International Review on Modelling and Simulations (IREMOS)

Contents:

A Comparative Analysis of THD Simulation in an Asymmetric Cascaded Multilevel Inverter by J. Loranca, J. Aguayo, A. Claudio, L. G. Vela, R. A. Vargas, J. Arau, M. Rodríguez	1728
An Innovative Isolated Bidirectional Soft-Switched Battery Charger for Plug-In Hybrid Electric Vehicle by Seyyedmilad Ebrahimi, Farid Khazaeli, Farzad Tahami, Hashem Oraee	1739
Performance Evaluation of Multicarrier SPWM Techniques for Single Phase Seven Level Cascaded Embedded Z-Source Inverter <i>by T. Sengolrajan, B. Shanthi, S. P. Natarajan</i>	1746
Adaptive Neural Network with Heuristic Learning Rule for Series Active Power Filter by Behzad Ghazanfarpour, Mohd Amran Mohd Radzi, Norman Mariun	1753
Two Stage KY Converter Voltage Ripple Reduction and Load Regulation by Neuro Fuzzy Controller <i>by K. Balaji, S. Karthikumar, K. Suresh Manic</i>	1760
Mitigation of Harmonics in Matrix Converter System Using Anfis Controller by S. Chinnaiya, S. U. Prabha	1766
Islanding Detection Method without Non-Detection Zone Based on Usage of Single Parameter (ISDET) Calculated from Voltages by H. Laaksonen	1771
Effects of Wind Turbine Power Curve in Wind Speed Prediction Errors by Diogo L. Faria, Rui Castro	1780
Observations on Locational Marginal Price in a Double Auction Deregulated Power System by Arunachalam S. Abdullah Khan M.	1787
Improvement of Power Quality in Distribution System Using Fuzzy - Unit Vector Controller by T. Guna Sekar, R. Anita	1794
Evaluation of the Sympathetic Interaction between Three 150MVA Power Transformers During Energizing the Third Transformer in Shahr-e-Kord 400/63kV Substation <i>by Behzad Sedaghat, Hamed Mehrvarz, Mehdi Jalali Mashayekhi</i>	1801
A Novel Performance Index for Placement of Distributed Generation in Distribution System by D. Sattianadan, M. Sudhakaran, S. Vidyasagar, K. Vijayakumar	1809

(continued on inside back cover)

International Review on Modelling and Simulations (IREMOS)

Editor-in-Chief:

Santolo Meo

Department of Electrical Engineering FEDERICO II University 21 Claudio - I80125 Naples, Italy santolo@unina.it

Editorial Board:

Marios Angelides	(U.K.)	Brunel University
M. El Hachemi Benbouzid	(France)	Univ. of Western Brittany- Electrical Engineering Department
Debes Bhattacharyya	(New Zealand)	Univ. of Auckland – Department of Mechanical Engineering
Stjepan Bogdan	(Croatia)	Univ. of Zagreb - Faculty of Electrical Engineering and Computing
Cecati Carlo	(Italy)	Univ. of L'Aquila - Department of Electrical and Information Engineering
Ibrahim Dincer	(Canada)	Univ. of Ontario Institute of Technology
Giuseppe Gentile	(Italy)	FEDERICO II Univ., Naples - Dept. of Electrical Engineering
Wilhelm Hasselbring	(Germany)	Univ. of Kiel
Ivan Ivanov	(Bulgaria)	Technical Univ. of Sofia - Electrical Power Department
Jiin-Yuh Jang	(Taiwan)	National Cheng-Kung Univ Department of Mechanical Engineering
Heuy-Dong Kim	(Korea)	Andong National Univ School of Mechanical Engineering
Marta Kurutz	(Hungary)	Technical Univ. of Budapest
Baoding Liu	(China)	Tsinghua Univ Department of Mathematical Sciences
Pascal Lorenz	(France)	Univ. de Haute Alsace IUT de Colmar
Santolo Meo	(Italy)	FEDERICO II Univ., Naples - Dept. of Electrical Engineering
Josua P. Meyer	(South Africa)	Univ. of Pretoria - Dept.of Mechanical & Aeronautical Engineering
Bijan Mohammadi	(France)	Institut de Mathématiques et de Modélisation de Montpellier
Pradipta Kumar Panigrahi	(India)	Indian Institute of Technology, Kanpur - Mechanical Engineering
Adrian Traian Pleşca	(Romania)	"Gh. Asachi" Technical University of Iasi
Ľubomír Šooš	(Slovak Republic)	Slovak Univ. of Technology - Faculty of Mechanical Engineering
Lazarus Tenek	(Greece)	Aristotle Univ. of Thessaloniki
Lixin Tian	(China)	Jiangsu Univ Department of Mathematics
Yoshihiro Tomita	(Japan)	Kobe Univ Division of Mechanical Engineering
George Tsatsaronis	(Germany)	Technische Univ. Berlin - Institute for Energy Engineering
Ahmed F. Zobaa	(U.K.)	Brunel University - School of Engineering and Design

The *International Review on Modelling and Simulations (IREMOS)* is a publication of the **Praise Worthy Prize S.r.l.**. The Review is published bimonthly, appearing on the last day of February, April, June, August, October, December.

Published and Printed in Italy by **Praise Worthy Prize S.r.l.**, Naples, December 31, 2013. *Copyright* © *2013 Praise Worthy Prize S.r.l. - All rights reserved.*

This journal and the individual contributions contained in it are protected under copyright by **Praise Worthy Prize S.r.l.** and the following terms and conditions apply to their use:

Single photocopies of single articles may be made for personal use as allowed by national copyright laws.

Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale and all forms of document delivery. Permission may be sought directly from **Praise Worthy Prize S.r.l.** at the e-mail address:

administration@praiseworthyprize.com

Permission of the Publisher is required to store or use electronically any material contained in this journal, including any article or part of an article. Except as outlined above, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. E-mail address permission request:

administration@praiseworthyprize.com

Responsibility for the contents rests upon the authors and not upon the Praise Worthy Prize S.r.l.

Statement and opinions expressed in the articles and communications are those of the individual contributors and not the statements and opinions of **Praise Worthy Prize S.r.l. Praise Worthy Prize S.r.l.** assumes no responsibility or liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. **Praise Worthy Prize S.r.l.** expressly disclaims any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the service of a competent professional person should be sought.

BLDC Motor Control Using Simulink Matlab and PCI

Bambang Sujanarko¹, Bambang Sri Kaloko¹, Moh. Hasan²

Abstract – This paper presents the control of BLDC motor using Simulink Matlab and PCI as interfacing to hardware. The control based on six step method that have certain relations among rotor positions and winding currents. These relations convert to digital functions and simplify using K-Map. The result then implemented by basic digital elements on Simulink Matlab and used to trigger the inverter through PCI interfacing to produce six step waveform. Before feed to inverter, a PWM added to these signal as speed control of BLDC motor. Test experiment results show that the control can produce variable speed, voltage and current. **Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved.**

Keywords: BLDC, Control, Karnaugh, Simulink, PCI, Six Step, PWM

Nomenclature

В	Friction coefficient
B_x	Fux density vector
D	Duty cycle (Ton/T)
E, E_a, E_b, E_c	Back-EMF in winding, in winding A, in
, u o, c	winding B, in winding C
H_A, H_B, H_C	Hall A, Hall B, Hall C
I, I_a, I_b, I_c	Motor Current in winding, in winding A,
, a, o, c	in winding B, in winding C
J	Moment of inertia
L, L_a, L_b, L_c	Self inductance in winding, in winding A.
	in winding B, in winding C
L_{x}	Length of the core
N_p	Number of active phases
N _{spp}	Number of slots per pole per phase
N_t	Number of turns per slot per phase
N_t	Number of turns per slot per phase
Р	Number of magnet poles
$Q_{n}, Q_{1}, Q_{2},$	Inverter switch in n-th, in switch 1,
$Q_{3}, D_{4}, Q_{5}, Q_{6}$	switch 2, switch 3, switch 4, switch 5,
	switch 6
R, R_a, R_b, R_c	Resistance in winding, in winding A, in
	winding B, in winding C
R_x	Outer radius of rotor (moment arm)
T_e	Electric Torque
T_F	Friction Torque
T_J	Inertia Tourque
T_L	Load torque
V_s	Voltage supply
Abbreviation	
BLDC	Brushless Direct Current
CCW	Counter Clockwise

AbbreviationBLDCBrushless Direct CurrentCCWCounter ClockwiseCWClockwiseEMFElectric Motion ForceK-MapKarnaugh MapPCIPeripheral Component Interconnect

Pulse Width Modulation

PWM

Introduction

I.

BLDC motors have many advantages over other types of motors. These advantages are high torque, low maintenance, high efficiency, long life operating, low noise, high density power and high reliability [1].

Due to their properties and the evolution of low-cost power semiconductor switches and permanent magnet materials, BLDC motors are widely used in automotive, robotics, industrial automation equipment, machine tools, medical, instrumentation and so on [1], [2].

In order to produce good performance, BLDC motor require particular control for specific system. Many designs and methods have been created for this purpose. Some of the controls use the Field Programmable Gate Array, Digital Signal Processor, Application Specific Integrated Circuit, and the most is using a microcontroller [3]-[7].

But these controls is not flexible, because it is not possible to change easily, such as exchange PWM frequency, current limitation, type of closed-loop control and others. To solve this problem, this research will be build BLDC motors control using computer, which based on Simulink Matlab and PCI 1711 L interfacing.

This control is expected to gain control system that easily modeled and modified, so that it can be used to obtain the optimal control system, only by changing the software.

This research is a continuation of previous research, which has resulted in digital circuits represent logic functions among the sensor signals to triggers of the inverter [8].

II. BLDC Control Fundamental

II.1. Basic Structure

A BLDC motor is a synchronous electric motor powered by DC power and is electronically

Manuscript received and revised November 2013, accepted December 2013

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved