore bound

Since Moore bound is attainable in only a few cases, the study of the existence

of large graphs of given diameter and maximum degree focuses on graphs

whose order is ‘close’ to the Moore bound. More precisely, researchers have

been considering the question of the existence of graphs of degree at most ∆,

diameter D ≥ 2 and order M∆,D − δ (δ is the defect), where 1 ≤ δ < ∆. For

convenience, we denote such graphs as (∆, D, δ)-graphs.

It is easy to see that a (∆, D, δ)-graph is regular of degree ∆. This can be

shown since if there were a vertex v in a (∆, D, δ)-graph with degree ∆1 < ∆,
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then the order n∆,D of G,

n∆,D ≤ 1 + ∆1 + ∆1(∆− 1) + ∆1(∆− 1)2 + · · ·+ ∆1(∆− 1)D−1

= 1 + ∆1∆ + ∆1(∆− 1)2 · · ·+ ∆1(∆− 1)D−1

≤ 1 + ∆(∆− 1) + ∆(∆− 1)2 · · ·+ ∆(∆− 1)D−1

= M∆,D −∆

< M∆,D − (∆− 1)

Consequently, if δ ≤ ∆ − 1 then n∆,D < M∆,D − (∆ − 1) ≤ M∆,D − δ. This

implies that all vertices must have the same degree ∆, that is, G must be

regular.

Concerning graphs with defect δ = 1, Erdős, Fajtlowitcz and Hoffman [47]

proved that, apart from the cycle C4, there are no graphs of defect 1, degree

∆ and diameter 2; for a related result, see Fajtlowicz [49]. This result was

generalised by Bannai and Ito [13], and also by Kurosawa and Tsujii [78], to

all diameters. Hence, for all ∆ ≥ 3, there are no (∆, D, 1)-graphs, and for

∆ = 2 the only such graphs are the cycles C2D. It follows that, for ∆ ≥ 3, we

have n∆,D ≤ M∆,D − 2.

Graphs with defect δ = 2 represent a wide unexplored area. The (2, D, 2)-

graphs are the cycles C2D−1. For ∆ ≥ 3, only five (∆, D, 2)-graphs are known at

present: Two (3, 2, 2)-graphs of order 8, a (4, 2, 2)-graph of order 15, a (5, 2, 2)-

graph of order 24 and a (3, 3, 2)-graph of order 20. The last three graphs were

found by Elspas [45] and are known to be unique; in Bermond, Delorme and

Farhi [24], the (3, 3, 2)-graph was constructed as a certain product of a 5-cycle

with the field of order four. Furthermore, Nguyen and Miller [100, 101] proved

some structural properties of (∆, 2, 2)-graphs and showed that (∆, 2, 2)-graphs

do not exist for many values of ∆.

Little is known about graphs with defect δ ≥ 3. Jorgensen [73] proved that

a graph with maximum degree 3 and diameter D ≥ 4 cannot have defect
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two, which shows that n3,D ≤ M3,D − 3 if D ≥ 4; for D equal to 4 this was

previously proved by Stanton, Seah and Cowan [111]. Additionally, Miller and

Simanjuntak [94] proved that a graph with ∆ = 4 and D ≥ 3 cannot have

defect two which shows that n4,D ≤ M4,D − 3 if D ≥ 3. We summarise our

current knowledge of the upper bound on the order of graphs in Table 6.1.

The current best lower bound on the maximum possible order of graphs of

given D and ∆ can be found by constructing large graphs. De Bruijn graphs

give the lower bound n∆,D ≥ (∆
2
)D for any ∆ and D. There are improvements

on this bound for many small values of ∆ and D. For diameter D = 2, Brown

[36] gave the lower bound on the order of graphs as n∆,2 ≥ ∆2−∆+1 for each

∆ such that ∆ − 1 is a prime power. As shown in [47] and [41], this bound

can be improved to n∆,2 ≥ ∆2 −∆ + 2 if ∆− 1 is a power of 2.

Diameter D Maximum Degree ∆ Upper Bound for Order n∆,D

D = 1 ∆ ≥ 1 M∆,1

D = 2 ∆ = 2, 3, 7, 57(?) M∆,2

other ∆ ≥ 2 M∆,2 − 2

D = 3 ∆ = 2 M2,3

∆ = 3 M3,3 − 2

∆ = 4 M4,D − 3

∆ ≥ 5 M∆,3 − 2

D ≥ 4 ∆ = 2 M2,4

∆ = 3 M3,D − 3

∆ = 4 M4,D − 3

∆ ≥ 5 M∆,D − 2

Table 6.1: Current upper bounds of n∆,D.

For the remaining values of ∆, we may use the following fact [69] about the



Chapter 6. Graphs of Large Order 85

distribution of prime numbers: For an arbitrary ε > 0, there is a constant bε

such that for any natural m there is a prime between m and bεm
7/12+ε. This,

in combination with vertex duplication (insertion of new vertices adjacent to

all neighbours of certain old vertices) in the graphs of [36], implies that for any

ε > 0 there is a constant cε such that, for any ∆, we have

n∆,2 ≥ ∆2 − cε∆
19/12+ε. (6.2)

For larger diameter, it seems more reasonable to focus on asymptotic behaviour

of n∆,D for fixed D while ∆ → ∞. Delorme [42] introduced the parameter

µD = lim inf∆→∞
n∆,D

∆D . Trivially, µD ≤ 1 for all D, and µ1 = 1; the bound

(6.2) shows that µ2 = 1 as well. Further results of Delorme [43] imply that µD

is also equal to 1 for D = 3 and D = 5. The values of µD for other diameters

D are unknown. For example, for diameter 4 we only know that µ4 ≥ 1/4; see

Delorme [41] for more information.

The above facts can be seen as an evidence in favour of an earlier conjecture of

Bollobás [33] that, for each ε > 0, it should be the case that n∆,D > (1− ε)∆D

if ∆ and D are sufficiently large.

We have included an overview of the degree/diameter problem for undirected

graphs for the sake of completeness and because the research on the de-

gree/diameter problem started with undirected case. However, the remaining

chapters of this part of the thesis will be dealing only with the directed case.

This thesis makes a contribution concerning one such property of a digraph,

namely, the diregularity of digraphs of order close to the Moore bound.



Chapter 7

Directed Graphs of Large Order

In Chapter 6, we have described the degree/diameter problem. The directed

version of the problem differs only in that ‘degree’ is replaced by ‘out-degree’

in the statement of the problems, namely, N(d, k)-problem: For given numbers

d and k, construct digraphs of maximum out-degree d and diameter ≤ k with

the largest possible number of vertices nd,k.

In succeeding sections we present known results concerning the existence of

Moore digraphs, and digraphs of order close to the Moore bound. This section

is largely based on the survey by Miller and Širáň [89].

7.1 Moore digraphs

For any given vertex v, maximum out-degree d and diameter k of a digraph G,

we can count the number of vertices at a particular distance from that vertex.

Let ni, for 0 ≤ i ≤ k, be the number of vertices at distance i from v. Then

ni ≤ di, for 0 ≤ i ≤ k (see Figure 7.1) and, consequently,

nd,k =
k∑

i=0

ni ≤ 1 + d + d2 + · · ·+ dk (7.1)

The right-hand side of (7.1), denoted by Md,k, is called the Moore bound. If

86
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Figure 7.1: Illustration of the layered diagram of a Moore digraph.

the equality sign holds in (7.1) then the digraph is called a Moore digraph. It

is well known that Moore digraphs exist only in the trivial cases when d = 1

(directed cycles of length k + 1, Ck+1, for any k ≥ 1) or k = 1 (complete

digraphs of order d + 1, Kd+1, for any d ≥ 1). This was proved by Plesńık

and Znám in 1974 [103] and independently by Bridges and Toueg in 1980 [35].

The proof due to Bridges and Toueg is very interesting and elegant, and so we

include it here.

Let G be a Moore digraph of degree d and diameter k. Then we state the

following observations which are used implicitly in the proof.

Observation 7.1.1 For any pair of vertices u and v in G, u 6= v, there exists

a unique path from u to v of length ≤ k.

Observation 7.1.2 There are no cycles of length ≤ k, and every vertex of G

lies on exactly d cycles of length k + 1. That is, k + 1 must divide d(1 + d +

d2 + · · ·+ dk).

Let A be the adjacency matrix of a digraph G. The number of walks of length

k in G from vi to vj is the entry in the position (i, j) of the matrix Ak.
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Theorem 7.1.1 [103] Moore digraphs exist only for d = 1 or k = 1.

Proof. Let G be a Moore digraph of degree d and diameter k. If A is the

n × n adjacency matrix of G, then, by Observation 7.1.1 and 7.1.2, we have

the following matrix equation.

I + A + A2 + · · ·+ Ak = J, (7.2)

where I is the identity matrix and J is the matrix with all its entries equal

to one. It is well known (see e.g., [67]) that the eigenvalues of J are n (with

multiplicity 1) and 0 (with multiplicity n− 1). Since G is diregular, A and J

commute, and from Equation (7.2), it is clear that the eigenvalues of A are d

(this corresponds to n) and some of the roots of

1 + x + x2 + · · ·+ xk = 0 (7.3)

The roots of Equation (7.3) are the roots of xk+1 = 1, x 6= 1. Let us denote the

eigenvalues of A, other than d, by x1, x2, . . . , xn−1. Since G, by Observation

7.1.2, has no cycle of length less than k + 1, we have

trace(Ap) = 0, for p = 1, 2, . . . , k

Hence,

dp +
n−1∑
j=1

xp
j = 0 (1 ≤ p ≤ k) (7.4)

Since all the eigenvalues lie on a cycle in a complex plane and their sum is an

integer (see Equation (7.4), for p = 1), we have that for an arbitrary eigenvalue

xi, there exists an eigenvalue xj such that either xi = −xj or xi = x̄j. Using

this fact and the fact that x̄i = xk
i we have

−d =
n−1∑
j=1

xj =
n−1∑
j=1

x̄j =
n−1∑
j=1

xk
j = −dk

Thus d = dk, which is fulfilled only if d = 1 or k = 1. 2



Chapter 7. Directed Graphs of Large Order 89

Therefore, for d ≥ 2 and k ≥ 2, the upper bound on the order of a digraph of

out-degree at most d and diameter k is less than the Moore bound. Since there

are no Moore digraphs with maximum out-degree d ≥ 2 and diameter k ≥ 2,

the study of the existence of large digraphs next focuses on digraphs whose

order is close to the Moore bound, that is, digraphs of order n = Md,k − δ, for

δ as small as possible.

In the next section, we present known results concerning the existence of di-

graphs whose order is close to the Moore bound. We will use the following

notation throughout. Let G(d, k, δ) be the set of all digraphs of maximum

out-degree d and diameter k and defect δ. Then we refer to any digraph

G ∈ G(d, k, δ) as a (d, k, δ)-digraph.

7.2 Digraphs of order close to the Moore bound

A digraph of order one less than the Moore bound is called an almost Moore

digraph, for d ≥ 2 and k ≥ 2, if G has maximum out-degree d, diameter at

most k, and order Md,k − 1. For diameter k = 2, line digraphs of complete

digraphs are examples of almost Moore digraphs for any d ≥ 2, showing that

nd,2 = Md,2− 1. Gimbert [60] completely settled the classification problem for

diameter 2 and proved that line digraphs of complete digraphs are the only

almost Moore digraphs for any out-degree d ≥ 3.

For out-degree d = 2, there are exactly three non-isomorphic diregular digraphs

of order M2,2 − 1, as shown in Figure 7.2.

On the other hand, for k ≥ 3, focusing on small out-degree instead of diam-

eter, Miller and Fris [87] proved that there are no almost Moore digraphs of

maximum out-degree 2. Baskoro, Miller, Širáň and Sutton [22] proved that

there are no almost Moore digraphs of maximum out-degree 3 and any diam-

eter greater than or equal to 3. However, the question of whether or not the
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equality can hold in nd,k ≤ Md,k − 1, for d ≥ 4 and k ≥ 3, is completely open.

Figure 7.2: Three non-isomorphic diregular digraphs of order M2,2 − 1.

Figure 7.3: Five non-isomorphic diregular digraphs of order M2,2 − 2.

The study of the existence of large digraphs continued by considering the

existence of digraphs of order two less than the Moore bound. We call such

digraphs digraphs of defect two. Almost Moore digraphs can alternatively be

called digraphs of defect one. The study of digraphs of defect two so far has

concentrated on digraphs of out-degree d = 2. In the case of diameter k = 2, it

was shown in [85] that there are exactly five non-isomorphic diregular digraphs

of defect two, as shown in Figure 7.3.

Apart from these five diregular digraphs, there are also four non-isomorphic

digraphs of defect two of out-degree 2 and diameter 2, which are not regular
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with respect to the in-degree, see Figure 7.4. It is interesting to note that there

are more diregular digraphs than non-diregular ones for the parameters n = 5,

d = 2, k = 2. Miller and Širáň [88] proved that digraphs of defect two do not

exist for out-degree d = 2 and all k ≥ 3.

Figure 7.4: Four non-isomorphic non-diregular digraphs of order M2,2 − 2.

Figure 7.5: The unique diregular digraph of order M3,2 − 2.

For the case of out-degree d = 3, it is not known whether digraphs of defect

two exist or not, except that for diameter k = 2 there is a unique diregular

digraph of order M3,2− 2, as proved by Baskoro [15], and shown in Figure 7.5.

Surprisingly, there are more non-diregular digraphs with the same out-degree

3, diameter 2 and order 11. Four such non-isomorphic digraphs were found

by Slamin and Miller [108], see Figure 7.6. It is interesting to note that in
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all these digraphs the number of vertices of in-degree less than 3 is three. For

the remaining values of k ≥ 3 and d ≥ 3, the question of whether digraphs of

defect two exist or not remains completely open.

Figure 7.6: Four non-isomorphic non-diregular digraphs of defect two, d = 3

and k = 2.

In general, we will describe a construction of non-diregular digraphs of out-

degree d ≥ 2 with diameter k = 2 and defect 2 in the next chapter.

At present, the best lower bound on the order of digraphs of out-degree d

and diameter k is as follows. For out-degree d = 2 and diameter k ≥ 4,

n2,k ≥ 25× 2k−4. This lower bound is obtained from Alegre digraph which is a

digraph of out-degree 2, diameter 4 and order 25 (see Figure 7.7), and from its

line digraph iterations. For the remaining values of out-degree and diameter,
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Figure 7.7: Alegre digraph Al ∈ G(2, 4, 6).

Figure 7.8: Kautz digraph Ka ∈ G(2, 4, 7).
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a general lower bound is nd,k ≥ dk + dk−1. This bound is obtained from Kautz

digraphs, the digraphs of out-degree d, diameter k and order dk + dk−1 [75].

For example, Figure 7.8 shows the Kautz digraph of out-degree 2, diameter 4

and order 24.

We summarize our current knowledge of the lower and upper bound on the

order of digraphs of out-degree d and diameter k in Table 7.1.

Table 7.1: Lower and upper bounds on the order of digraphs of out-degree d

and diameter k.

Degree Diameter Lower bound Upper bound

d = 1 k ≥ 1 k + 1 k + 1

d = 2 k = 3 12 12

k ≥ 4 25× 2k−4 M2,k − 3

d ≥ 2 k = 1 d + 1 d + 1

k = 2 d2 + d d2 + d

d = 3 k ≥ 3 3k + 3k−1 M3,k − 2

d ≥ 4 k ≥ 3 dk + dk−1 Md,k − 1

In view of the huge gap between the best upper bound and the current best

lower bound, much effort has been spent in generating large digraphs. There

are several techniques for constructing large digraphs. Existing large digraphs

provide lower bounds on the order nld,k
.

7.3 The notion of a repeat

In this section we present a concept which plays important role in getting an

insight into the structure of digraphs of order close to the Moore bound. This

notion is called ‘repeat’, introduced by Miller and Fris [87]. Let G be an almost
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Moore digraph of out-degree d ≥ 2 and diameter k ≥ 2. A counting argument,

presented in [19], shows that for each vertex u of G there exists exactly one

vertex r(u) in G with the property that there are two u → r(u) walks in G of

length not exceeding k. The vertex r(u) is called the repeat of u. If digraph G

is diregular then it follows that the mapping v 7→ r(v) is an automorphism of

the digraph G, see [19].

1 2

3

5 6

4

(a)

r : (1)(2)(3)(4)(5)(6)

2

3

6

r : (12)(3456)

(b)

4

5

1

r : (123)(456)

(c)

1 4

2

6

5

3

Figure 7.9: The permutation cycles of the three (2, 2, 1)-digraphs.

If r(u) = v then r−1(v) = u. If r(u) = u (i.e., v = u) then u lies on a cycle

of length exactly k, in which the two walks have lengths 0 and k, and u is

called a selfrepeat of G. For S ⊂ V (G), we define r(S) =
⋃

v∈S r(v) and,

similarly, r−1(S) =
⋃

v∈S r−1(v). Hence the function r can be considered as

a permutation on the vertex set of G. Figure 7.9 illustrates the notion of

repeat for the three (2, 2, 1)-digraphs. Each permutation is expressed as a set

of permutation cycles. For example, in Figure 7.9(b), we have r(1) = 2 (since

there are two walks from vertex 1 to vertex 2, namely, (1, 3, 2) and (1, 5, 2),

of length at most 2), and r(2) = 1, while r(3) = 4, r(4) = 5, r(5) = 6 and

r(6) = 3.

Next let us consider the idea of repeats in a digraph of defect 2. Let G be

a digraph of out-degree d ≥ 2, diameter k ≥ 3 and order Md,k − 2. Using

a counting argument, it is easy to show that, for each vertex u of G, there
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exist exactly two vertices r1(u) and r2(u) (not necessarily distinct) in G with

the property that there are two u → ri(u) walks, for i = 1, 2, in G of length

not exceeding k. The vertices ri(u), i = 1, 2, are the repeats of u. If r1(x) =

r2(x) = r(x) then r(x) is called a double repeat.

N−
k (u)

T+
k (u)

T−
k (u)

. . .
u1 u2 ud

u

u1 u2 ud

. . .

u

N+
1 (u)

N+
2 (u)

...

N+
k (u)

N−
1 (u)

N−
2 (u)

...

Figure 7.10: Multisets T+
k (u) and T−

k (u).

We will also use the following notation throughout. For each vertex u of a

digraph G, and for 1 ≤ s ≤ k, let T+
s (u) be the multiset of all endvertices of

directed paths in G of length at most s, which start at u. Similarly, by T−
s (u)

we denote the multiset of all starting vertices of directed paths of length at

most s in G, which terminate at u. Observe that the vertex u is in both T+
s (u)

and T−
s (u), as in both cases it corresponds to a path of zero length. Let N+

s (u)
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be the set of all endvertices of directed paths in G, of length exactly s, which

start at u. Similarly, by N−
s (u) we denote the set of all starting vertices of

directed paths, of length exactly s in G, which terminate at u. If s = 1, the

sets N+
1 (u) and N−

1 (u) represent, respectively, the out- and in-neighbourhood

of the vertex u in the digraph G; we denote them simply by N+(u) and N−(u),

respectively. The notations T+
k (u), T−

k (u), N+
s (u) and N−

s (u), for 1 ≤ s ≤ k,

are illustrated in Figure 7.10.

One of the reasons why we are interested in establishing diregularity of digraphs

is because the Neighbourhood Theorem holds whenever the digraph is diregular.

The Neighbourhood Theorem first appeared in [19] for digraphs of defect 1. It

was later generalised by Miller, Nguyen and Simanjuntak in [93] to all graphs,

including undirected, directed and mixed, and for all δ ≥ 1.

We denote by Rm(u) the multiset of all repeats of a vertex u ∈ G, containing

each repeat v of u exactly mv(u) times. Here we state the directed version of

the Neighbourhood Theorem.

Theorem 7.3.1 [93] If G is a diregular (d, k, δ)-digraph then for every vertex

u ∈ G, N+(Rm(u)) = Rm(N+(u)).
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Diregularity of Digraphs

Since Moore digraphs do not exist when both k 6= 1 and d 6= 1, the problem

of finding digraphs of out-degree d ≥ 2 and diameter k ≥ 2 and order close

to the Moore bound becomes an interesting research problem. To prove the

non-existence of such digraphs as well as to assist in finding an algorithm

for constructing such digraphs, we may first wish to establish some useful

structural properties such digraphs must posses (if they exist). In this thesis

we study one such property, the diregularity of potential (d, k, δ)-digraphs, for

δ ≤ 2.

It is obvious that every Moore digraph must be out-regular. The out-regularity

of digraphs of out-degree d ≥ 2, diameter k ≥ 2 and order Md,k−Md,k−1 +1 ≤
n ≤ Md,k − 1 considered by Baskoro, Miller and Plesńık in [20] follows from a

straightforward counting argument.

Lemma 8.0.1 Any digraph of out-degree d ≥ 2, diameter k ≥ 2 and order n,

Md,k −Md,k−1 + 1 ≤ n ≤ Md,k − 1, must be out-regular of out-degree d.

Proof. We suppose that the digraph contains a vertex u with out-degree

d1 < d (i.e., d1 ≤ d − 1). Then considering the number of vertices in the

98
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out-bound spanning tree starting from vertex u, the order of the digraph,

n ≤ 1 + d1 + d1d + · · ·+ d1d
k−1

= 1 + d1(1 + d + · · ·+ dk−1)

≤ 1 + (d− 1)(1 + d + · · ·+ dk−1)

= (1 + d + · · ·+ dk)− (1 + d + · · ·+ dk−1)

= Md,k −Md,k−1,

which is a contradiction. Hence the out-degree of any vertex in a digraph of

order n, Md,k −Md,k−1 + 1 ≤ n ≤ Md,k − 1, must be equal to d, that is, the

digraph must be out-regular. 2

G3G2

Figure 8.1: Non-diregular digraphs G2 and G3.

It is obvious that all Moore digraphs are in- as well as out-regular since the only

Moore digraphs are directed cycles Ck+1 (which are 1-regular) and complete

digraphs Kd+1 (which are d-regular). Alternatively, we can show in-regularity

of Moore digraphs as follows. Let v be an arbitrary vertex of a Moore digraph.

By the diameter assumption, all N+(v) must reach v within distance k, other-

wise v cannot reach all the other vertices in at most k steps. Since all vertices

in the set N+
k (v) are distinct, then v must be in every multiset T+

k (vi), for
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i = 1, . . . , d, that is, the in-degree of v is d. Since v is an arbitrary vertex, it

follows that every Moore digraph is in-regular as well as out-regular, that is,

diregular.

Unlike for Moore digraphs, establishing the regularity of in-degree for an almost

Moore digraph was not so easy. It is well known that there exist digraphs of

out-degree d and diameter k whose order is just two or three less than the

Moore bound and in which not all vertices have the same in-degree. In Figure

8.1 we give two examples of digraphs of diameter 2, out-degree d = 2, 3 and

order Md,2 − d, respectively, with vertices not all of the same in-degree.

v3

v1

v4

v3 v2

v5 v6

(b)

v1 v2

v6v5
(a)

Figure 8.2: Digraph G ∈ G(2, 2, 1) and G1 ∈ G(2, 2, 2) obtained from G.

Miller, Gimbert, Širáň and Slamin [90] prove that digraphs of defect one are

diregular. For defect two, diameter k = 2 and any out-degree d ≥ 2, non-

diregular digraphs always exist. One example can be constructed from Kautz

digraphs. Kautz digraph has the property that there exist vertices with iden-

tical out-neighbourhoods.

Next we present vertex deletion technique which will be useful later in this

thesis. In [95], Miller and Slamin introduced the vertex deletion scheme. They

constructed new digraphs from existing digraphs using this technique. Let

G ∈ G(d, k, δ). Suppose that N+(u) = N+(v) for some vertices u, v ∈ G.

Let G1 be a digraph obtained from G by deleting vertex u together with its
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outgoing arcs and reconnecting the incoming arcs of u to the vertex v. The new

digraph G1 has maximum out-degree the same as the maximum out-degree of

G and the diameter is at most k.

Figure 8.2(a) shows an example of digraph G ∈ G(2, 2, 1) with the property

that N+(v1) = N+(v4). Deleting vertex v4, together with its outgoing arcs,

and then reconnecting its incoming arcs to vertex v1, we obtain a new digraph

G1 ∈ G(2, 2, 2) as shown in Figure 8.2(b).

v8

(a) (b)

v2

v1

v3v4

v9

v12 v11

v10

v1

v2

v3v4

v5

v7

v9

v10

v11

v6 v7 v6

v5

v8

Figure 8.3: Digraph G ∈ G(3, 2, 1) and G1 ∈ G(3, 2, 2) obtained from G.

By applying vertex deletion scheme, we can obtain non-diregular digraph of

defect two, diameter k = 2 and out-degree d ≥ 2. Figure 8.2(b) shows an

example of non-diregular digraph G of order n = M2,2 − 2 generated from

Kautz digraph G of order n = M2,2 − 1 by deleting vertex v4, together with

its outgoing arcs, and then reconnecting its incoming arcs to vertex v1. Figure

8.3(b) shows an example of non-diregular digraph G of order n = M3,2 − 2,

generated from Kautz digraph G of order n = M3,2− 1 by deleting vertex v12,

together with its outgoing arcs, and then reconnecting its incoming arcs to

vertex v11. For diameter k ≥ 3, Slamin and Miller [107] proved that digraphs

of out-degree d = 2 are diregular. For diameter k ≥ 3 and maximum out-
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degree d = 3, they proposed the following open problem.

Open Problem 8.0.1 Is every digraph of defect two of maximum out-degree

d = 3 and diameter k ≥ 3 diregular?

Table 8.1 gives a summary of our knowledge of diregular and non-diregular

digraphs of maximum out-degree d, diameter k and order equal to Md,k − δ,

for δ ≤ 2.

Table 8.1: Diregularity of digraphs of defect at most 2

d k n Diregularity Reference

1 ≥ 1 M1,k Only diregular Plesńık and Znám (1974)

≥ 1 1 Md,1 Only diregular

≥ 2 ≥ 2 Md,k − 1 Only diregular Miller, Gimbert, Širáň and

Slamin (2000)

2 ≥ 3 M2,k − 2 Only diregular Miller and Slamin (2000)

2, 3 2 Md,2 − 2 Diregular and Miller and Slamin (2000)

non-diregular

≥ 3 ≥ 3 Md,k − 2 Unknown

≥ 4 2 Md,2 − 2 Unknown

In this chapter we provide new results concerning diregularity of digraphs of

order two less than Moore bound. In the case of defect two with out-degree 2

and diameter k ≥ 3, we present an alternative proof that a digraph of defect

two must be diregular. Furthermore, for any out-degree d ≥ 3 and diameter

k ≥ 2, we prove that all digraphs of defect two are either diregular or ‘almost

diregular’.

We now introduce the notion of almost diregularity. Throughout this chapter,

let S be the set of all vertices of G whose in-degree is less than d. Let S ′ be
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the set of all vertices of G whose in-degree is greater than d; and let σ− be the

in-excess, σ− = σ−(G) =
∑

w∈S′(d
−(w)− d) =

∑
v∈S(d− d−(v)). Similarly, let

R be the set of all vertices of G whose out-degree is less than d. Let R′ be the

set of all vertices of G whose out-degree is greater than d. We define the out-

excess, σ+ = σ+(G) =
∑

w∈R′(d
+(w) − d) =

∑
v∈R(d − d+(v)). A digraph of

average in-degree d is called almost in-regular if the in-excess is at most equal

to d. Similarly, a digraph of average out-degree d is called almost out-regular if

the out-excess is at most equal to d. A digraph is almost diregular if it is both

almost in-regular and almost out-regular. Note that if σ− = 0 (respectively,

σ+ = 0) then G is in-regular (respectively, out-regular).

We will present our new results concerning the diregularity of digraphs of order

close to Moore bound in the following sections.

8.1 Diregularity of (2, k, 2)-digraphs

In this section we consider the diregularity of digraphs of defect two for the

case of out-degree d = 2 and any diameter k ≥ 3. In the case of diameter

k = 2, there are four non-isomorphic digraphs of defect two of out-degree 2,

with vertices not all of the same in-degree, as shown in Figure 7.4. Recall that

S is the set of all vertices of G whose in-degree is 1; and S ′ is the set of all

vertices of G whose in-degree is greater than 2. We first present the following

lemma.

3 Lemma 8.1.1 Let G ∈ G(2, k, 2). Let S be the set of all vertices of G whose

in-degree is 1. Let v ∈ S. Then r(u) ∈ N−(v), for any vertex u ∈ V (G).

Proof. Let N+(u) = {u1, u2}. Since the diameter of G is equal to k, the

vertex v must occur in each of the sets T+
k (u1) and T+

k (u2). It follows that

there exist vertices x1, x2 ∈ {u}∪T+
k−1(u1)∪T+

k−1(u2) such that x1v and x2v is
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an arc of G. However, since the in-degree of v is 1 then x1 = x2. This means

that x1 is a repeat of u. Therefore, r(u) ∈ N−(v). 2

Combining Lemma 8.1.1 with the fact that every vertex in G has out-degree

2 gives

3 Corollary 8.1.1 |S| ≤ 4.

3 Lemma 8.1.2 For k ≥ 3 and d = 2, every (2, k, 2)-digraph is either direg-

ular or almost diregular.

Proof. First we wish to prove that |S| ≤ 2. Suppose |S| ≥ 3. Then there exist

v1, v2, v3 ∈ S such that d−(vi) = 1, for i = 1, 2, 3. The in-excess σ− =
∑

v∈S(d−
d−(v)) ≥ 3. This implies that |S ′| ≥ 1. However, we cannot have |S ′| = 1.

Suppose, for contradiction, S ′ = {x}. To reach v1 (and vi, i = 2, 3) from all the

other vertices in G we must have x ∈ ⋂3
i=1 N−(vi), which is impossible as the

out-degree of x is 2. Hence |S ′| ≥ 2. Let u ∈ V (G) and u 6= v1, v2, v3. To reach

v1, v2, v3 from u we must have N−(v1) ∪ N−(v2) ∪ N−(v3) ⊆ {r1(u), r2(u)}.
Since d = 2 then |N−(v1)∪N−(v2)∪N−(v3)| = 2. Without loss of generality,

we suppose N−(v1) ∪N−(v2) = {x1} and |N−(v3)| = {x2}, where x1, x2 ∈ S ′.

Now consider the multiset T+
k (x1). Since v1 and v2, respectively, must reach

v2, v3 and v1, v3, within distance at most k then x1 occurs three times in T+
k (x1).

This implies that x1 is a double selfrepeat. Since both v1 and v2 occur in the

walk joining two selfrepeats then v1 and v2 are selfrepeats, see Figure 8.4.

Then it is not possible for the two out-neighbours of x1 to reach v3. Therefore

|S| ≤ 2.

Now we shall prove that |S| = 2. If |S| = ∅ then (2, k, 2)-digraph is diregular.

We now suppose |S| = 1. Let v ∈ S and d−(v) = 1. The in-excess σ− =
∑

v∈S(d− d−(v)) = 1. This implies that |S ′| = 1, say S ′ = {x} and d−(x) = 3.

By Lemma 8.1.1, x ∈ N−(v). Then it would not be possible to reach v from
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v1

x1

v2v1

x1

x1

v2

v2v1

Figure 8.4: Illustration of multiset T+
k (x1).

all the other vertices in G, since |T−
k (v)| < M2,k − 2. This implies |S| = 2. It

follows that (2, k, 2)-digraph is almost diregular. 2

With Lemma 8.1.2 in hand, we are now in a position to prove that every

(2, k, 2)-digraph is diregular.

3 Theorem 8.1.1 Every (2, k, 2)-digraph is diregular for k ≥ 3.

Proof. Let G ∈ G(2, k, 2), k ≥ 3. By Lemma 8.1.2, if G is an almost diregular

digraph which is not diregular then |S| = 2. Let S = {v1, v2}. Suppose

N−(v1) = {x1} and N−(v2) = {x2}. Then the in-excess σ− =
∑

v∈S(d −
d−(v)) = 2. This implies that 1 ≤ |S ′| ≤ 2. Suppose |S ′| = 2. Then S ′ =

{x1, x2}. If d−(x1) = 3 then it is not possible to reach v1 from all the other

vertices in G.

Therefore, |S ′| = 1, x1 = x2 (= x) and d−(x) = 4. We first consider the

multisets T+
k (v1) and T+

k (v2). Since v1 must reach v2 within distance at most

k and at the same time v2 also must reach v1 within distance at most k,

vertex x must occur at distance exactly k − 1 from both v1 and v2. It follows
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that x occurs three times in the multiset T+
k (x), which means that x is a

double selfrepeat. Vertex x is also a repeat for every other vertex in G. Let

yi ∈ N−(x), for all i = 1, 2, 3, 4. Then two of yi occur at distance k−2 from v1

(respectively, v2). Without loss of generality, we suppose that y1 ∈ N+
k−2(v2)

and y2 ∈ N+
k−2(v1). It follows that y1 and y2 are each a selfrepeat exactly once.

Let S1 and S2 be multisets. We denote S = S1 ] S2 the multiset defined as

follows. If x occurs n1 times in S1 and n2 times in S2 then x occurs n1 + n2

times in S. Consider the multiset T+
k (y1) = V (G) ] {x} ] {y1}. Alternatively,

we can express T+
k (y1) = T+

k−1(c1) ] T+
k−1(x) ] {y1}. Combining these two

equations gives

V (G) ] {x} = T+
k−1(c1) ] T+

k−1(x) (8.1)

Consider the multiset T+
k (y2) = V (G) ] {x} ] {y2}. Similarly, we can express

T+
k (y2) = T+

k−1(c2) ] T+
k−1(x) ] {y2}. Combining these two equations gives

V (G) ] {x} = T+
k−1(c2) ] T+

k−1(x) (8.2)

From Equations (8.1) and (8.2), it follows that T+
k−1(c1) = T+

k−1(c2). Since

N+
k−l−1(c2) ∈ T+

k−1(x), we get c1 = c2, otherwise y1 has at least three repeats,

namely, {y1} ] {x} ] {u|u ∈ N+
k−l−1(c2) ∩ T+

k−1(c2)}, which is impossible.

We now consider the multiset T+
k (y3) = V (G) ] {x} ] {r(y3)}. We have also

T+
k (y3) = T+

k−1(c3) ] T+
k−1(x) ] {y3}. Combining these two equations gives

V (G) ] {x} = T+
k−1(c3) ] T+

k−1(x) ] {y3} − {r(y3)} (8.3)

We need to show that r(y3) = y3. We consider the multiset T+
k−1(c3). Since

y1 and y2 are each repeat exactly once, namely, r(y1) = y1 and r(y2) = y2, it

follows that y1, y2 /∈ T+
k−1(c3). Vertex yq must not be y3, otherwise there exists

a cycle of length k− 1 in G, which is impossible. This implies that yp = y3. It

follows that y3 occurs twice in the multiset T+
k (y3), which means that y3 is a
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N+
k−l−1(c3)

x

c3 c4

c3

y1y2

x

x x x

x
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l

yq

y2y1 y3 y4

yp = y3

N+
k−l−1(c3)

c1 = c2

Figure 8.5: Illustration for the case |S| = 2.

selfrepeat. Then Equation (8.3) gives

V (G) ] {x} = T+
k−1(c3) ] T+

k−1(x) (8.4)

By combining Equations (8.1) and (8.4), we get T+
k−1(c1) = T+

k−1(c3). Since

N+
k−l−1(c3) ∈ T+

k−1(x), see Figure 8.5, we have c1 = c3, otherwise y1 has at least

three repeats, namely, {y1} ] {x} ] {u|u ∈ N+
k−l−1(c3) ∩ T+

k−1(c3)}, which is

impossible. Therefore, c1 = c2 = c3(= c). Since c1 ∈ N+(y1), c2 ∈ N+(y2) and

c3 ∈ N+(y3), it follows that c ∈ N+(y1) ∩N+(y2) ∩N+(y3). This implies that

S ′ = {x, c}, which is a contradiction. 2

8.2 Diregularity of (d, k, 2)-digraphs

In this section we present a new result concerning the diregularity of digraphs

of defect two, for maximum out-degree d ≥ 3 and diameter k ≥ 2. As before,

let S be the set of all vertices of G whose in-degree is less than d; let S ′ be the

set of all vertices of G whose in-degree is greater than d. We first present the

following lemma.
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3 Lemma 8.2.1 Let G ∈ G(d, k, 2). Let S be the set of all vertices of G whose

in-degree is less than d. Then S ⊆ N+(r1(u)) ∪N+(r2(u)), for any vertex u.

Proof. Let v ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v, and let

N+(u) = {u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex v

must occur in each of the sets T+
k (ui), i = 1, 2, ..., d. It follows that, for each i,

there exists a vertex xi ∈ {u}∪T+
k−1(ui) such that xiv is an arc of G. Since the

in-degree of v is less than d, the in-neighbours xi of v are not all distinct. This

implies that there exists some vertex which occurs at least twice in T+
k (u).

Such a vertex must be a repeat of u. As G has defect 2, there are at most

two vertices of G which are repeats of u, namely, r1(u) and r2(u). Therefore,

S ⊆ N+(r1(u)) ∪N+(r2(u)). 2

Combining Lemma 8.2.1 with the fact that every vertex in G has out-degree

d gives

3 Corollary 8.2.1 |S| ≤ 2d.

In principle, we might expect that the in-degree of v ∈ S could attain any

value between 1 and d − 1. However, the next lemma asserts that the in-

degree cannot be less than d− 1.

3 Lemma 8.2.2 Let G ∈ G(d, k, 2). If v1 ∈ S then d−(v1) = d− 1.

Proof. Let v1 ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v1, and let

N+(u) = {u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex v1

must occur in each of the sets T+
k (ui), i = 1, 2, ..., d. It follows that, for each

i, there exists a vertex xi ∈ {u} ∪ T+
k−1(ui) such that xiv1 is an arc of G. If

d−(v1) ≤ d− 3 then there are at least three repeats of u, which is impossible.

Suppose that d−(v1) ≤ d− 2. By Lemma 8.2.1, the in-excess must satisfy

σ− =
∑

x∈S′
(d−(x)− d) =

∑
v1∈S

(d− d−(v1)) = |S| ≤ 2d.
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We now consider the number of vertices in the multiset T−
k (v1). To reach v1

from all the other vertices in G, the number of distinct vertices in T−
k (v1) must

be

|T−
k (v1)| ≤

k∑
t=0

|N−
t (v1)|. (8.5)

To estimate the above sum we can observe the following inequality

|N−
t (v1)| ≤

∑

u∈N−
t−1(v1)

d−(u) = d|N−
t−1(v1)|+ εt, (8.6)

where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ. If d−(v1) = d− 2 then |N−(v1)| =
|N−

1 (v1)| = d− 2. It is not difficult to see that a safe upper bound on the sum

of |T−
k (v1)| is obtained from Inequality (8.6) by setting ε2 = 2d, and εt = 0 for

3 ≤ t ≤ k. This gives

|T−
k (v1)| ≤ 1 + |N−

1 (v1)|+ |N−
2 (v1)|+ |N−

3 (v1)|+ . . . + |N−
k (v1)|

= 1 + (d− 2) + (d(d− 2) + ε2) + (d(d(d− 2) + ε2) + ε3)

(1 + d + · · ·+ dk−3)

= 1 + (d− 2) + (d(d− 2) + 2d) + (d(d(d− 2) + 2d) + 0)

(1 + d + · · ·+ dk−3)

= 1 + d− 2 + d2 + d3(1 + d + · · ·+ dk−3)

= Md,k − 2.

Since ε2 = 2d, εt = 0 for 3 ≤ t ≤ k, and G contains a vertex of in-degree

d − 2, we have |S| = d. Let S = {v1, v2, . . . , vd}. Every vi, for i = 2, 3, . . . , d,

has to reach v1 at distance at most k. Since v1 and every vi have exactly the

same in-neighbourhood, vertex v1 is forced to be selfrepeat. This implies that

v1 occurs twice in the multiset T−
k (v1). Hence |T−(v1)| < Md,k − 2, which is a

contradiction. Therefore, d−(v1) = d− 1 for any v1 ∈ S. 2

3 Lemma 8.2.3 If S is the set of all vertices of G whose in-degree is d − 1

then |S| ≤ d.
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Proof. Suppose |S| ≥ d+1. Then there exist vi ∈ S such that d−(vi) = d−1,

for i = 1, 2, . . . , d + 1. The in-excess σ− =
∑

v∈S(d − d−(v)) ≥ d + 1. This

implies that |S ′| ≥ 1. However, we cannot have |S ′| = 1. Suppose, for a

contradiction, S ′ = {x}. To reach v1 (and vi, i = 2, 3, . . . , d + 1) from all the

other vertices in G, we must have x ∈ ⋂d+1
i=1 N−(vi), which is impossible as the

out-degree of x is d. Hence |S ′| ≥ 2.

Let u ∈ V (G) and u 6= vi. To reach vi from u, we must have
⋃d+1

i=1 N−(vi) ⊆
{r1(u), r2(u)}. Since G has out-degree d, it follows that |⋃d+1

i=1 N−(vi)| = d.

Let r1(u) = x1 and r2(u) = x2. Without loss of generality, we suppose x1 ∈
⋃d

i=1 N−(vi) and x2 ∈ N−(vd+1). Now consider the multiset T+
k (x1). Since

every vi, for i = 1, 2, . . . , d, respectively, must reach {vj 6=i}, for j = 1, 2, . . . , d+

1, within distance at most k, then x1 occurs three times in T+
k (x1), otherwise

x1 will have at least three repeats, which is impossible. This implies that x1 is

a double selfrepeat. Since two of vi, say vk and vl, for k, l ∈ {1, 2, . . . , d + 1},
occur in the walk joining two selfrepeats then vk and vl are selfrepeats. Then

it is not possible for the d out-neighbours of x1 to reach vd+1. 2

3 Theorem 8.2.1 For d ≥ 3 and k ≥ 2, every (d, k, 2)-digraph is out-regular

and almost in-regular. Moreover, if k = 2 then d − 1 ≤ |S| ≤ d and if k ≥ 3

then |S| = d.

Proof. Out-regularity of (d, k, 2)-digraphs was established in the introduc-

tion. Hence we only need to prove that every (d, k, 2)-digraph is almost in-

regular. If S = ∅ then (d, k, 2)-digraph is diregular. By Lemma 8.2.2, if S 6= ∅
then all vertices in S have in-degree d− 1. This gives

σ =
∑

x∈S′
(d−(x)− d) =

∑
v∈S

(d− d−(v)) = |S| ≤ 2d.

Take an arbitrary vertex v ∈ S; then |N−(v)| = |N−
1 (v)| = d − 1. By the

diameter assumption, the union of all the sets N−
t (v) for 0 ≤ t ≤ k is the
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entire vertex set V (G) of G, which implies that

|V (G)| ≤
k∑

t=0

|N−
t (v)|. (8.7)

To estimate the above sum we can observe that

|N−
t (v)| ≤

∑

u∈N−
t−1(v)

d−(u) = d|N−
t−1(v)|+ εt, (8.8)

where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ.

It is not difficult to see that a safe upper bound on the sum of |V (G)| is obtained

from Inequality (8.8) by setting ε2 = σ = |S|, and εt = 0, for 3 ≤ t ≤ k; note

that the latter is equivalent to assuming that all vertices from S \ {v} are

contained in N−
k (v) and that all vertices of S

′
belong to N−

1 (v). This way we

successively obtain:

|V (G)| ≤ 1 + |N−
1 (v)|+ |N−

2 (v)|+ |N−
3 (v)|+ . . . + |N−

k (v)|
≤ 1 + (d− 1) + (d(d− 1) + |S|)(1 + d + · · ·+ dk−2)

= d + d2 + · · ·+ dk + (|S| − d)(1 + d + · · ·+ dk−2)

= Md,k − 2 + (|S| − d)(1 + d + · · ·+ dk−2) + 1.

But G is a digraph of order Md,k − 2; this implies that

(|S| − d)(1 + d + · · ·+ dk−2) + 1 ≥ 0

(|S| − d)
dk−1 − 1

d− 1
+ 1 ≥ 0

|S| ≥ d− d− 1

dk−1 − 1
.

If k = 2 and d ≥ 3 then |S| ≥ d − 1. Since 1 ≤ |S| ≤ d. This implies

d − 1 ≤ |S| ≤ d. If k ≥ 3 and d ≥ 3 then |S| ≥ d as 0 < d−1
dk−1−1

< 1. This

implies |S| = d. In both cases d − 1 ≤ |S| ≤ d, for k = 2, and |S| = d, for

k ≥ 3, we obtain an almost in-regular digraph. 2



Chapter 9

On the Diregularity of

(3, k, 2)-digraphs

In this chapter we present a new result concerning the diregularity of a digraph

of defect two, for the case of out-degree d = 3 and diameter k ≥ 3. When

k = 2 and out-degree 3, there are four non-isomorphic digraphs of defect two

with vertices not all of the same in-degree, see Figure 7.6.

As in the previous chapter, let S be the set of all vertices of G whose in-degree

is less than 3; let S ′ be the set of all vertices of G whose in-degree is greater

than 3. By the notion of almost dregularity, a digraph G of average in-degree

3 is called almost in-regular if the in-excess is at most equal to 3.

From now on, let G ∈ G(3, k, 2), k ≥ 3. In this chapter, we present a possible

approach towards proving the in-regularity of (3, k, 2)-digraphs. Although we

did not manage to completely prove the diregularity, our method is novel and

we hope it will lead to the full proof of the diregularity of (3, k, 2)-digraphs.

Applying Theorem 8.2.1 from the previous chapter asserts that |S| = 3. This

means that the in-excess δ− is 3 and so |S ′| ≤ 3. We will next show that

|S ′| 6= 3.

112
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3 Lemma 9.0.4 |S ′| 6= 3.

Proof. Suppose |S ′| = 3. Then G has in-degree sequence (2, 2, 2, 3, . . . , 4, 4, 4).

Let S = {v1, v2, v3} and S ′ = {x, y, z}, where d−(x) = d−(y) = d−(z) = 4.

Since the only possible in-neighbours of v1 are the vertices x, y which form

a pair of vertices whose sum of in-degree is less than nine, it would not be

possible to reach v1 from all other vertices in G. 2

If |S ′| 6= 3 then the only possible in-degree sequences are (2, 2, 2, 3, . . . , 3, 4, 5)

and (2, 2, 2, 3, . . . , 3, 6). Next we shall outline our method for proving the

diregularity of (3, k, 2)-digraphs. When trying to prove the nonexistence of

the two remaining cases, we shall combine the two cases into one case by

transforming G with either of those in-degree sequences to a particular digraph

G∗ of defect three with in-degree sequence (1, 1, 1, 3, 3, . . . , 3, 3, 3, 3, 9). We will

utilize Theorem 1 from [95] to achieve the transformations.

Theorem 9.0.2 [95] If G ∈ G(n, d, k) and N+(u) = N+(v), for any vertex

u, v ∈ G, then there exists G1 ∈ G(n− 1, d, k′), k′ ≤ k.

To be able to utilise the above theorem, first we need to establish that in

G ∈ G(3, k, 2), there exist two vertices with the same out-neighbourhoods.

Let G be a digraph of in-degree sequence (2, 2, 2, 3, . . . , 3, 4, 5). To reach each

vertex of in-degree 2 from other vertices in G, clearly, only the vertices of in-

degree 4 and 5 can be chosen as the in-neighbours of three vertices of in-degree

2. This implies that the out-neighbourhoods of the vertices of in-degree 4 and

5 are the same. Therefore, Theorem 9.0.2 can be applied to this case.

Let G be a digraph of in-degree sequence (2, 2, 2, 3, . . . , 3, 6). Let S = {v1, v2,

v3} and S ′ = {x}, where d−(x) = 6. To reach v1 (and v2, v3) from other

vertices in G, clearly, x and some vertex of in-degree 3 can be chosen as the

in-neighbours of a vertex of in-degree 2. Since there are three vertices of
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in-degree 2, there will be three pairs of vertices, namely, {x, y1}, {x, y2} and

{x, y3}. Since the in-degree of all vertices, apart from v1, v2, v3, x, is three, there

are many possibilities to chose y1, y2, y3 of in-degree 3. To be able to apply

Theorem 9.0.2, we establish that y1 = y2 = y3. The following observation and

lemmas are very useful prior to establishing the equality.

3 Observation 9.0.1 Let vi, vj ∈ S. The distance dist(vi, vj) = k, for i 6= j.

3 Lemma 9.0.5 Let v1, v2, v3 ∈ S. The vertices v1, v2, v3 are all selfrepeats.

Proof. First we consider the number of distinct vertices in the multiset T−
k (v1),

denoted by |T−
k (v1)|. By diameter assumption, both vertices v2 and v3 have

to occur at distance at most k to v1. Both vertices v2 and v3 cannot be in the

multiset T−
k−1(y1) at the same time, otherwise we will have

|T−
k (y1)| ≤ 1 + 3 + 9 + 27 + ... + 3k − 2

= M3,k − 2.

v1

x x

v2

x

v3

v3

...

1
v2 v1

y1

3k

x

6
9

2

. . .

Figure 9.1: Illustration of the multiset T−
k (v1).

However, since x occurs twice in the multiset T−
k (y1), it follows that |T−

k (y1)| ≤
M3,k−3, which is impossible. Therefore, without loss of generality, we suppose
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that v2 is in the multiset T−
k−1(x), see Figure 9.1. We now consider T−

k (v2). By

Observation 9.0.1, all other vertices of in-degree 2 must occur at distance k to

v2. On the other hand, v2 is in the multiset T−
k−1(x) and x is an in-neighbour

of v2. Therefore v2 is a selfrepeat.

We now consider the multiset T−
k (v2). By diameter assumption, both vertices

v1 and v3 have to occur at distance at most k to v2. But both v1 and v3

cannot be in the multiset T−
k−1(y2), otherwise |T−

k (y2)| ≤ M3,k − 3, which is

impossible. Without loss of generality, we suppose that v1 is in the multiset

T−
k−1(x). We now consider the number of distinct vertices in the multiset

T−
k (v1). By Observation 9.0.1, all other vertices of in-degree 2 must occur at

distance k to v1. But v1 is in the multiset T−
k−1(x) which implies that v1 is a

selfrepeat.

y3

v3 v3v2v1
v3

xx

v2 v3v1

x

v1 v2

Figure 9.2: Illustration of the multiset T+
k (x).

Finally, we consider v3. Since both vertices v1, v2 are selfrepeats, x must be

a double selfrepeat. We now consider T+
k (x), see Figure 9.2. Vertex y3 must

occur within distance at most k from x. But y3 cannot be in either T+
k−1(v1)

or T+
k−1(v2). Suppose y3 ∈ T+

k−1(v1). Then v3 is a repeat of v1. Let N+(v1) =

{w1, w2, w3}. To reach v3 from w1, w2, w3, we must have either x or y occur
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twice in T+
k (v1) which would give too many repeats for v1. This implies that

v3 is a selfrepeat. 2

3 Lemma 9.0.6 N−(v1) = N−(v2) = N−(v3).

Proof. Let N−(v1) = {x, y1}, N−(v2) = {x, y2} and N−(v3) = {x, y3}. We

shall prove that y1 = y2 = y3 (= y). Let N+(v1) = {w1, w2, w3}. To reach

v1 from w1, w2, w3, either x or y1 must occur twice in T+
k (v). To prove this

lemma, we consider two cases.

Case 1. ∃ v ∈ {v1, v2, v3} such that x is not a repeat of v. Suppose v = v1 and

x is not a repeat of v. Then y1 is a repeat of v, and also y2 and y3 must occur

twice in T+
k (v) in order to reach v2 and v3. Since the vertex v is a selfrepeat, we

can only have one other repeat of v. This is possible only if y1 = y2 = y3 (= y).

Case 2. Vertex x is a repeat of v ∈ {v1, v2, v3}. Consider the multiset T−
k (v1).

By using Lemma 9.0.5, we have T−
k (v1) = V (G) ] {x} ] {v1} and T−

k (v1) =

T−
k−1(y1) ] T−

k−1(x) ] {v1}. Combining these two equations gives

V (G) ] {x} = T−
k−1(y1) ] T−

k−1(x) (9.1)

Similarly, consider the multisets T−
k (v2), we have T−

k (v2) = V (G)] {x} ] {v2}
and T−

k (v2) = T−
k−1(y2)] T−

k−1(x)]{v2}. Combining these two equations gives

V (G) ] {x} = T−
k−1(y2) ] T−

k−1(x) (9.2)

From Equations 9.1 and 9.2, it follows that T−
k−1(y1) = T−

k−1(y2), see Figure

9.3. Since N−
k−l−1(y2) ∈ T−

k−1(x), it follows that y1 = y2, otherwise v1 has at

least three repeats, namely, {v1} ] {x} ] {u|u ∈ N−
k−l−1(y2) ∩ T−

k−1(y2)} which

is impossible.

Finally, we consider the multisets T−
k (v3), we have T−

k (v3) = V (G)]{x}]{v3}
and T−

k (v3) = T−
k−1(y3)] T−

k−1(x)]{v3}. Combining these two equations gives

V (G) ] {x} = T−
k−1(y3) ] T−

k−1(x) (9.3)
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N−
k−l−1(y2)

y2 y3y1

v1 v2 v3

x

l

y2

Figure 9.3: Illustration of the multisets T−
k (v1) and T−

k (v2).

From Equations 9.2 and 9.3, it follows that T−
k−1(y2) = T−

k−1(y3). Similarly,

since N−
k−l−1(y3) ∈ T−

k−1(x), it follows that y2 = y3, otherwise v2 has at least

three repeats, namely, {v2} ] {x} ] {u|u ∈ N−
k−l−1(y3) ∩ T−

k−1(y3)} which is

impossible. This implies that y1 = y2 = y3(= y). 2

3 Lemma 9.0.7 If G has in-degree sequence (2, 2, 2, 3, . . . , 3, 4, 5) or (2, 2, 2, 3,

. . . , 3, 6) then G can be transformed into G∗ ∈ G(3, k, 3) of in-degree sequence

(1, 1, 1, 3, . . . , 3, 9).

Proof. Consider the in-degree sequence (2, 2, 2, 3, . . . , 3, 4, 5). Let S = {v1, v2,

v3} and S ′ = {x, y} where d−(x) = 4 and d−(y) = 5. Consider the number of

vertices in the multiset T−
k (v1). To reach v1 (and v2, v3) from other vertices in

G, clearly, only x and y can be chosen as the in-neighbours of three vertices of

in-degree 2. Let x, y ∈ ⋂3
i=1 N−(vi). It follows that N+(x) = N+(y). We now

consider the in-degree sequence (2, 2, 2, 3, . . . , 3, 6). Let S = {v1, v2, v3} and

S ′ = {x}, where d−(x) = 6. To reach v1 (and v2, v3) from other vertices in G,

clearly x and some vertex of in-degree 3 can be chosen as the in-neighbours of

three vertices of in-degree 2. Since there are three vertices of in-degree 2, there
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will be three pairs of vertices, namely, {x, y1}, {x, y2} and {x, y3}. By Lemma

9.0.6, we have y1 = y2 = y3(= y). It follows that N+(x) = N+(y). Applying

Theorem 9.0.2 in both cases, we can delete vertex y, together with its outgoing

arcs, and then reconnect its incoming arcs to vertex x, so that we obtain a

new digraph G∗ of defect three, with in-degree sequence (1, 1, 1, 3, . . . , 3, 9). 2

From now on, we assume that G∗ ∈ G(3, k, 3) is a digraph of defect three,

out-degree 3 and diameter k ≥ 3, with in-degree sequence (1, 1, 1, 3, . . . , 3, 9).

Next we prove some structural properties of (3, k, 3)-digraphs. Based on this

properties, for k = 3, we prove that a digraph with out-degree 3 and in-degree

sequence (1, 1, 1, 3, . . . , 3, 9) does not exist.

3 Lemma 9.0.8 Let G∗ ∈ G(3, k, 3). Let x ∈ S ′. If d−(x) = 9 then x is a

triple selfrepeat.

Proof. Let S = {v1, v2, v3} and S ′ = {x}, where d−(x) = 9. To reach vertex

v1 (and respectively v2, v3) from all the other vertices in G, we must have

{x} = N−(v1) = N−(v2) = N−(v3). This implies that x occurs at distance at

most k − 1 from v1, v2 and v3, respectively. It then follows that x occurs four

times in the multiset T+
k (x). Therefore, x is a triple selfrepeat. 2

3 Lemma 9.0.9 Let N−(x) = {y1, y2, . . . , y9}. Then three of y1, y2, . . . , y9

are selfrepeats.

Proof. By Lemma 9.0.8, vertex x is a triple selfrepeat and yj ∈ N−(x),

for j = 1, 2, . . . , 9. This implies that three of yj occur at distance k − 2

from v1, v2 and v3, respectively. Without loss of generality, we suppose that

y1 ∈ N+
k−2(v1), y2 ∈ N+

k−2(v2) and y3 ∈ N+
k−2(v3). We now consider the multiset

T+
k (y1), T

+
k (y2) and T+

k (y3). Since x ∈ N+(y1)∩N+(y2)∩N+(y3), it follows that

T+
k (x) ⊆ T+

k (y1)∩T+
k (y2)∩T+

k (y3). This implies that y1, y2, y3 are selfrepeats.

2
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3 Lemma 9.0.10 If yp, yq ∈ {yj} then |N+(yp) ∩N+(yq)| = 1 or 3.

Proof. Since yj ∈ N−(x), for all j = 1, . . . , 9, it is obvious that |N+(yp) ∩
N+(yq)| = 1. Now, suppose |N+(yp) ∩N+(yq)| = 2, this situation is depicted

in Figure 9.4. We wish to prove that cs = ct. Suppose cs 6= ct and either ct is

in the multiset T+
k (cs) or cs is in the multiset T+

k (ct). If cs occurs at distance

at most k− 2 from ct or ct occurs at distance at most k− 2 from cs then there

will obviously exist more than three repeats, which is impossible. However, if

cs occurs at distance exactly k−1 from ct, or ct occurs at distance exactly k−1

from cs, then N+(cs) = {{r(ct)}∪T+
k−1(dl)∪T+

k−1(x)} = {{r(ct)}∪{r(cs)}∪{x}}
and N+(ct) = {{r(cs)}∪T+

k−1(dl)∪T+
k−1(x)} = {{r(cs)}∪{r(ct)}∪{x}}, giving

N+(cs) = N+(ct). This forces cs, ct to be selfrepeats, which is a contradiction.

This completes the proof. 2

yp

ctdl xcs

ct

N+
k (cs)

yq

Figure 9.4: Illustration of the multisets T+
k (yp) and T+

k (yq).

From Lemma 9.0.10, it immediately follows that

3 Corollary 9.0.2 All the vertices y1, y2, . . . , y9 are selfrepeats.
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3 Corollary 9.0.3 The set of vertices {y1, y2, . . . , y9} can be partitioned into

three sets of three vertices, each triple having the same out-neighbourhoods.

We will next prove that (3, k, 2)-digraphs must be diregular if k = 3. To prove

the diregularity of such digraphs we will prove that G∗ ∈ G(3, k, 3) with in-

degree sequence (1, 1, 1, 3, . . . , 3, 9) does not exist if k = 3. By applying the

previous lemmas and theorems, such a digraph can be partially depicted in

Figure 9.5.

. . .

v1 v2 v3

y1 y2 y3

xxx

c1

x x

d1 c3

x

d3c2

x x

d2

x

y2 y3y1 y4 y9

x

Figure 9.5: Illustration of the multisets T+
k (yi), for i = 1, 2, . . . , 9.

3 Theorem 9.0.3 Every (3, k, 2)-digraph is diregular for k = 3.

Proof. By Corollary 9.0.3, it follows that N+(y1) = N+(y6) = N+(y8) =

{c1, d1, x}, N+(y2) = N+(y4) = N+(y9) = {c2, d2, x} and N+(y3) = N+(y5) =

N+(y7) = {c3, d3, x}. Since k = 3, we can assume that N+(v1) = {y1, v4, v5},
N+(v2) = {y2, v6, v7} and N+(v3) = {y3, v8, v9}. The multiset T+

3 (x) is de-

picted in Figure 9.6.
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v1

x

v2

v7v6

y6 y7
x

xx

v5

y5

y1 v4

y4
x

xx

v3

v8 v9

y8 y9
x

xx

y2 y3

Figure 9.6: Illustration of the multiset T+
3 (x).

x

y2

c2

x

y5

d2

y8

x

Figure 9.7: Illustration of the multiset T+
3 (y2).

We now consider the multisets T+
3 (y1) and T+

3 (y2). By Lemma 9.0.8, it follows

that x is a double repeat of y1. This implies that x occurs in both T+
3 (c1) and

T+
3 (d1). To reach x from c1 and d1, we must have N−(x) ∈ {y7, y9} otherwise

y1 will have either too many repeats, namely, {y1}]{x}]{x}{u|u ∈ N+
2 (x)∩

T+
2 (c1) ∩ T+

2 (d1)}, or a cycle of length less than 3, both impossible situations.

Similarly, to reach x from c2 and d2, we must have N−(x) ∈ {y5, y8}, see Figure

9.7. Without loss of generality we suppose that N+(c1) = {y7}, N+(d1) = {y9}
and N+(c2) = {y5}, N+(d2) = {y8}.

We now consider the multiset T−
3 (y8). We know that v8, d2 ∈ N−(y8), see
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Figures 9.6 and 9.7. To reach y8 from v1 we have N−(y8) ∈ {u|u ∈ (N+(v4) ∪
N+(v5))\{y4, y5}} as x ∈ {y4, y5}. But then it is not possible to reach y8

from y1 within distance at most k = 3 as
(
N+(c1) ∪ N+(d1)

) ⋂ (
(N+(v4) ∪

N+(v5))\{y4, y5}
)

= ∅. This contradiction completes the proof. 2

v2
y1

v8

v3

x

d2

y2

y8

v1

Figure 9.8: Illustration of the multiset T−
3 (y8).

c1

y1 y6 y8

v5v4c2x d2

y9

c3x d3

x

y1

y7v2v1 v3

d1

Figure 9.9: Illustration of the multiset T+
3 (y1) = T+

3 (y6) = T+
3 (y8).

Alternatively, we can prove Theorem 9.0.3 as follows.

Alternative Proof of Theorem 9.0.3. Consider the multisets T+
3 (y1) =

T+
3 (y6) = T+

3 (y8) in Figure 9.9. By diameter assumption, the vertices c2, d2

and c3, d3 occur at distance at most k from y1, y6 and y8. But they will not

be in the multiset T+
2 (x), otherwise there will be too many repeats. Without

loss of generality, we assume c2, d2 ∈ T+
2 (c1) and c3, d3 ∈ T+

2 (d1). Then we
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have y9 ∈ N+(c1) and y7 ∈ N+(d1), otherwise v1 will have too many repeats,

namely, either v1, x, x, y4 or v1, x, x, y5, both impossible.

y7

y2 y4 y9

c1x d1

y8

x d3

x

y5v2v1 v3

d2c2

v7v6y2 c3

y7y9

y9

Figure 9.10: Illustration of the multiset T+
3 (y2) = T+

3 (y4) = T+
3 (y9).

We consider the multisets T+
3 (y2) = T+

3 (y4) = T+
3 (y9) in Figure 9.10. By

diameter assumption, the vertices c1, d1 and c3, d3 occur at distance at most k

from y2, y4 and y9. Without loss of generality, we assume c1, d1 ∈ T+
2 (c2) and

c3, d3 ∈ T+
2 (d2). Then we have y8 ∈ N+(c2) and y5 ∈ N+(d2), otherwise v2 will

have too many repeats, namely, either v1, x, x, y6 or v1, x, x, y7, both impossible.

We now finally consider the multisets T+
3 (y3) = T+

3 (y5) = T+
3 (y7) in Figure

9.11. By diameter assumption, the vertices c1, d1 and c2, d2 occur at distance at

most k from y3, y5 and y7. Without loss of generality, we assume c1, d1 ∈ T+
2 (c3)

and c2, d2 ∈ T+
2 (d3). Then we have y6 ∈ N+(c3) and y4 ∈ N+(d3), otherwise

v3 will have too many repeats, namely, either v1, x, x, y8 or v1, x, x, y9, both

impossible.

We finally consider the vertices y9, y7. The vertices y9, y7 must occur in both

multisets T+
3 (y1) = T+

3 (y6) = T+
3 (y8) and T+

3 (y2) = T+
3 (y4) = T+

3 (y9). Since

N−(y7) = {d1, v7} and N−(y9) = {c1, v9}, see Figure 9.9 and Figure 9.6, we

have |N+(d2) ∩N+(d3)| = 2, which contradicts Lemma 9.0.10. 2

At this stage we have proved that (3, 3, 2)-digraphs are diregular. To settle the

question of the diregularity of all (3, k, 2)-digraphs, it remains to answer the



Chapter 9. On the Diregularity of (3, k, 2)-digraphs 124

v3

y3 y5 y7

c1x d1

y6

x d2

x

y4v2v1

d3c3

c2

y7y9

v9v8y3 y9 y7

Figure 9.11: Illustration of the multiset T+
3 (y3) = T+

3 (y5) = T+
3 (y7).

following open problem.

Open Problem 9.0.1 Does there exist a digraph G ∈ G(3, k, 3), for k ≥ 4,

with in-degree sequence (1, 1, 1, 3, 3, . . . , 3, 3, 3, 3, 9)?

Although we are unable to completely settle the question of diregularity of all

(3, k, 2)-digraphs, we propose the following conjecture.

Conjecture 9.0.1 Every (3, k, 2)-digraph is diregular, for k ≥ 3.



CONCLUSION

In this thesis, we have considered two different problems of the underlying

graph of a network, namely, graph labeling and structural properties of graphs.

In this chapter we summarise our results and list open problems and conjec-

tures arising from this thesis.

Graph labeling

The question of whether a particular family of graphs admits a particular

labeling is in general still open, even though there is a large number of results

concerning various types of graph labelings, including antimagic labeling. To

decide whether a graph G admits a vertex-magic or an edge-magic labeling

is equivalent to the problem of deciding whether a set of linear homogeneous

Diophantine equations has a solution. No polynomial time bounded algorithm

is known for determining whether G is a vertex-magic or an edge-magic graph.

We have presented a new result on super (a, d)-edge antimagic total labeling

for disjoint union of multiple copies of special families of graphs. Our main

problem was the following: if a graph G is super (a, d)-edge-antimagic total, is

the disjoint union of multiple copies of the graph G super (a, d)-edge-antimagic

total as well? We gave some new results when the graph G was either cycle,

path, star, m-crowns, caterpillar or complete s-partite graph.

125
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Based on our results, we have proposed the following conjecture.

Conjecture 1 (5.2.1) There is a super (a, 1)-edge-antimagic total labeling

for the graph mKn, n, . . . , n︸ ︷︷ ︸
s

, for s ≥ 5 and for every m ≥ 2 and n ≥ 1.

The outstanding open problems in this area can be found in Chapters 3,4 and

5. In addition there are many other classes of graphs, such as multiple copies

of friendship graphs, fans, wheels, generalised prisms and antiprisms, ladders

and generalised Petersen graphs, on which almost no work has been done so

far.

It is not true that if a graph G admits super (a, d)-edge-antimagic total la-

beling then the disjoint union of multiple copies of the graph G admits super

(a, d)-edge-antimagic total labeling as well. There is scope to explore further

properties of this type of labelings for future research.

Open Problem 1 Find relationships between labeling of connected graph and

labeling of disconnected graph.

Open Problem 2 Find new methods of generating antimagic labeling schemes

for disconnected graphs from known antimagic labeling schemes for connected

graphs.

Structural properties of graphs

In this area, we considered the diregularity of digraphs of order close to the

Moore bound, that is, digraphs of defect two. We gave an alternative proof for

the diregularity of digraphs, defect two of out-degree d = 2 and diameter k ≥ 3.

We proved that digraphs of order two less than Moore bound, with maximum

out-degree d ≥ 3 and diameter k ≥ 2, are out-regular and almost in-regular.

Additionally, concerning the direguarity of (3, k, 2)-digraphs, for k ≥ 3, we
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partially solved an open problem. We have proved that (3, 3, 2)-digraphs are

diregular. To settle the question of the diregularity of all (3, k, 2)-digraphs, it

remains to answer the following open problem.

Open Problem 3 (9.0.1) Does there exist a digraph G ∈ G(3, k, 3), for k ≥
4, with in-degree sequence (1, 1, 1, 3, 3, . . . , 3, 3, 3, 3, 9)?

As stated in Chapter 8, we believe that the answer is “no”. This has led us to

propose the following conjecture.

Conjecture 2 (9.0.1) Every (3, k, 2)-digraph is diregular, for k ≥ 3.

Finally, we believe that the following stronger conjecture also holds.

Conjecture 3 Every digraph of defect two of out-degree d ≥ 3 and diameter

k ≥ 3 is diregular.
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[90] M. Miller, J. Gimbert, J. Širáň and Slamin, Almost Moore digraphs are

diregular, Discrete Math., 216 (2000) 265-270.

[91] M. Miller, J. Gimbert,F. Ruskey and J. Ryan, Iterations of eccentric di-

graphs, Proceedings of Sixteenth Australasian Workshop on Combinatorial

Algorithms (AWOCA’02), 2 (2002) 75-84.

[92] M. Miller, H.M. Nguyen and Slamin, Construction techniques for diregular

and non-diregular large directed networks, Proceedings of Sixteenth Aus-

tralasian Workshop on Combinatorial Algorithms (AWOCA’02), 2 (2002)

85-96.

[93] M. Miller, H.M. Nguyen and R. Simanjuntak, Repeat structure in regu-

lar graphs and digraphs, Proceedings of the 2nd European Conference on

Combinatorics, Graph Theory and Applications, Prague, Czech republic,

September 2003, 269-274.

[94] M. Miller and R. Simanjuntak, Graphs of order two less than the Moore

bound, Discrete Mathematics, to appear.

[95] M. Miller and Slamin, On the monotonocity of minimum diameter with

respect to order and maximum out-degree, Proceeding of COCOON 2000,



Bibliography 137

Lecture Notes in Computer Science 1558 (D.-Z Du, P. Eades, V.Estivill-

Castro, X.Lin (eds.)) (2000) 193-201.

[96] F.A. Muntaner-Batle, Magic graphs, PhD Thesis, Universitat Politécnica
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