

PELABELAN TOTAL SUPER (a,d)-SISI ANTIMAGIC PADA GRAF KELELAWAR

SKRIPSI

Oleh

Akhmad Mukhlis NIM 070210191154

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2012

PELABELAN TOTAL SUPER (a,d)-SISI ANTIMAGIC PADA GRAF KELELAWAR

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan Matematika (S1) dan mencapai gelar Sarjana Pendidikan

Oleh

Akhmad Mukhlis NIM 070210191154

PROGRAM STUDI PENDIDIKAN MATEMATIKA
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
UNIVERSITAS JEMBER
2012

PERSEMBAHAN

Segala puji bagi Allah, Tuhan yang Maha Pengasih lagi Maha Penyayang, serta sholawat dan salam semoga terlimpah kepada makhluk ciptaan-Mu yang paling mulia, Nabi Muhammad S.A.W. Kupersembahkan secuil kebahagiaan penggalan syair dalam setiap detik perjalanan hidupku teriring rasa terima kasih kepada:

- 1. Ayahanda dan Ibunda tercinta, Subianto dan Slama, yang senantiasa mencurahkan kasih sayang yang berlimpah dan berdo'a demi kesuksesan putra-putrinya, serta kakak dan adikku tersayang, Moh. Irfan dan Alfiatul Munawaroh yang senantiasa berdo'a dan tiada henti memberiku motivasi dalam menyelesaikan skripsi ini;
- 2. Bapak Drs. Dafik, M.Sc, Ph.D dan Bapak Drs. Slamin, M.Comp.Sc., Ph.D selaku pembimbing skripsi yang dengan sabar telah memberikan ilmu dan bimbingan selama menyelesaikan skripsiku;
- 3. Para guru dan dosen, yang telah memberikan ilmu dan membimbing dengan penuh kesabaran;
- 4. Teman-teman FKIP Matematika: (khususnya keluarga besar 7-COMMUNITY yang tak dapat kusebutkan namanya satu persatu) yang senantiasa menghadirkan warna-warna indah dalam kebersamaan kita selama masa-masa kuliah;
- 5. Teman-Temanku : Alfin, Ela, Farid, Rendra, Hilal, Kunti dan pecinta graf lainnya yang telah membagi ilmu dan pengalaman berharga;
- 6. Sobat-sobat tergilaku: Rizky Nurdi, Afton, Adi, Irfan, Didik, Jalil, Gufron, Yusuf, Gangga, Dody, Hendra, Martha, Ayu Ardiani, Dianita, Dandi, Fery dan Ilham terima kasih atas kebersamaan, perjuangan, canda tawa, bantuan, semangat dan kebersamaan kita setiap hari adalah kenangan yang termanis;
- 7. Teman-temanku di MAN 2 Jember Khususnya Angkatan 2003, yang senantiasa menjadi sumber inspirasi dan penyemangat untukku;
- 8. Almamater Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember.

MOTTO

```
"...Sesungguhnya Allah tidak akan mengubah keadaan suatu kaum, sebelum mereka mengubah keadaan diri mereka sendiri..."

( Terjemahan Q.S. AR-RA'D: 11)
```

"All our dreams can come true, if we have the courage to pursue them."

(Walt Disney)

"Kemauan, Kerja keras dan do'a adalah modal utama untuk menggapai masa depan yang lebih baik."

(Akhmad Mukhlis - 16 Mei '12)

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

nama : Akhmad Mukhlis NIM : 070210191154

menyatakan dengan sesungguhnya bahwa skripsi yang berjudul: "PELABE-LAN TOTAL SUPER (a,d)-SISI ANTIMAGIC PADA GRAF KELELAWAR" adalah benar-benar hasil karya sendiri, kecuali jika dalam pengutipan substansi disebutkan sumbernya, dan belum diajukan pada instansi manapun, serta bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa adanya tekanan dan paksaan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Jember, 04 Juni 2012 Yang menyatakan,

Akhmad Mukhlis NIM. 070210191154

SKRIPSI

PELABELAN TOTAL SUPER (a,d)-SISI ANTIMAGIC PADA GRAF KELELAWAR

Oleh

Akhmad Mukhlis NIM 070210191154

Pembimbing

Dosen Pembimbing I : Drs. Dafik, M.Sc, Ph.D

Dosen Pembimbing II : Drs. Slamin, M.Comp.Sc., Ph.D

PERSETUJUAN

PELABELAN TOTAL SUPER (a, d)-SISI ANTIMAGIC PADA GRAF KELELAWAR

SKRIPSI

diajukan guna memenuhi syarat untuk menyelesaikan pendidikan Program Sarjana Strata Satu Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam dengan Program Studi Pendidikan Matematika pada Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember

Nama Mahasiswa : Akhmad Mukhlis

NIM : 070210191154

Jurusan : Pendidikan MIPA

Program Studi : Pendidikan Matematika

Angkatan Tahun : 2007

Daerah Asal : Jember

Tempat, Tanggal Lahir : Jember, 04 Mei 1986

Disetujui oleh:

Pembimbing I, Pembimbing II,

Drs. Dafik, M.Sc, Ph.D NIP. 19680802 199303 1 004 Drs. Slamin, M.Comp.Sc., Ph.D NIP. 19670420 199201 1 001

PENGESAHAN

Skripsi berjudul "PELABELAN TOTAL SUPER (a,d)-SISI ANTIMAGIC PADA GRAF KELELAWAR" telah diuji dan disahkan oleh Fakultas Keguruan dan Ilmu Pendidikan pada:

hari : Senin

tanggal: 04 Juni 2012

tempat : Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember

Tim Penguji

Ketua, Sekretaris,

Dr. Susanto, M.Pd NIP. 19630616 198802 1 001 Dra. Titik Sugiarti, M.Pd NIP. 19580304 198303 2 003

Anggota I,

Anggota II,

Drs. Dafik, M.Sc, Ph.D NIP. 19680802 199303 1 004 Dr. H. Hobri, S.Pd, M.Pd NIP. 19730506 199702 1 001

Mengesahkan Dekan Fakultas Keguruan Dan Ilmu Pendidikan Universitas Jember,

> Drs. H. Imam Muchtar, S.H., M.Hum NIP. 19540712 198003 1 005

RINGKASAN

Pelabelan total super (a,d)-sisi antimagic pada *Graf Kelelawar*; Akhmad Mukhlis, 070210191154; 2012: 130 halaman; Program Studi Pendidikan Matematika, Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Jember.

Pelabelan graf merupakan suatu topik dalam teori graf. Salah satu jenis tipe pelabelan graf adalah pelabelan total super (a, d)-sisi antimagic (SEATL). Pelabelan total super (a, d)-sisi antimagic pada sebuah graf G = (V, E) adalah pelabelan titik dengan bilangan bulat 1, 2, 3, ..., p dan pelabelan sisi dengan bilangan bulat $f(E) = \{p+1, p+2, p+3, ... p+q\}$ dari sebuah graf G dimana p adalah banyaknya titik dan q adalah banyaknya sisi pada graf G. Graf Kelelawar adalah suatu graf baru yang belum memiliki famili graf dan belum memiliki pelabelan total super (a, d)-sisi antimagic. Graf Kelelawar dinotasikan Bat_n adalah sebuah graf dengan himpunan vertex, $|V| = \{v_i, w_i, x_i, y_i, z_i; 1 \le 1\}$ $i \le n, 1 \le j \le 4n + 2$ dan himpunan edge, $|E| = \{v_i w_i, v_i x_{4i-3}, v_i x_{4i-1}, w_i x_{4i-3}, v_i x_{4i-3}, v_i x_{4i-1}, w_i x_{4i$ $w_i x_{4i-2}, w_i x_{4i-1}, y_i x_{4i-1}, y_i x_{4i}, z_i x_{4i-1}, z_i x_{4i}, z_i x_{4i+1}, z_i x_{4i+2}; 1 \le i \le n$ $\cup \{x_j x_{j+1}; x_{4i-2}, x_{4i-2$ $1 \le j \le 4n+1$. Tujuan dari penelitian ini adalah untuk mengetahui fungsi bijektif pelabelan total super (a, d)-sisi antimagic pada Graf Kelelawar. Metode yang digunakan dalam penelitian ini adalah deduktif aksiomatik, yaitu dengan menurunkan teorema yang telah ada, kemudian diterapkan dalam pelabelan total super (a, d)-sisi antimagic pada graf Bat_n dan $mBat_n$.

Hasil penelitian ini berupa lemma dan teorema baru serta open problem mengenai pelabelan total super (a,d)-sisi antimagic pada graf Kelelawar Bat_n dan $mBat_n$. Teorema, lemma dan open problem yang dihasilkan adalah sebagai berikut: **Lema 4.5.1** Ada pelabelan titik (3,1)-sisi antimagic pada Graf Kelelawar tunggal Bat_n untuk $n \in N$, **Teorema 4.5.1** Ada pelabelan total super (24n+6,0)-sisi antimagic pada Graf Kelelawar tunggal Bat_n jika $n \in N$, **Teorema 4.5.2** Ada pelabelan total super (8n+6,2)-sisi antimagic pada Graf Kelelawar tunggal Bat_n jika $n \in N$, **Teorema 4.5.3** Ada pelabelan total super (16n+6,1)-sisi antimagic pada

Graf Kelelawar tunggal Bat_n jika $n \in N$, Lema 4.6.1 Ada pelabelan titik $(\frac{3m+3}{2},1)$ -sisi antimagic pada gabungan Graf Kelelawar $mBat_n$ (jika m ganjil, $m \geq 3$ dan $n \in N$), Teorema 4.6.1 Ada pelabelan total super $(24mn + \frac{(9m+3)}{2},0)$ -sisi antimagic pada gabungan Graf Kelelawar $mBat_n$ jika m ganjil, $m \geq 3$ dan $n \in N$, Teorema 4.6.2 Ada pelabelan total super $(8mn + \frac{7m+5}{2},2)$ -sisi antimagic pada gabungan Graf Kelelawar $mBat_n$ (jika m ganjil, $m \geq 3$ dan $n \in N$), Teorema 4.6.3 Ada pelabelan total super $(16mn + \frac{9m+1}{2},1)$ -sisi antimagic pada gabungan Graf Kelelawar $mBat_n$ (jika m ganjil, $m \geq 3$ dan $n \in N$), Teorema 4.6.3 Ada pelabelan total super (16mn + 4m + 2,1)-sisi antimagic pada gabungan Graf Kelelawar $mBat_n$ (jika m genap, $m \geq 2$ dan $n \in N$) dan Open Problem Pelabelan total super (a,d)-sisi antimagic pada graf Kelelawar $mBat_n$, dengan $n \in N$; $1 \leq k \leq m$; m genap untuk d = 0 dan d = 2.

PRAKATA

Segala puji syukur ke hadirat Allah SWT. atas segala berkah dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Pelabelan Total Super (a,d)-Sisi Antimagic pada Graf Kelelawar" ini dengan baik.

Pada kesempatan ini penulis mengucapkan terima kasih dan penghargaan yang sebesar-besarnya atas bantuan dan bimbingan dalam penyusunan skripsi ini, terutama kepada yang terhormat:

- 1. Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember;
- 2. Ketua Jurusan Pendidikan MIPA Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember;
- 3. Ketua Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember;
- 4. Dosen Pembimbing I dan Dosen Pembimbing II yang telah meluangkan waktu, pikiran, dan perhatian dalam penulisan skripsi ini;
- 5. Dosen dan Karyawan Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember;
- 6. Semua pihak yang telah membantu terselesaikannya skripsi ini.

Semoga bantuan, bimbingan, dan dorongan beliau dicatat sebagai amal baik oleh Allah SWT dan mendapat balasan yang sesuai dari-Nya. Selain itu, penulis juga menerima segala kritik dan saran dari semua pihak demi kesempurnaan skripsi ini. Akhirnya penulis berharap, semoga skripsi ini dapat bermanfaat, amin yaa robbal alamin.

Jember, 04 Juni 2011

Penulis

DAFTAR ISI

	Halaman
HALAMAN JUDUL	i
HALAMAN PERSEMBAHAN	ii
HALAMAN MOTTO	iii
HALAMAN PERNYATAAN	iv
HALAMAN PEMBIMBINGAN	v
HALAMAN PERSETUJUAN	vi
HALAMAN PENGESAHAN	vii
RINGKASAN	viii
PRAKATA	x
DAFTAR ISI	xiii
DAFTAR GAMBAR	xvi
DAFTAR TABEL	xvii
DAFTAR LAMPIRAN	xviii

DAFTAR ISI

D.	AFTA	AR LAMBANG	xix	
1	PEN	ENDAHULUAN 1		
	1.1	Latar Belakang Masalah	1	
	1.2	Rumusan Masalah	5	
	1.3	Batasan Masalah	5	
	1.4	Tujuan Penelitian	6	
	1.5	Manfaat Penelitian	6	
2	TIN	JAUAN PUSTAKA	7	
	2.1	Aplikasi Graf	7	
	2.2	Terminologi Dasar Graf	15	
	2.3	Jenis-jenis Graf	22	
	2.4	Graf Khusus	25	
	2.5	Graf Kelelawar	30	
	2.6	Fungsi dan Barisan Aritmatika	31	
	2.7	Pelabelan Graf	33	
		2.7.1 Definisi Pelabelan Graf	33	
		2.7.2 Pelabelan Total Super (a,d) -sisi antimagic	34	
		2.7.3 Pelabelan Total Super (<i>a,d</i>)-sisi antimagic pada Graf Kelelaw	ar 37	
	2.8	Hasil-Hasil Pelabelan Total Super (a,d) -Sisi Antimagic pada Graf Diskonektif	40	
3	ME	TODE PENELITIAN	44	
	3 1	Metode Penelitian	44	

DAFTAR ISI

	3.2	Definisi Operasional	4
		3.2.1 Pelabelan Total Super (a, d) -Sisi Antimagic 4	ŀ5
		3.2.2 Graf Kelelawar	ŀ5
	3.3	Teknik Penelitian	18
4	HAS	SIL DAN PEMBAHASAN 5	50
	4.1	Jumlah Titik dan Sisi pada Graf Kelelawar (Bat_n) 5	50
	4.2	Jumlah Titik dan Sisi pada Gabungan Kelelawar ($mBat_n$) 5	52
	4.3	Batas Atas d Graf Kelelawar (Bat_n)	52
	4.4	Batas Atas d pada Gabungan Graf Kelelawar ($mBat_n$) 5	53
	4.5	Pelabelan Total Super (a,d) -sisi Antimagic pada Graf Kelelawar	
		(Bat_n)	4
	4.6	Pelabelan Total Super (a,d) -sisi Antimagic pada Gabungan Graf	
		Kelelawar (Bat_n)	′1
	4.7	Hasil dan Pembahasan	2.2
5	KES	SIMPULAN DAN SARAN 12	26
	5.1	Kesimpulan	26
	5.2	Saran	27
D	AFTA	AR PUSTAKA 12	28
La	mpir	an	

DAFTAR GAMBAR

		Η	ala	m	an
2.1	Gambaran Kota Königsberg tahun 1736				7
2.2	Jembatan Konigsberg dan representasinya dalam graf				8
2.3	Contoh graf yang menggambarkan hubungan pertemanan				9
2.4	Icon game Mahjong				10
2.5	Tampilan game Mahjong				11
2.6	Aturan main				12
2.7	Representasi game Mahjong dalam graf				13
2.8	Jika menghubungkan v_1 ke v_2				14
2.9	Contoh graf secara umum				15
2.10	Graf dengan vertex yang mempunyai degree sebanyak 4 .				16
2.11	Graf dan komplemennya				16
2.12	Contoh sebuah graf dengan 8 titik				17
2.13	Contoh graf dan subgrafnya				18
2.14	Contoh sebuah graf dan matrik adjacencynya				19
2.15	Contoh graf terpotong				19
2.16	Keisomorfisan graf				20
2.17	Contoh gabungan graf				21
2.18	(a) graf sederhana, (b) graf ganda, dan (c) graf semu				23
2.19	Graf berhingga				23

DAFTAR GAMBAR

2.20	Graf tak-berhingga	24
2.21	Graf tak-berarah	24
2.22	Graf berarah	25
2.23	Graf komplit K_4 dan K_5	25
2.24	Contoh graf lobster $\pounds_{4,2,1}$	26
2.25	Graf E	26
2.26	(a) Graf dua dartisi dan (b) Graf dua partisi lengkap $K_{3,3}$	27
2.27	Graf Gunung M_{2n} dengan $n=2$, M_4	27
2.28	Graf friendship F_4	28
2.29	Graf petersen	29
2.30	Graf ladder L_5	29
2.31	Graf Diamond Ladder Dl_4	30
2.32	Graf Kelelawar Bat_n	30
2.33	Graf Kelelawar Bat_3	31
2.34	(a) fungsi injektif, (b) fungsi surjektif dan (c) fungsi bijektif	32
2.35	(a) Pelabelan titik (b) pelabelan Sisi (c) Pelabelan total	34
2.36	EAV Bat ₃	37
2.37	EAV Bat ₃	38
2.38	EAV $3Bat_3$	39
3.1	Graf Kelelawar Bat_n	45
3.2	Graf Kelelawar Bat_3	46
3.3	Gabungan Graf Kelelawar $3Bat_3$	47
3.4	Rancangan Penelitian	49

DAFTAR GAMBAR

4.1	Jumlah titik dan jumlah sisi graf pada Bat_2 dan Bat_3 51
4.2	Pelabelan titik (3,1)-sisi antimagic pada Bat_3
4.3	Pelabelan total super $(78,0)$ -sisi antimagic $(SEATL)$, Bat_3 61
4.4	Pelabelan total super $(30,2)$ -sisi antimagic $(SEATL)$, Bat_3 66
4.5	Pelabelan total super $(54,1)$ -sisi antimagic $(SEATL)$, Bat_3 71
4.6	Pelabelan titik (6,1)-sisi antimagic pada $3Bat_3$
4.7	Pelabelan total super $(231,0)$ -sisi antimagic pada $3bat_3$ 93
4.8	Pelabelan total super(85,2)-sisi antimagic pada $3bat_3$ 109
4.9	Pelabelan total super(158,1)-sisi antimagic pada $3bat_3$ 111
4.10	Pelabelan total $\operatorname{super}(106,1)$ -sisi antimagic pada Graf Kelelawar
	diskonektif, $2Bat_3$

DAFTAR TABEL

	Halan	nan
2.1	Ringkasan dari pelabelan total super (a,d) -edge antimagic pada	
	graf disconnected	40

DAFTAR LAMPIRAN

Hala	man
MATRIK PENELITIAN	131
FORMULIR PENGAJUAN JUDUL DAN PEMBIMBINGAN SKRIPSI	132
LEMBAR KONSULTASI PENYUSUNAN SKRIPSI	133

DAFTAR LAMBANG

 $G = \operatorname{Graf} G$

G(V,E)= Sebarang graf tak berarah dengan V adalah himpunan tak kosong dari semua titik dan E adalah himpunan sisi

 v_n = Titik ke-n pada suatu graf e_n = Sisi ke-n dari suatu graf

V(G) = Himpunan titik pada graf G dan disebut sebagai *order* E(G) = Himpunan sisi pada graf G dan disebut sebagai *size*

 U_n = Suku ke-n barisan aritmetika

EAVL = Edge antimagic vertex labeling atau pelabelan titik sisi antimagic SEATL = Super edge antimagic total labeling atau pelabelan total super (a,d)-sisi antimagic

d = Nilai beda barisan bobot sisi pada SEATL

 a = Bobot sisi terkecil yang merupakan suku pertama barisan bobot sisi pada SEATL

 Bat_n = Lambang untuk graf kelelawar

 $mBat_n$ = Lambang untuk gabungan graf Kelelawar Bat_n

n = Jumlah expandle (graf yang diperpanjang) dari Graf Kelelawar

 $m = \text{Jumlah copy dari } Bat_n$

 v_i = Titik ke-*i* pada bagian bawah Bat_n

 w_i = Titik ke-i pada bagian tengah ekor Bat_n x_j = Titik ke-j pada bagian atas badan Bat_n

 y_i = Titik ke-i pada bagian tengah sayap Bat_n

 z_i = Titik ke-i pada bagian atas sayap graf Bat_n

 v_i^k = Titik ke-i dalam komponen ke-k pada bagian bawah ekor dari gabungan $mBat_n$

 w_i^k = Titik ke-i dalam komponen ke-k pada bagian tengah ekor dari gabungan $mBat_n$

 x_j^k = Titik ke-j dalam komponen ke-k pada bagian atas badan dari gabungan $mBat_n$

DAFTAR LAMBANG

y_i^k	=	Titik ke- i dalam komponen ke- k pada bagian tengah sayap dari
•		gabungan $mBat_n$
z_i^k	=	Titik ke-i dalam komponen ke-k pada bagian atas sayap
		dari gabungan $mBat_n$
p	=	Indeks dari masing-masing $lpha$ yang bersesuaian
$\alpha_p(v_i)$	=	Pelabelan titik pada bagian bawah Bat_n
$\alpha_p(w_i)$	=	Pelabelan titik pada bagian tengah ekor
		Bat_n
$\alpha_p(x_j)$	=	Pelabelan titik pada bagian atas badan
		Bat_n
$\alpha_p(y_i)$	=	Pelabelan titik pada bagian tengah sayap
		Bat_n
$\alpha_p(z_i)$	=	Pelabelan titik pada bagian atas sayap
		Bat_n
w_{α_p}	=	Fungsi bijektif bobot sisi dari pelabelan titik α_p
$\alpha_p(v_i^k w_i^k)$	=	Fungsi bijektif label sisi $v_i^k w_i^k$
		Fungsi bijektif label sisi $v_i^k x_{4i-3}^k$
$\alpha_p(v_i^k x_{4i-1}^k)$	=	Fungsi bijektif label sisi $v_i^k x_{4i-1}^k$
$\alpha_p(w_i^k x_{4i-3}^k)$	=	Fungsi bijektif label sisi $w_i^k x_{4i-3}^k$
$\alpha_p(w_i^k x_{4i-2}^k)$	=	Fungsi bijektif label sisi $w_i^k x_{4i-2}^k$
$\alpha_p(w_i^k x_{4i-1}^k)$	=	Fungsi bijektif label sisi $w_i^k x_{4i-1}^k$
		Fungsi bijektif label sisi $x_j^k x_{j+1}^k$
$\alpha_p(y_i^k x_{4i-1}^k)$	=	Fungsi bijektif label sisi $y_i^k x_{4i-1}^k$
$\alpha_p(y_i^k x_{4i}^k)$	=	Fungsi bijektif label sisi $y_i^k x_{4i}^k$
$\alpha_p(z_i^k x_{4i-1}^k)$	=	Fungsi bijektif label sisi $z_i^k x_{4i-1}^k$
		Fungsi bijektif label sisi $z_i^k x_{4i}^k$
		Fungsi bijektif label sisi $z_i^k x_{4i+1}^k$
$\alpha_p(z_i^k x_{4i+2}^k)$	=	Fungsi bijektif label sisi $z_i^k x_{4i+2}^k$
$W\alpha_p$	=	Fungsi bijektif bobot total dari pelabelan total α_p