

PENERAPAN MODEL DEEP DIALOGUE AND CRITICAL THINKING (DDCT) DENGAN STRATEGI PROBLEM SOLVING DALAM PEMBELAJARAN FISIKA DI SMA

SKRIPSI

Oleh

Eka Triana Sari NIM. 060210192230

PROGRAM STUDI PENDIDIKAN FISIKA
JURUSAN PENDIDIKAN MIPA
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
UNIVERSITAS JEMBER
2011

PENERAPAN MODEL DEEP DIALOGUE AND CRITICAL THINKING (DDCT) DENGAN STRATEGI PROBLEM SOLVING DALAM PEMBELAJARAN FISIKA DI SMA

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan Fisika (S1) dan mencapai gelar Sarjana Pendidikan

Oleh

Eka Triana Sari NIM. 060210192230

PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2011

PERSEMBAHAN

Skripsi ini saya persembahkan untuk:

- Ayahanda Poniran dan Ibunda Srini. Terima kasih atas do'a dan semangat yang telah mengiringi langkahku selama menuntut ilmu, dukungan, kegigihan, kesabaran, pengorbanan serta curahan kasih sayang yang telah diberikan selama ini;
- 2. Guru-guruku sejak SD sampai PT, yang telah membimbing dengan penuh kesabaran;
- 3. Almamater Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember

MOTTO

Orang-orang yang berhenti belajar akan menjadi pemilik masa lalu. Orang-orang yang masih terus belajar, akan menjadi pemilik masa depan.

(Mario Teguh)

Jika kita hanya mengerjakan yang sudah kita ketahui, kapankah kita akan mendapat pengetahuan yang baru? Melakukan yang belum kita ketahui adalah pintu menuju pengetahuan.

(Mario Teguh)

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama: Eka Triana Sari.

NIM : 060210192230

menyatakan dengan sesungguhnya bahwa karya ilmiah yang berjudul: " Penerapan

Model Deep Dialogue and Critical Thinking (DDCT) dengan Strategi Problem

Solving pada Pembelajaran Fisika kelas XI di SMA" adalah benar-benar hasil karya

sendiri, kecuali jika dalam pengutipan substansi disebutkan sumbernya, dan belum

pernah diajukan pada institusi mana pun, serta bukan karya jiplakan. Saya

bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah

yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa adanya tekanan

dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika

ternyata di kemudian hari pernyataan ini tidak benar.

Juli 2011 Jember,

Yang menyatakan,

Eka Triana Sari.

NIM 060210192230

iv

SKRIPSI

PENERAPAN MODEL DEEP DIALOGUE AND CRITICAL THINKING (DDCT) DENGAN STRATEGI PROBLEM SOLVING PADA PEMBELAJARAN FISIKA KELAS XI DI SMA

Oleh

Eka Triana Sari NIM 060210192230

Pembimbing

Dosen Pembimbing Utama : Dra. Sri Astutik, M.Si.

Dosen Pembimbing Anggota : Drs. Albertus Djoko Lesmono, M.Si.

PENGESAHAN

Skripsi berjudul "Penerapan Model Deep Dialogue and Critical Thinking (DDCT) dengan Strategi Problem Solving pada Pembelajaran Fisika kelas XI di SMA" telah diuji dan disahkan oleh Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember pada:

hari, tanggal: senin 11 juli 2011

tempat : Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember

Tim Penguji

Ketua, Sekretaris,

Supeno, S.Pd., M.Si NIP. 19741207 199903 1 002 Drs. A. Djoko Lesmono, M. Si NIP. 19641230 199302 1 001

Anggota I, Anggota II,

Dra. Sri Astutik, M. Si NIP 196706101992032002 Drs. Singgih Bektiarso, M.Pd NIP. 19610824 198601 1 001

Mengesahkan, Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember,

> Drs. Imam Muchtar, SH, M.Hum NIP. 19540712 198003 1 005

RINGKASAN

Penerapan Model *Deep Dialogue and Critical Thinking* (DDCT) dengan Strategi *Problem Solving* pada Pembelajaran Fisika Kelas XI di SMA; Eka Triana sari; 060210192230; 2011; 44 Halaman; Jurusan Pendidikan MIPA Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember.

Menurut Brochhaus (dalam Druxes, 1986:3), Fisika merupakan bagian ilmu pengetahuan alam (IPA) atau sains yang menerangkan berbagai gejala dan dan kejadian alam yang memungkinkan penelitian dengan percobaan, pengukuran apa yang didapat, penyajian secara sistematis, dan berdasarkan peraturan — peraturan umum. Berdasarkan fakta yang ada telah diketahui bahwa dikalangan siswa telah berkembang kesan bahwa pelajaran fisika merupakan salah satu pelajaran yang tidak digemari siswa karena motivasi untuk belajar fisika, sehingga ada anggapan bahwa fisika itu sulit dan membosankan. Hal ini dapat dilihat dengan masih rendahnya prestasi siswa ditinjau dari NEM siswa dimana fisika menduduki urutan paling bawah yaitu dibawah pelajaran matematika (Suharto et al. 2004:1).

Pembelajaran konvensional merupakan pembelajaran yang menyadarkan pada paradigma guru mengajar bukan menyadarkan pada siswa belajar (tim microteaching, 2007:46). Pembelajaran konvensional dalam prakteknya cenderung mengacu pada pandangan behavioristik. Pada umumnya, metode yang paling banyak digunakan dalam pembelajaran fisika adalah metode ceramah, dengan kegiatan belajar mengajar fisika yang berlangsung searah yaitu guru sebagai pusat kegiatan, sedang murid diposisikan sebagai obyek yang akan selalu menerima apa yang disampaikan oleh guru. Hal ini menyebabkan fisika menjadi pelajaran yang kurang menarik bagi siswa disebabkan fisika selalu identik dengan menghafal rumus dan ketika pembelajaran siswa cenderung pasif. SMA Negeri

Rambipuji adalah salah satu sekolah yang ada dikabupaten Jember. Berdasarkan observasi kegiatan belajar mengajar yang terjadi di SMA Negeri Rambipuji Terlihat kurang bisa diterima siswa dengan baik. Hali ini dapat dilihat dari : 1) Ketika KBM berlangsung siswa aktif cenderung ramai; 2) siswa aktif cenderung menganggu teman yang lain; 3) tidak memperhatikan penjelasan guru; 4) untuk siswa yang pendiam lebih banyak mencatat; 5) siswa yang pendiam lebih sering bermain sendiri.

Guru hendaknya tidak menyajikan materi pelajaran fisika dalam bentuk jadi yang membuat siswa bersikap pasif, melainkan harus di atur sehingga mendorong siswa untuk aktif dalam proses pembelajaran. Selain itu pada pembelajaran fisika diharapkan anak didik dapat belajar merumuskan masalah, untuk menarik siswa lebih aktif berfikir dalam proses pembelajaran. Oleh karena itu penggunaan strategi pembelajaran harus mampu membuat siswa berfikir aktif dan tidak hanya mendengarkan penjelasan dari guru. Salah satu strategi pembelajaran yang dapat membantu siswa berfikir aktif untuk memperoleh suatu konsep dibantu pertanyaan-pertanyaan dari teman sebaya adalah Model Deep Dialogue And Critical Thinking (DDCT) dengan strategi Problem Solving. Berdasarkan latar belakang tersebut, maka dirumuskan permasalahan yaitu: (1) adakah perbedaan yang signifikan antara hasil belajar fisika siswa yang menggunakan model pembelajaran Dialogue And Critical Thinking (DDCT) Strategi Problem Solving dengan pembelajaran konvensional?, (2) dengan bagaimana aktivitas belajar siswa dengan menguunakan model pembelajaran Deep Dialogue And Critical Thinking (DDCT) dengan Strategi Problem Solving pada pembelajaran Fisika di SMA?, (3) bagaimanakah retensi belajar siswa selama mengikuti pembelajaran menggunakan model pembelajaran Deep Dialogue And Critical Thinking (DDCT) dengan Strategi Problem Solving pada pembelajaran Fisika di SMA?. Tujuan dari penelitian ini adalah: (1) mengetahui perbedaan yang signifikan antara hasil belajar fisika siswa yang menggunakan model pembelajaran Dialogue And Critical Thinking (DDCT) dengan Strategi Problem Solving dengan pembelajaran konvensional. (2) mengkaji aktivitas belajar siswa dengan mengunakan model pembelajaran Deep Dialogue And

Critical Thinking (DDCT) dengan Strategi Problem Solving pada pembelajaran Fisika di SMA. (3) mengkaji retensi belajar siswa selama mengikuti pembelajaran menggunakan model Deep Dialogue And Critical Thinking (DDCT) dengan Strategi Problem Solving pada pembelajaran Fisika di SMA

Jenis penelitian ini adalah penelitian eksperimen, dengan tempat penelitian ditentukan menggunakan cara *purposive sampling area*. Penelitian ini dilaksanakan di SMA Negeri Rambipuji. Responden penelitian ditentukan setelah dilakukan uji homogenitas. Penentuan sampel penelitian dengan *cluster random sampling*. Rancangan penelitian menggunakan desain control group *pre – test post – test*. Metode pengumpulan data dalam penelitian ini adalah observasi, wawancara, tes, dan dokumentasi. Analisis data menggunakan uji *t* untuk menjawab rumusan masalah yang pertama dan ketiga, menggunakan persentase aktivitas klasikal untuk menjawab rumusan masalah yang kedua.

Analisis data menggunakan uji t untuk mengetahui perbedaan hasil belajar siswa diperoleh nilai $t_{hitung} = 2,030887$ dan nilai $t_{tabel} = 1,98$ sehingga $t_{hitung} > t_{tabel}$, maka hipotesis nihil (H_0) ditolak dan hipotesis kerja (H_a) diterima. Hasil analisis aktivitas siswa selama mengikuti pembelajaran fisika menggunakan model *Deep Dialogue And Critical Thinking (DDCT) dengan Strategi Problem Solving* diperoleh persentase aktivitas siswa sebesar 74,47 % dan termasuk pada kategori aktif. Analisis data menggunakan uji t untuk mengetahui retensi hasil belajar diperoleh nilai $t_{hitung} = 1,82$ sehingga $-1,998 < t_{hitung} < 1,998$, maka hipotesis nihil (H_0) diterima dan hipotesis kerja (H_a) ditolak..

Berdasarkan analisis data yang diperoleh, maka kesimpulan dari penelitian ini adalah: (1) Ada perbedaan yang signifikan antara hasil belajar fisika menggunakan model pembelajaran *Deep Dialogue and Critical Thinking* (DDCT) dengan Strategi *Problem Solving* dan pembelajaran konvensional pada siswa kelas XI IPA SMA Negeri Rambipuji tahun ajaran 2010/2011. (2) Aktivitas belajar siswa kelas IPA SMA Negeri Rambipuji tahun ajaran 2010/2011 selama mengikuti pembelajaran fisika menggunakan model pembelajaran *Deep Dialogue*

and Critical Thinking (DDCT) dengan Strategi Problem Solving lebih aktif jika dibandingkan dengan aktivitas belajar siswa selama mengikuti pembelajaran konvensional. Sedangkan aktivitas yang terangkat dalam penelitian ini adalah 3 dari 8 jenis aktivitas. (3) Retensi hasil belajar siswa kelas IPA SMA Negeri Rambipuji tahun ajaran 2010/2011 setelah mengikuti pembelajaran fisika menggunakan model pembelajaran Deep Dialogue and Critical Thinking (DDCT) dengan Strategi Problem Solving tinggi.

.

PRAKATA

Puji syukur penulis panjatkan kepada Tuhan Yesus Kristus atas segala berkat, rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Penerapan Model *Deep Dialogue and Critical Thinking* (DDCT) dengan Strategi *Problem Solving* pada Pembelajaran Fisika kelas XI di SMA". Skripsi ini disusun untuk memenuhi salah satu syarat menyelesaikan pendidikan strata satu (S1) pada Program Studi Pendidikan Fisika Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember.

Penulisan skripsi ini tidak lepas dari bantuan berbagai pihak, oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember;
- 2. bu Dra. Sri Astutik, M.Si selaku ketua jurusan pendidikan MIPA sekaligus dosen pembimbing utama
- 3. Bapak Supeno, S.Pd, M.Si selaku ketua program studi pendidikan fisika sekaligus dosen ketua penguji
- 4. Bapak Drs. Albertus Djoko Lesmono, M.Si selaku Dosen Pembimbing Anggota yang telah banyak meluangkan waktu, pikiran dan perhatian dalam bimbingan sejak awal hingga selesainya penulisan skripsi ini;
- 5. Seluruh Bapak dan Ibu dosen yang telah memberikan bekal ilmu selama menyelesaikan studi di Pendidikan Fisika;
- 6. Kepala SMA Negeri Rambipuji yang telah memberikan ijin penelitian;
- 7. Guru mata pelajaran fisika kelas XI IPA yang telah membantu dalam pelaksanaan penelitian;
- 8. Teman-teman fisika angkatan 2006 yang namanya tidak dapat disebutkan satu persatu terimakasih atas kebersamaan selama ini;

Besar harapan penulis bila segenap pembaca memberikan kritik dan saran yang bersifat membangun demi kesempurnaan penulisan selanjutnya. Akhirnya penulis berharap, semoga skripsi ini dapat bermanfaat. Amin.

Jember, Juni 2011 Penulis

DAFTAR ISI

			Halaman
HALAM	IAN J	UDUL	i
HALAM	IAN P	PERSEMBAHAN	ii
HALAM	IAN N	мотто	iii
HALAM	IAN P	PERNYATAAN	iv
HALAM	IAN P	PEMBIMBINGAN	v
HALAM	IAN P	PENGESAHAN	vi
RINGK	ASAN	T	vii
PRAKA	TA		X
DAFTA	R ISI		xii
DAFTA	R TA	BEL	xiv
DAFTA	R GA	MBAR	XV
DAFTA	R LA	MPIRAN	xvi
BAB 1.	PEN	DAHULUAN	1
	1.1	Latar Belakang	1
	1.2	Perumusan Masalah	4
	1.3	Tujuan	4
	1.4	Manfaat	5
BAB 2.	TIN	JAUAN PUSTAKA	6
	2.1	Pembelajaran Fisika	6
	2.2	Model Pembelajaran	7
	2.3	Model (DDCT)	8
	2.4	Strategi Problem Solving	12
	2.5	Penerapan Model DDCT dengan Strategi Problem	
		Solving dalam Pembelajaran Fisika	13
	2.6	Pembelajaran Konvensional	17
	2.7	Aktivitas Pembelajaran	18
	2.8	Hasil Belajar	20
	2.9	Retensi Relajar	20

	2.10	Hipot	esis Penelitian	21
BAB 3.	МЕТ	ODE 1	PENELITIAN	22
	3.1	Jenis 1	Penelitian	22
	3.2	Temp	at dan Waktu Penelitian	22
	3.3	Penen	tuan Responden Penelitian	22
	3.4	Defini	si Operasional Variabel	24
	3.5	Desair	n Penelitian	25
	3.6	Metod	le Pengumpulan Data	26
		3.5.1	Tes	26
		3.5.2	Observasi	26
		3.5.3	Wawancara	27
		3.5.4	Dokumentasi	27
	3.7	Langka	ah – Langkah Penelitian	25
	3.8	Metod	e Analisa Data	30
BAB 4.	HASI	L DAN	PEMBAHASAN	33
	4.1	Pelaks	sanaan Penelitian	33
	4.2	Analis	sis Data Hasil Penelitian	34
		4.2.1	Penentuan Sampel Penelitian	34
		4.2.2	Analisis Perbedaan Hasil Belajar Siswa	35
		4.2.3	Analisis Aktivitas Belajar Siswa	36
		4.2.4	Analisis Retensi Hasil Belajar Siswa	37
	4.3	Pemb	ahasan	38
BAB 5.	PEN	UTUP		43
	5.1	Kesim	pulan	43
	5.2	Saran		43
DAFTA	R PUS	TAKA	L	44
LAMPII	RAN-I	LAMPI	RAN	

DAFTAR TABEL

		Halaman
2.1	Kerangka operasional model <i>DDCT</i> dengan stratetgi <i>problem</i>	
	solving dalam pembelajaran fisika di SMA	15
3.1	Analisis hasil F observasi	24
3.2	Kriteria aktivitas siswa	31
4.1	Jadwal pelaksanaan penelitian kelas kontrol	33
4.2	Jadwal pelaksanaan penelitian kelas eksperimen	33
4.3	Ringkasan perhitungan uji homogenitas	34
4.4	Ringkasan hasil pre-test dan post-test pada kelas kontrol dan	
	kelas eksperimen	35
4.5	Aktivitas belajar siswa pertemuan I dan II	36
4.6	Ringkasan analisis retensi hasil belajar siswa	. 37

DAFTAR GAMBAR

		Halaman
3.1	Desain penelitian control group pre-test post-test	25
3.2	Langkah-langkah penelitian	29

DAFTAR LAMPIRAN

		Halaman	
A.	Matriks Penelitian	45	
B.	Instrumen Pengumpulan Data		
C.	Pedoman Wawancara		
D.	Pedoman Observasi.		
E.	Silabus		
F.	Rencana Pelaksanaan Pembelajaran Kelas eksperimen		
G.	Rencana Pelaksanaan Pembelajaran Kelas Eksperimen		
H.	Lembar Kerja Siswa	76	
I.	Kisi-kisi Soal	82	
J.	Pre-test		
	J.1 Soal Pre-Test	85	
	J.2 Kunci Jawaban	89	
K.	Post-test	0.0	
	K.1 Soal Post-test.		
	K.2 Kunci Jawaban.	. 94	
L.	Tes Tunda		
	L.1 Soal Tes Tunda	95	
	L.2 Kunci Jawaban	. 99	
M	Daftar Nilai Ujian Tengah Semester Kelas XI IPA Pelajaran Fisika		
	M.1 Daftar Nilai Kelas XI IPA 1	100	
	M.2 Daftar Nilai Kelas XI IPA 2	102	
	L.1.3 Daftar Nilai Kelas XI IPA 3	103	
N.	Perhitungan Uji Homogenitas	104	
O	Daftar Nilai <i>Pre-test</i> dan <i>Post-te</i> st		
	O.1 Daftar Nilai Kelas XI IPA 2	107	
	O.2 Daftar Nilai Kelas XI IPA 3	. 108	
P.	Perhitungan Uji t	109	

Q.	Data Aktivitas belajar	112
R.	Analisis Aktivitas Belajar Siswa Kelas Eksperimen	116
S.	Daftar Nilai Post-test dan Tes Tunda.	118
T.	Perhitungan Retensi dengan Uji t	119
U.	Daftar Kelompok	121
V.	Data Hasil Wawancara	122
W.	Foto Kegiatan.	123
X.	Surat Keterangan Penelitian	125