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Abstract

A graph G of order p and size q is called an (a, d)-edge-antimagic total if there exist
a bijection f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that the edge-weights, w(uv) =
f(u) + f(v) + f(uv), uv ∈ E(G), form an arithmetic sequence with first term a and
common difference d. Such a graph G is called super if the smallest possible labels appear
on the vertices. In this paper we study properties of super (a, d)-edge-antimagic total
labeling of disconnected graphs K1,m ∪K1,n.

Key Words: (a, d)-edge-antimagic total labeling, super (a, d)-edge-antimagic total
labeling, disconnected graphs, star graphs.

1 Introduction

All graphs in this paper are finite, undirected, and simple. For a graph G, V (G) and E(G)
denote the vertex-set and the edge-set of G, respectively. A (p, q)-graph G is a graph such
that |V (G)| = p and |E(G)| = q. We refer the reader to [14] or [15] for all other terms and
notation not provided in this paper.

A labeling of graph G is any mapping that sends some set of graph elements to a set of
non-negative integers. If the domain is the vertex-set or the edge-set, the labelings are called
vertex labelings or edge labelings, respectively. Moreover, if the domain is V (G) ∪ E(G) then
the labeling is called a total labeling.

Let f be a vertex labeling of a graph G. We define the edge-weight of uv ∈ E(G) to be w(uv) =
f(u)+f(v). If f is a total labeling then the edge-weight of uv is w(uv) = f(u)+f(uv)+f(v).

By an (a, d)-edge-antimagic vertex labeling of a (p, q)-graph G we mean a bijective function
f from V (G) onto the set {1, 2, . . . , p} such that the set of all edge-weights, {w(uv) : uv ∈
E(G)}, is {a, a + d, a + 2d, . . . , a + (q − 1)d}, for two integers a > 0 and d ≥ 0. Note that in
his Ph.D thesis, Hegde called this labeling a strongly (a,d)-indexable (see Acharya and Hegde
[1]).
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An (a, d)-edge-antimagic total labeling on a (p, q)-graph G is a bijective function f : V (G) ∪
E(G) → {1, 2, . . . , p + q} with the property that the edge-weights w(uv) = f(u) + f(uv) +
f(v), uv ∈ E(G), form an arithmetic progression {a, a + d, a + 2d, . . . , a + (q − 1)d}, where
a > 0 and d ≥ 0 are two fixed integers. If such a labeling exists, then G is said to be an (a, d)-
edge-antimagic total graph. Furthermore, f is a super (a, d)-edge-antimagic total labeling of
G if the vertex labels are the integers {1, 2, . . . , p}. Thus a super (a, d)-edge-antimagic total
graph is a graph that admits a super (a, d)-edge-antimagic total labeling.

These labelings, introduced by Simanjuntak et al. in [10], are natural extensions of the concept
of magic valuation studied by Kotzig and Rosa [9] (see also [2],[6],[13]) and the concept of super
edge-magic labeling defined by Enomoto et al. in [5]. Many other researchers investigated
different forms of antimagic graphs. For example, see Bodendiek and Walther [3] and [4], and
Hartsfield and Ringel [7].

Ivančo and Lučkaničová [8] described some constructions of super edge-magic (super (a, 0)-
edge-antimagic total) labelings for disconnected graphs, namely nCk ∪mPk and K1,m ∪K1,n.
The super (a, d)-edge-antimagic labelings for Pn ∪Pn+1, nP2 ∪Pn and nP2 ∪Pn+2 have been
described by Sudarsana et al. in [11].

In this paper we study super (a, d)-edge-antimagic total properties of a disjoint union of two
stars K1,m and K1,n.

2 Some Useful Lemmas

We start this section by a necessary condition for a graph to be super (a, d)-edge-antimagic
total, providing a least upper bound for feasible values of d.

Lemma 2.1. If a (p, q)-graph is super (a, d)-edge-antimagic total then d ≤ 2p+q−5
q−1 .

Proof. Assume that a (p, q)-graph has a super (a, d)-edge-antimagic total labeling f : V (G)∪
E(G) → {1, 2, . . . , p + q}. The minimum possible edge-weight in the labeling f is at least
1+2+p+1 = p+4. Thus, a ≥ p+4. On the other hand, the maximum possible edge-weight
is at most (p− 1) + p + (p + q) = 3p + q − 1. So we obtain a + (q − 1)d ≤ 3p + q − 1 which
gives the desired upper bound for the difference d. ¤

The following lemma, proved by Figueroa-Centeno et al. in [6], gives a necessary and sufficient
condition for a graph to be super edge-magic (super (a, 0)-edge-antimagic total).

Lemma 2.2. A (p, q)-graph G is super edge-magic if and only if there exists a bijective
function f : V (G) → {1, 2, . . . , p} such that the set S = {f(u) + f(v) : uv ∈ E(G)} consists
of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with
magic constant a = p+q+s, where s = min(S) and S = {a−(p+1), a−(p+2), . . . , a−(p+q)}.
In our terminology, the previous lemma states that a (p, q)-graph G is super (a, 0)-edge-
antimagic total if and only if there exists an (a− p− q, 1)-edge-antimagic vertex labeling.

Next, we restate the following lemma that appeared in [12].

Lemma 2.3. [12] Let A be a sequence A = {c, c+1, c+2, . . . c+k}, k even. Then there exists
a permutation Π(A) of the elements of A such that A + Π(A) = {2c + k

2 , 2c + k
2 + 1, 2c + k

2 +
2, . . . , 2c + 3k

2 − 1, 2c + 3k
2 }.
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3 K1,m ∪K1,n

In [12] it is proved that the star has a super (a, d)-edge-antimagic total labeling if and only
if either (i) d ∈ {0, 1, 2} and n ≥ 1, or (ii) d = 3 and 1 ≤ n ≤ 2. Here, we will study super
edge-antimagicness of a disjoint union of two stars, denoted by K1,m ∪ K1,n. The disjoint
union of K1,m and K1,n is the disconnected graph with vertex set V (K1,m ∪K1,n) = {xi,j :
either i = 1 and j = 0, 1, . . . , m or i = 2 and j = 0, 1, . . . , n} and edge set E(K1,m ∪K1,n) =
{xi,0xi,j : i ∈ {1, 2}, j ≥ 1}.
We start by finding a least upper bound for the feasible values of d for a super (a, d)-edge-
antimagic total labeling of K1,m∪K1,n. If the graph K1,m∪K1,n is super (a, d)-edge-antimagic
total then, by Lemma 2.1, for p = m + n + 2 and q = m + n, we have d ≤ 3 + 2

m+n−1 . If
m ≥ 2 and n ≥ 2 then d < 4. If m + n = 3, then d ≤ 4 and if m + n = 2 then d ≤ 5.

Theorem 3.1. The graph K1,m ∪ K1,n, m ≥ 2 and n ≥ 2, has a (t + 4, 1)-edge-antimagic
vertex labeling if and only if either m is a multiple of n + 1 or n is a multiple of m + 1.

Proof. Assume that K1,m∪K1,n, m ≥ 2 and n ≥ 2, has a (a, 1)-edge-antimagic vertex labeling
f : V (K1,m ∪K1,n) → {1, 2, . . . , m + n + 2} and that W = {w(uv) : uv ∈ E(K1,m ∪K1,n)} =
{a, a + 1, a + 2, . . . , a + m + n− 1} is the set of edge-weights. The sum of the edge-weights in
the set W is

∑

uv∈E(K1,m∪K1,n)

w(uv) = (m + n)a +
(m + n)(m + n− 1)

2
.

In the computation of the edge-weights of K1,m ∪K1,n, the labels of the two central vertices,
f(x1,0) and f(x2,0), are used m and n times, respectively, and the labels of the remaining
vertices are used once each. Let s1 = f(x1,0) and s2 = f(x2,0). The sum of all vertex labels
used to calculate the edge-weights is equal to

(m− 1)f(x1,0) + (n− 1)f(x2,0) +
m+n+2∑

k=1

k =

(m− 1)s1 + (n− 1)s2 + (1 + 2 + . . . + m + n + 2) =

(m− 1)s1 + (n− 1)s2 +
(m + n + 3)(m + n + 2)

2
.

The sum of vertex labels used to obtain the edge-weight is naturally equal to the sum of all
the edge-weights. Thus,

(m + n)a = 3(m + n + 1) + (m− 1)s1 + (n− 1)s2.

Clearly, s1 + s2 /∈ {a, a + 1, a + 2, . . . , a + m + n − 1} because exactly one endpoint of any
edge belongs to {x1,0, x2,0}. Without loss of generality, we may assume that s1 + s2 < a (if
s1 + s2 > a + m + n − 1; then we consider (a′, 1)-edge-antimagic vertex labeling g given by
g(xi,j) = m + n + 3− f(xi,j)).

If 1 /∈ {s1, s2} then a > s1 + s2 > min
1≤j≤m

f(x1,j) + s2 ≥ 1 + s2 ≥ a or a > s1 + s2 >

s1 + min
1≤j≤n

f(x2,j) ≥ s1 + 1 ≥ a, a contradiction.
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• Suppose s1 = 2 and s2 = 1 then

(m + n)a = 3(m + n + 1) + 2(m− 1) + (n− 1)
(m + n)(a− 4) = m,

which implies that m is multiple of m + n, a contradiction.

• Suppose s1 > 2 and s2 = 1. We can say that a = s1 + 2 because if min
1≤j≤n

f(x2,j) = 2

then min
1≤j≤n

f(x2,j) + s2 < s1 + s2 < a, thus the vertex labeled by 2 must belongs to

K1,m. It follows that

(m + n)a = 3(m + n + 1) + (m− 1)s1 + (n− 1)s2

(m + n)(s1 + 2) = 3(m + n + 1) + (m− 1)s1 + (n− 1)
(s1 − 2)(n + 1) = m,

which means that m > n and m is a multiple of n + 1.

For the sake of completeness, we assume that m = t(n + 1) and consider the vertex labeling
f1 described by Ivančo and Lučkaničová in [8].

f1(xi,j) =





2 + t, if i = 1 and j = 0
d j

t e+ j, if i = 1 and j = 1, 2, . . . ,m
1 if i = 2 and j = 0
1 + (j + 1)(t + 1), if i = 2 and j = 1, 2, . . . , n.

The vertex labeling f1 is a bijective function from K1,m∪K1,n onto the set {1, 2, . . . , m+n+2}.
The edge-weights of K1,m ∪K1,n, under the labeling f1, constitute the sets

W 1
f1

= {w1
f1

(x1,0x1,j) : if 1 ≤ j ≤ m}
= {2 + t + dj

t
e+ j : if 1 ≤ j ≤ m},

W 2
f1

= {w2
f1

(x2,0x2,j) : if 1 ≤ j ≤ n}
= {2 + (j + 1)(t + 1) : if 1 ≤ j ≤ n}.

Hence the set
⋃2

k=1 W k
f1

= {t + d1
t e + 3, t + d2

t e + 4, . . . , m + n + t + 2 + d1
t e} consists of

consecutive integers. Thus f1 is a (t + 4, 1)-edge-antimagic vertex labeling. ¤

According to Lemma 2.2, the (t + 4, 1)-edge-antimagic vertex labeling f1 extends to a super
(a, 0)-edge-antimagic total labeling, where for p = m + n + 2 and q = m + n, the value
a = 2m + 2n + t + 6. Thus we have the following theorem which was proved by Ivančo and
Lučkaničová in [8].

Theorem 3.2. [8] The graph K1,m∪K1,n, m ≥ 2 and n ≥ 2, has a super (2m+2n+ t+6, 0)-
edge-antimagic total labeling if and only if either m is a multiple of n + 1 or n is a multiple
of m + 1.

Furthermore, we have the following theorem.
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Theorem 3.3. The graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, has a super (m + n + t + 7, 2)-
edge-antimagic total labeling if and only if either m is a multiple of n + 1 or n is a multiple
of m + 1.

Proof. Without loss of generality, we may assume that m is a multiple of n + 1. Let
m = t(n + 1). Using the (t + 4, 1)-edge-antimagic vertex labeling f1 from Theorem 3.1, we
define a total labeling f2 : V (K1,m ∪ K1,n) ∪ E(K1,m ∪ K1,n) → {1, 2, . . . , 2m + 2n + 2} as
follows

f2(xi,j) = f1(xi,j), for every feasible i and j

f2(xi,0xi,j) =
{

m + n + 1 + d j
t e+ j, if i = 1 and j = 1, 2, . . . , m

m + n + 2 + j(t + 1), if i = 2 and j = 1, 2, . . . , n.

The edge-weights of K1,m ∪K1,n, under the total labeling f2, constitute the sets

W 1
f2

= {w1
f2

(x1,0x1,j) = w1
f1

(x1,0x1,j) + f2(x1,0x1,j) : if 1 ≤ j ≤ m}
= {m + n + t + 3 + 2dj

t
e+ 2j : if 1 ≤ j ≤ m},

W 2
f2

= {w2
f2

(x2,0x2,j) = w2
f1

(x2,0x2,j) + f2(x2,0x2,j) : if 1 ≤ j ≤ n}
= {m + n + 4 + (2j + 1)(t + 1) : if 1 ≤ j ≤ n}.

Hence the set
⋃2

k=1 W k
f2

= {m+n+t+2d1
t e+5,m+n+t+2d2

t e+7, . . . , 3m+3n+t+2d1
t e+3}

consists of arithmetic sequence with first term m + n + t + 2d1
t e+ 5 and common difference

2. Thus f2 is a super (m + n + t + 7, 2)-edge-antimagic total labeling. ¤

Theorem 3.4. For the graph K1,m∪K1,n, m ≥ 2 and n ≥ 2, there is no (a, 3)-edge-antimagic
vertex labeling.

Proof. Assume that K1,m ∪ K1,n, m ≥ 2 and n ≥ 2, has a (a, 3)-edge-antimagic vertex
labeling f : V (K1,m ∪ K1,n) → {1, 2, . . . , m + n + 1,m + n + 2} and W = {w(uv) : uv ∈
E(K1,m ∪ K1,n)} = {a, a + 3, a + 6, . . . , a + (m + n − 1)3} is the set of edge-weights. The
minimum possible edge weight is at least 1 + 2 = 3. It follows that a ≥ 3. The maximum
possible edge weight is no more than (p− 1) + p = 2m + 2n + 3.

Consequently, a + 3(m + n− 1) ≤ 2m + 2n + 3 and 3 ≤ 2 + 2
m+n−1 , which is impossible when

m + n ≥ 4. ¤

By using (t + 4)-edge-antimagic vertex labeling f1, with respect to Lemma 2.3, we have the
following theorem.

Theorem 3.5. If m+n is odd and either m is a multiple of n+1 or n is a multiple of m+1,
then the graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, has a super

(
3(m+n)+2t+13

2 , 1
)
-edge-antimagic

total labeling.

Proof. From Theorem 3.1, the graph K1,m ∪ K1,n has (t + 4, 1)-edge-antimagic vertex la-
beling. Let a set A = {c, c + 1, c + 2, . . . , c + k} be the set of edge weights of the ver-
tex labeling f1 for c = t + 4 and k = m + n − 1. In light of Lemma 2.3, there ex-
ists a permutation Π(A) of the elements of A such that A + [Π(A)− c + m + n + 3] =
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{
c + 3m+3n+5

2 , c + 3m+3n+5
2 + 1, . . . , c + 5m+5n+3

2

}
. If [Π(A)− c + m + n + 3] is an edge la-

beling of K1,m ∪K1,n then A + [Π(A) − c + m + n + 3] gives the set of the edge weights of
K1,m ∪K1,n, which implies that the total labeling is super (a, 1)-edge-antimagic total, where
a = c + 3m+3n+5

2 = 3(m+n)+2t+13
2 . This concludes the proof. ¤

Theorem 3.6. If m = n then the graph K1,m ∪K1,n, m ≥ 2 and n ≥ 2, has a (4, 2)-edge-
antimagic vertex labeling.

Proof. Let m = n and m ≥ 2. Consider the bijection f3 : V (K1,m ∪K1,n) → {1, 2, . . . , m +
n + 2}, where

f3(xi,j) =





1, if i = 1 and j = 0
2j + 1, if i = 1 and j = 1, 2, . . . , m
m + n + 2, if i = 2 and j = 0
2j, if i = 2 and j = 1, 2, . . . , n.

We observe that the edge-weights of K1,m ∪K1,n, under the vertex labeling f3, constitute the
sets

W 1
f3

= {w1
f3

(x1,0x1,j) : if 1 ≤ j ≤ m}
= {2j + 2 : if 1 ≤ j ≤ m},

W 2
f3

= {w2
f3

(x2,0x2,j) : if 1 ≤ j ≤ n}
= {m + n + 2 + 2j : if 1 ≤ j ≤ n}.

Hence the elements of set
⋃2

k=1 W k
f3

= {4, 6, . . . , m + 3n + 2} can be arranged to form an
arithmetic sequence with first term 4 and common difference 2. Thus f3 is a (4, 2)-edge-
antimagic vertex labeling. ¤

Theorem 3.7. If m = n then the graph K1,m ∪ K1,n, m ≥ 2, has super (2m + 2n + 6, 1)-
edge-antimagic total and super (m + n + 7, 3)-edge-antimagic total labeling.

Proof. Let m = n and m ≥ 2. From Theorem 3.6, it follows that the graph K1,m ∪K1,n has
a (4, 2)-edge-antimagic vertex labeling. We will distinguish two cases, according to whether
d = 1 or d = 3.

Case 1. d = 1

Define f4 : V (K1,m ∪K1,n) ∪ E(K1,m ∪K1,n) → {1, 2, . . . , 2m + 2n + 2} to be the bijective
function such that

f4(xi,j) = f3(xi,j), for every feasible i and j

f4(xi,0xi,j) =
{

2m + 2n + 3− j, if i = 1 and j = 1, 2, . . . , m
m + 2n + 3− j, if i = 2 and j = 1, 2, . . . , n.

The edge-weights of K1,m ∪K1,n, under the labeling f4, constitute the sets

W 1
f4

= {w1
f4

(x1,0x1,j) = w1
f3

(x1,0x1,j) + f4(x1,0x1,j) : if 1 ≤ j ≤ m}
= {2m + 2n + 5 + j : if 1 ≤ j ≤ m},

W 2
f4

= {w2
f4

(x2,0x2,j) = w2
f3

(x2,0x2,j) + f4(x2,0x2,j) : if 1 ≤ j ≤ n}
= {2m + 3n + 5 + j : if 1 ≤ j ≤ n}.
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Hence the set
⋃2

k=1 W k
f4

= {2m+2n+6, 2m+2n+7, . . . , 3m+3n+5} consists of consecutive
integers. Thus f4 is a super (2m + 2n + 6, 1)-edge-antimagic total labeling.

Case 2. d = 3

Consider the labeling f5 : V (K1,m ∪K1,n) ∪ E(K1,m ∪K1,n) → {1, 2, . . . , 2m + 2n + 2} such
that

f5(xi,j) = f3(xi,j), for every feasible i and j

f5(xi,0xi,j) =
{

m + n + 2 + j, if i = 1 and j = 1, 2, . . . , m
2m + n + 2 + j, if i = 2 and j = 1, 2, . . . , n.

The total labeling f5 is a bijective function. The edge-weights of K1,m ∪ K1,n, under the
labeling f5, constitute the sets

W 1
f5

= {w1
f5

(x1,0x1,j) = w1
f3

(x1,0x1,j) + f5(x1,0x1,j) : if 1 ≤ j ≤ m}
= {m + n + 4 + 3j : if 1 ≤ j ≤ m},

W 2
f5

= {w2
f5

(x2,0x2,j) = w2
f3

(x2,0x2,j) + f5(x2,0x2,j) : if 1 ≤ j ≤ n}
= {3m + 2n + 4 + 3j : if 1 ≤ j ≤ n}.

Hence, the set
⋃2

k=1 W k
f5

= {m + n + 7,m + n + 10, . . . , 4(m + n) + 4} consists of arithmetic
sequence with first value m+n+7 and common difference 3. Thus f5 is a super (m+n+7, 3)-
edge-antimagic total labeling. ¤

Theorem 3.8. For the graph K1,m∪K1,n, m+n = 3, there is no super (a, 4)-edge-antimagic
total labeling.

Proof. Assume that K1,m ∪ K1,n, for m + n = 3, has a super (a, 4)-edge-antimagic total
labeling f : V (K1,m ∪ K1,n) ∪ E(K1,m ∪ K1,n) → {1, 2, . . . , 8}, and W = {w(uv) : uv ∈
E(K1,m ∪ K1,n)} = {a, a + 4, a + 8} is the set of edge-weights. In the computation of the
edge-weights of K1,m ∪K1,n, a label of a vertex of degree two is used twice, but the labels of
remained vertices are used once each, and also the labels of edges are used once each. The
sum of all vertex and edge labels used to calculate the edge-weights is equal to the sum of
edge-weights. If s1 is a label of the vertex of degree two then

s1 +
∑

u∈V

f(u) +
∑

uv∈E

f(uv) =
∑

uv∈E

w(uv)

s1 + (1 + 2 + 3 + 4 + 5) + (6 + 7 + 8) = a + a + 4 + a + 8

Thus

a = 8 +
s1

3
.

Since a must be an integer, then for s1 we have only one possible value s1 = 3, which gives
a = 9.

The smallest value of edge-weight a = 9 can be obtained only from the triple (1, 2, 6), where
1 and 2 are values of adjacent vertices of degree one and 6 is the value of the edge. The
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remained vertices of degree one must be labeled by values 4 and 5. Thus, we have the triples
(3, 4, 7) and (3, 5, 8) or (3, 4, 8) and (3, 5, 7). This contradicts the fact that K1,m ∪K1,n, for
m + n = 3, has super (a, 4)-edge-antimagic total labeling. ¤

Remark 3.1. If m+n = 2 then the graph K1,m∪K1,n has a super (8, 5)-edge-antimagic total
labeling.

The wanted super (8, 5)-edge-antimagic total labeling f6 of the graph K1,m∪K1,n, for m+n =
2, can be defined in the following way f6(x1,0) = 2, f6(x2,0) = 4, f6(x1,1) = 1, f6(x2,1) = 3,
f6(x1,0x1,1) = 5 and f6(x2,0x2,1) = 6.

4 Conclusion

We have considered edge-antimagic labelings of disconnected graphs K1,m ∪K1,n. We sum-
marize that the graph K1,m ∪ K1,n has a super (a, d)-edge-antimagic total labeling for (i)
d ∈ {0, 2}, if either m is a multiple of n + 1 or n is a multiple of m + 1, for m ≥ 2 and n ≥ 2;
(ii) d = 1, if m + n is odd and either m is a multiple of n + 1 or n is a multiple of m + 1, for
m ≥ 2 and n ≥ 2; (iii) d ∈ {1, 3}, if m ≥ 2 and n ≥ 2 and m = n; (iv) d = 5, when m+n = 2.

In the case when m + n is even and either m is a multiple of n + 1 or n is a multiple of m + 1
we do not have any answer. Therefore we propose the following open problem.

Open Problem 1. For the graph K1,m ∪K1,n, m + n is even and either m is a multiple of
n + 1 or n is a multiple of m + 1, determine if there is a super (a, 1)-edge-antimagic total
labeling.
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