

PRA PERANCANGAN PABRIK DIMETIL FTALAT DARI FTALAT ANHIDRIDA DAN METANOL DENGAN KAPASITAS 25.000 TON/TAHUN

SKRIPSI

Diajukan untuk memenuhi syarat memperoleh gelar Sarjana pada Program Studi Teknik Kimia (S1)

Oleh:

Jihan Nafila Wibowo NIM. 191910401077

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI S1 TEKNIK KIMIA JEMBER

2023

PRA PERANCANGAN PABRIK DIMETIL FTALAT DARI FTALAT ANHIDRIDA DAN METANOL DENGAN KAPASITAS 25.000 TON/TAHUN

SKRIPSI

Diajukan untuk memenuhi syarat memperoleh gelar Sarjana pada Program Studi
Teknik Kimia (S1)

Oleh:

Jihan Nafila Wibowo (191910401077)
Irdatus Sholeha (191910401092)
Andreyan Poerwo Negoro (191910401094)

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI
UNIVERSITAS JEMBER
FAKULTAS TEKNIK
PROGRAM STUDI S1 TEKNIK KIMIA
JEMBER
2023

PERSEMBAHAN

Alhamdulillah, dengan menyebut nama Allah Yang Maha Pengasih lagi Maha Penyayang, tugas akhir yang berjudul "*Pra Perancangan Pabrik Dimetil Ftalat dari Ftalat Anhidrida dan Metanol dengan Kapasitas 25.000 Ton/Tahun*" telah terselesaikan dan dengan penuh kerendahan hati kami persembahkan sebagai wujud terima kasih kepada:

- 1. Bapak Asykur Wongso Wibowo dan Ibu Siti Choimah, selaku kedua orang tua penulis yang telah memberikan dukungan dan doa yang tulus;
- 2. Ibu Ir. Bekti Palupi, S.T., M.Eng., selaku Dosen Pembimbing Utama pada Tugas Akhir ini;
- 3. Ibu Noven Pramitasari, S.T., M.T., selaku Dosen Pembimbing Anggota pada Tugas Akhir ini;
- 4. Ibu Zuhriah Mumtazah, S.Si., M.Si., selaku Dosen Penguji Utama pada Tugas Akhir ini;
- 5. Bapak Dr. M. Maktum Muharja Al Fajri, S.T., selaku Dosen Penguji Anggota pada Tugas Akhir ini;
- 6. Seluruh dosen pengajar Program Studi Teknik Kimia, Fakultas Teknik, Universitas Jember;
- 7. Seluruh guru penulis dari Taman Kanak-Kanak (TK) hingga Sekolah Menengah Atas (SMA)
- 8. Almamater tercinta Prodi Teknik Kimia, Fakultas Teknik, Universitas Jember

MOTTO

"Tidak ada pemberian orang tua yang paling berharga kepada anaknya daripada pendidikan akhlak mulia"

(HR. Bukhari)

"Menuntut ilmu adalah taqwa. Menyampaikan ilmu adalah ibadah. Mengulangulang ilmu adalah zikir. Mencari ilmu adalah jihad"

(Abu Hamid Al Ghazali)

"Dan janganlah kamu berputus asa dari Rahmat Allah, sesungguhnya tiada berputus dari Rahmat Allah melainkan orang – orang yang kufur"

(Q.S. Yusuf (12): 87)

PERNYATAAN ORISINALITAS

Saya yang bertanda tangan di bawah ini:

Nama: Jihan Nafila Wibowo

NIM: 191910401077

Menyatakan dengan sesungguhnya bahwa skripsi yang berjudul: Pra Perancangan Pabrik Dimetil Ftalat Dari Ftalat Anhidrida Dan Metanol Dengan Kapasitas 25.000 Ton/Tahun adalah benar-benar hasil karya sendiri, kecuali kutipan yang sudah saya sebutkan sumbernya, belum pernah diajukan pada institusi mana pun, dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Jember, 27 September 2023

Yang menyatakan,

Jihan Nafila Wibowo

NIM. 191910401077

HALAMAN PERSETUJUAN

Skripsi berjudul *Pra Perancangan Pabrik Dimetil Ftalat Dari Ftalat Anhidrida Dan Metanol Dengan Kapasitas 25.000 Ton/Tahun* telah diuji dan disetujui oleh Fakultas Teknik Universitas Jember pada:

Hari

: Rabu

Tanggal

: 27 September 2023

Tempat

: Fakultas Teknik Universitas Jember

Pembimbing

1. Pembimbing Utama

Nama: Ir. Bekti Palupi S.T., M.Eng.

NIP : 198905272022032008

2. Pembimbing Anggota

Nama: Noven Pramitasari, S.T., M.T.

NIP : 199211062019032017

Penguji

1. Penguji Utama

Nama : Zuriah Mumtazah, S.Si., M.Si.

NIP : 199311022022032014

Penguji Anggota

Nama : Dr. Maktum Muharja Al Fajri, S.T.

NRP : 760019056

Tanda Tangan

(lehi)

(Marc)

(. FyrmoIn___)

ABSTRAK

Nowadays, the industrial sector plays an important role in improving the economy of a country especially in the manufacturing industries. Based on research into the potential of the industrial sector which can boost economic growth in Indonesia, dimethyl phthalate is a promising chemical compound to be produced domestically for this purpose. Dimethyl phthalate $(C_{10}H_{10}O_4)$ is an organic compound that has a liquid phase, generally used as a: plasticizer, solvent in the paint, adhesive, nitrocellulose and cellulose acetate rubber industries. So far, Indonesia has only imported these materials from abroad, even though many sectors require these supplies. Therefore, this study focuses on discussing the design of a dimethyl phthalate plant which has a capacity of 25,000 tons/year and it's capable of operating for 330 days/year. The process stages in dimethyl phthalate production include raw material preparation, process and purification. The raw materials include phthalic anhydride, methanol and sulfuric acid catalyst, each amounting to 20,989.5 tons/year; 19,667.4 tons/year, 205,697 tons/year for the production process. The formation of dimethyl phthalate occurs in a reactor which is a Stirred Tank Flow Reactor (RATB) with a formation reaction called an esterification reaction. The dimethyl phthalate factory in the study is planned to be operational in 2027 and will be built in Deket District, Lamongan Regency, East Java Province, which according to geographical conditions and other supporting factors is very strategic. The feasibility of establishing the factory is based on an economic analysis that considers several parameters. Based on economic evaluation calculations, it is known that the time needed to return capital or Pay Out Time (POT) is 2.86 years; capital return rate or Rate of Return (ROR) of 42.60%; and the break-even point (BEP) of 43%.

Keywords: dimethyl phthalate, phthalic anhydride, methanol, sulfuric acid, esterification

RINGKASAN

Tugas Akhir Pra Perancangan Pabrik Dimetil Ftalat Dari Ftalat Anhidrida Dan Metanol Dengan Kapasitas 25.000 Ton/Tahun; Jihan Nafila Wibowo Irdatus Sholeha; Andreyan Poerwo Negoro; 191910401077; 191910401092; 191910401094

Sektor yang perlu ditingkatkan di Indonesia adalah memperbaiki sektor perekonomian dengan memajukan sistem industri. Salah satu sektor industri yang dapat didirikan di Indonesia adalah dimetil ftalat. Dimetil ftalat dengan rumus kimia C₁₀H₁₀O₄ merupakan senyawa organik memiliki fase cair yang biasa digunakan sebagai pelunak, pelarut pada industri cat, perekat, nitroselulosa dan karet selulosa asetat. Saat ini Indonesia masih mengimpor dimetil ftalat karena belum ada pabrik dimetil ftalat di Indonesia. Pabrik dimetil ftalat memiliki kapasitas 25.000 ton/tahun yang beroperasi selama 330 hari/tahun. Tahapan proses dalam produksi dimetil ftalat meliputi persiapan bahan baku, tahapan reaksi dan tahapan pemurnian. Bahan baku berupa ftalat anhidrida, metanol dan katalis asam sulfat yang membutuhkan masing-masing sebesar 20.989,5 ton/tahun; 19.667,4 ton/tahun, 205,697 ton/tahun dalam proses produksi. Pembentukan dimetil ftalat terjadi saat di reaktor yang berjenis Reaktor Alir Tangki Berpengaduk (RATB) dengan reaksi pembentukan yaitu reaksi esterifikasi. Pabrik ini akan dibangun di Kecamatan Deket, Kabupaten Lamongan, Provinsi Jawa Timur dan akan beroperasi pada tahun 2027. Kelayakan pendirian pabrik ini dilakukan analisis ekonomi dengan pertimbangan beberapa parameter. Berdasarkan perhitungan evaluasi ekonomi diketahui waktu yang dibutuhkan untuk pengembalian modal atau Pay Out Time (POT) selama 2,86 tahun; laju pengembalian modal atau Rate of Return (ROR) sebesar 42,60%; serta titik impas atau Break Even Point (BEP) sebesar 43%.

PRAKATA

Puji Syukur kehadirat Allah Yang Maha Mulia karena atas limpahan Rahmat dan kasih sayang-Nya, penulis mampu menyelesaikan Tugas Akhir Perancangan Pabrik dengan judul "*Pra Perancangan Pabrik Dimetil Ftalat dari Ftalat Anhidrida dan Metanol dengan Kapasitas 25.000 Ton/Tahun*". Tugas Akhir ini disusun untuk memenuhi persyaratan guna memperoleh gelar Sarjana Strata 1 (S1) pada Program Studi Teknik Kimia Fakultas Teknik Universitas Jember. Tentunya dalam penyelesaian penulisan ini tidak terlepas dari bantuan berbagai pihak. Oleh karena itu, penulis menyampaikan ucapan terima kasih kepada:

- 1. Allah Swt. karena limpahan Rahmat dan karunia-Nya penulis dapat menyelesaikan tugas akhir ini;
- 2. Kedua orang tua penulis Asykur Wongso Wibowo dan Siti Choimah yang tidak pernah henti memberikan doa, semangat, dan motivasi;
- 3. Kedua kakak penulis Ahmad Maulana Wibowo dan Sahira Masruroh yang telah membantu dalam penulisan serta senantiasa menghibur;
- 4. Bapak Dr. Ir. Triwahju Hardianto, S.T., selaku Dekan Fakultas Teknik Universitas Jember;
- Ibu Bekti Palupi, S.T., M.Eng., selaku Dosen Pembimbing Utama yang dengan segenap perhatian membimbing penulis untuk menyelesaikan Tugas Akhir;
- 6. Ibu Noven Pramitasari, S.T., M.T., selaku Dosen Pembimbing Anggota yang dengan baik hati memberikan masukan untuk kesempurnaan Tugas Akhir ini;
- 7. Ibu Zuhriah Mumtazah, S.Si., M.Si., dan Bapak Dr. M. Maktum Muharja Al Fajri, S.T., selaku Dosen Penguji pada Tugas Akhir ini yang rela meluangkan waktunya untuk mengoreksi dan memberikan berbagai masukan;

- 8. Seluruh dosen pengajar Teknik Kimia UNEJ dengan ketulusan hati yang telah menyampaikan berbagai wawasan dan ilmu yang sangat bermanfaat;
- 9. Irdatus Sholeha dan Andreyan Poerwo Negoro yang telah bekerja sama dan membantu hingga tugas akhir ini dapat terselesaikan;
- 10. Sahabat serta teman teman terdekat yang telah memberikan semangat dan membantu sehingga penulis dapat menyelesaikan tugas akhir;
- 11. Teman teman mahasiswa Teknik Kimia 2019 dan kakak tingkat Teknik Kimia yang telah memberikan dukungan selama penyusunan tugas akhir;
- 12. Semua pihak yang telah memberikan semangat serta dukungan hingga terselesaikannya tugas akhir ini yang tidak dapat disebutkan satu per satu.

Semoga segala doa, dukungan, dan bimbingan yang telah diberikan oleh semua pihak dalam pengerjaan Tugas Akhir ini menjadi berkah dan mendapat balasan dari Allah Swt. Pembuatan tugas akhir ini tentunya masih banyak kekurangan dan jauh dari kata sempurna. Oleh karena itu, penulis mengharapkan kritik dan saran yang membangun supaya menjadi masukan untuk penyempurnaan di masa depan. Penulis berharap bahwa Tugas Akhir Pra Perancangan Pabrik Dimetil Ftalat dari Ftalat Anhidrida dan Metanol dengan Kapasitas 25.000 Ton/Tahun ini dapat bermanfaat bagi penulis serta pembaca.

Jember, 27 September 2023

Penulis

DAFTAR ISI

PERSEMBAHAN	iii
MOTTO	iv
PERNYATAAN ORISINALITAS	V
HALAMAN PERSETUJUAN	Vi
ABSTRAK	Vii
RINGKASAN	viii
PRAKATA	ix
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
BAB 1 PENDAHULUAN	
1.1 Latar Belakang	
1.2 Sejarah Dan Perkembangan	3
BAB 2 PERENCANAAN PABRIK	5
2.1 Pemilihan Kapasitas	5
2.2 Pemilihan Proses	
2.2.1 Persiapan bahan baku	
2.2.2 Tahapan reaksi	7
2.2.3 Tahapan pemurnian	
2.3 Uraian Proses	
2.3.1 Persiapan bahan baku	
2.3.2 Tahapan reaksi	
2.3.3 Tahapan Pemurnian	9
2.4 Spesifikasi Bahan	11
2.4.1 Bahan Baku Utama	
2.4.2 Bahan Penunjang	12
2.4.3 Produk	12
2.5 Pemilihan Lokasi dan Tata Letak	12
2.5.1 Lokasi Pabrik	12
2.5.2 Tata Letak Pabrik	18
BAB 3 NERACA MASSA DAN NERACA ENERGI	19

	3.1	Process Flow Diagram Neraca Massa dan Neraca Energi	. 19
В	AB 4	SPESIFIKASI ALAT	20
	4.1	Tangki Penyimpanan Asam Sulfat (F-110)	20
	4.2	Pompa Asam Sulfat (L-111)	. 20
	4.3	Heater Asam Sulfat (E-112)	21
	4.4	Tangki Penyimpanan Metanol (F-120)	. 21
	4.5	Pompa Metanol (L-121)	. 22
	4.6	Heater Metanol (E-122)	. 22
	4.7	Silo (F-130)	. 23
	4.8	Screw Conveyor (J-131)	
	4.9	Bucket Elevator (J-132)	
	4.10	Hopper (F-133)	. 24
	4.11	Mixer (M-210)	. 25
	4.12	Pompa Mixer (L-211)	. 25
	4.13	Heater Mixer (E-212)	. 26
	4.14	Reaktor (R-220)	. 26
	4.15	Pompa Reaktor (L-222)	. 27
	4.16	Dekanter (H-230)	. 27
	4.17	Pompa Dekanter (L-231)	. 28
	4.18	Pompa Dekanter (L-232)	. 28
	4.19	Evaporator (V-240)	. 29
	4.20	Pompa Evaporator (L-241)	. 29
	4.21	Cooler (E-242)	. 30
	4.22	Tangki Penyimpanan Produk Dimetil Ftalat (F-310)	. 30
В	AB 5	EVALUASI EKONOMI	
	5.1	Total Modal	
	5.2	Ongkos Produksi	31
	5.3	Keuntungan	. 32
	5.4	Lama Waktu Pengembalian	. 33
	5.4.1	Lama Pengembalian Modal	. 33
	5.4.2	Pay Out Time (POT)	. 34
	5.5	Laju Pengembalian Model	34

5.5.1	Rate of Return (ROR)	34
5.5.2	Discounted Cash Flow Rate of Return (DCF-ROR)	35
5.6	Break Event Point	35
BAB 6	KESIMPULAN DAN SARAN	37
6.1	Kesimpulan	37
6.2	Saran	38
	R PUSTAKA	
LAMPIF	RAN	42

DAFTAR GAMBAR

Gambar 2. 1 Kebutuhan Impor dimetil ftalat	<i>6</i>
Gambar 2. 2 Block Flow Diagram Pabrik Dimetil Ftalat	10
Gambar 2. 3 Process flow diagram pabrik dimetil ftalat	11
Gambar 2. 4 Lokasi Pabrik dimetil ftalat	13
Gambar 2. 5 Tata Letak Pabrik	18
Gambar 3. 1 Process Flow Diagram Neraca Massa dan Neraca Energi	19
Gambar 5. 1 Grafik Break Event Point	36

DAFTAR TABEL

	Tabel 2. 1 Data Impor Kebutuhan dimetil ftalat di Indonesia (2016 - 2022)	5
	Tabel 2. 2 Perbedaan Katalis Asam Sulfat dan Sodium Bisulfat	7
	Tabel 2. 3 Perbandingan Flash Drum, Menara Distilasi, dan Evaporator	8
	Tabel 2. 4 Bahan Utama Dimetil Ftalat	11
	Tabel 2. 5 Data Penduduk Usia 15 Tahun ke Atas Menurut Angkatan K	erja,
	Penduduk yang Bekerja dan Pengangguran di Kabupaten Lamongan pada Ta	ahun
	2022	15
	Tabel 2. 6 Daftar perusahaan pengguna dimetil ftalat	16
	Tabel 4. 1 Spesifikasi Alat Tangki Penympanan Asam Sulfat (F-110)	20
	Tabel 4. 2 Spesifikasi Pompa Asam Sulfat (L-111)	20
	Tabel 4. 3 Heater Asam Sulfat (E-112)	21
	Tabel 4. 4 Spesifikasi Alat Tangki Penyimpanan Metanol	21
	Tabel 4. 5 Spesifikasi Alat Pompa Metanol (L-121)	22
	Tabel 4. 6 Spesifikasi Alat Heater Metanol (E-122)	22
	Tabel 4. 7 Spesifikasi Alat Silo (F-130)	23
	Tabel 4. 8 Spesifikasi Screw Conveyor (J-131)	23
	Tabel 4. 9 Spesifikasi Alat Bucket Elevator (J-132)	24
	Tabel 4. 10 Spesifikasi Alat Hopper (F-133)	24
	Tabel 4. 11 Spesifikasi Alat Mixer (M-210)	25
	Tabel 4. 12 Spesifikasi Alat Pompa Mixer (L-211)	25
	Tabel 4. 13 Spesifikasi Alat Heater Mixer (E-212)	26
	Tabel 4. 14 Spesifikasi Alat Reaktor (R-220)	26
	Tabel 4. 15 Spesifikasi Alat Pompa Reaktor (L-222)	27
	Tabel 4. 16 Spesifikasi Alat Dekanter (H-230)	27
	Tabel 4. 17 Spesifikasi Alat Pompa Dekanter (L-231)	
	Tabel 4. 18 Spesifikasi Alat Pompa Dekanter (L-232)	28
	Tabel 4. 19 Spesifikasi Alat Evaporator (V-240)	29
	Tabel 4. 20 Spesifikasi Alat Pompa Evaporator (L-241)	29
	Tabel 4. 21 Spesifikasi Alat Cooler (E-242)	30
	Tabel 4. 22 Spesifikasi Alat Tangki Penyimpanan Dimetil Ftalat (F-310)	30
ľ	DIGITAL REPOSITORY UNIVERSITAS JEMBE	R

Tabel 5. 1 Penentuan Total Capital Invesment (TCI) atau Total Modal	31
Tabel 5. 2 Penentuan Total Production Cost (TPC)	32

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Sektor di Indonesia yang perlu ditingkatkan adalah sektor perekonomian dengan memajukan sistem industrialisasi (Yanti, 2021). Alternatif yang dapat digunakan untuk menciptakan industri yang kompetitif dengan dibukanya pasar bebas. Salah satu industri kimia yang produknya tiap tahun selalu dibutuhkan adalah industri polimer. Produk yang dihasilkan dari industri polimer adalah plastik, karet sintetis, dan serat sintetis. Bahan tambahan yang digunakan dalam proses pembuatan polimer salah satunya adalah *plasticizer*. *Plasticizer* merupakan salah satu bahan pembantu dalam industri plastik, fungsinya untuk membentuk plastisitas, sehingga produk plastik menjadi elastis, lunak, dan tidak mudah pecah. Banyak sekali jenis *plasticizer* yang digunakan, masing-masing *plasticizer* sesuai dengan jenis resin yang digunakan. Jenis *plasticizer* yang digunakan dalam industri polimer adalah *dimethyl phthalate*. *Dimethyl phthalate* dapat dibuat menggunakan *plasticizer* dengan bahan selulosa dan beberapa *plasticizer* untuk resin vinyl ester.

Dimethyl Phthalate (DMP) merupakan bahan yang digunakan dalam pembuatan nitrocellulose dan cellulose acetate rubber, karet pelapis kaca, bahkan sering ditambahkan dalam bahan insect repellent atau bahan tambahan pembuatan pembasmi serangga. Dimetil ftalat dengan rumus molekul $C_6H_4(COOCH_3)_2$ sering disebut juga dengan nama dimetil ester. Dimetil ftalat merupakan senyawa organik yang berwujud cair menyerupai cairan berminyak, tidak berbau, tidak berwarna, sulit larut dalam air, dan benzene, keton dan minyak (Saputra, 2019). Sifat yang dimiliki dimetil ftalat adalah larut dalam pelarut organik tetapi sukar larut dalam air, banyak digunakan dalam industri plastik karena karakteristiknya yang lebih fleksibel dan lentur(Apriliyani et al., 2017). Dimetil ftalat tergolong ke pemlastis yang hidrofobisitas. Hidrofobisitas dimetil ftalat membuat enzim sulit untuk mengikat air ke dalam ikatan yang terbentuk antara biopolimer dan pemlastis, sehingga menghambat proses hidrolisis (Wati, 2021).

Pembangunan pabrik DMP di Indonesia akan memberikan manfaat yang banyak terutama dalam pertumbuhan ekonominya, sedangkan di Indonesia sendiri belum memiliki pabrik penghasil DMP (Sari et al., 2021). Permintaan pasar DMP dalam negeri meningkat setiap tahunnya, sehingga kebutuhan impor juga semakin meningkat. Terbukti dimana kebutuhan impor DMP tiap tahunnya selalu meningkat berdasarkan data dari BPS dari tahun 2016 kebutuhan impornya mencapai 6.496,715 ton/tahun hingga tahun 2022 mencapai 16.666,667 ton/tahun, sehingga meningkat 11% pada tahun 2022. DMP dapat diproduksi dengan cara mereaksikan 2 senyawa yaitu ftalat anhidrida dengan metanol, dan adanya bantuan katalis berupa asam sulfat. Bahan baku utama DMP tersedia di Indonesia, pada bahan ftalat anhidrida dapat diperoleh dari PT. Petrowidada Gresik dan methanol dari PT. Kaltim Metanol, sedangkan untuk katalis dapat diperoleh dari PT. PetroKimia Gresik. Ketersediaan sumber bahan baku yang melimpah di Indonesia, seperti ftalat anhidrida, metanol, asam sulfat, maupun sumber daya manusia, yang pada gilirannya membuka peluang baru dalam lapangan kerja, sekaligus membantu usaha pemerintah dalam meningkatkan pendapatan nasional, maka di untungkanlah pembuatan pabrik tersebut di Indonesia (Adidharma & Adhitya, 2022). Dimetil ftalat dapat digunakan sebagai pendorong roket, lacquers, plastik, karet pelapis kaca, dll (Gustiana & Wijayanto, 2011).

Dimetil ftalat di Indonesia digunakan sebagai bahan tambahan pembuatan produk plastik, namun bahan ini masih di impor dari luar negeri. Beberapa tahun terakhir nilai impor dimetil ftalat terus meningkat (Adidharma & Adhitya, 2022). Indonesia perlu mendirikan pabrik dimetil ftalat untuk mengembangkan industri polimer sekaligus mengurangi ketergantungan bangsa Indonesia terhadap *plasticizer* impor. Faktor-faktor yang harus diperhatikan dalam mendirikan pabrik *dimethyl phthalate* di Indonesia adalah:

 Menghemat devisa negara, adanya pabrik dimetil ftalat di Indonesia dapat mengurangi serta menekankan nilai impor dimetil ftalat dan jika produk yang dihasilkan berlebih dapat di ekspor. Ketersediaan sumber bahan baku seperti ftalat anhidrida, metanol dan asam sulfat yang diperoleh di dalam negeri dapat mendukung keberhasilan usaha dimetil ftalat.

- 2. mendukung upaya pengembangan industri polimer di Indonesia.
- 3. Menciptakan lapangan pekerjaan yang bertujuan agar mengurangi jumlah angka pengangguran dalam negeri

Keuntungan dimetil ftalat di Indonesia dapat dikatakan cukup bagus karena banyak bahan baku utama yang dapat digunakan dalam pembuatan DMP itu sendiri, sehingga pendirian pabrik dengan kapasitas 25.000 ton/tahun sangat berorientasi untuk memenuhi kebutuhan dalam negeri.

1.2 Sejarah Dan Perkembangan

Pada tahun 1846, *plasticizer* pertama yang signifikan ditemukan setelah pengembangan selulosa nitrat, pada tahun 1856 minyak jarak ditetapkan sebagai penggunaan bahan plasticizer. Pada tahun 1870 kamper menjadi *plasticizer* pilihan untuk selulosa nitrat (Hyat dkk., 1870). Selulosa tetap menjadi bahan termoplastik utama sampai sesaat sebelum Perang Dunia II. Phthalates pertama kali diperkenalkan pada 1920-an dan dengan cepat menggantikan kamper yang mudah menguap dan bau. Bahan ini digunakan dalam berbagai produk industri, termasuk lantai polivinil klorida (PVC), kemasan makanan, produk perawatan harian, peralatan medis dan mainan anak-anak. phtahalate dengan cepat diganti, yang dulunya adalah bentuk aditif untuk membuat plastik lebih lembut.

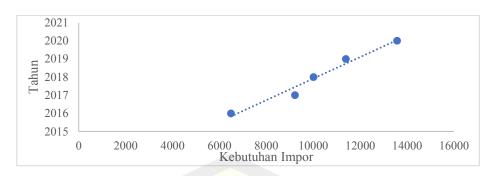
Pada tahun 1931, ledakan industri plastik PVC dimulai (2-etil) ftalat (DEHP) dan mengembangkan pasokan komersial, pada tahun 1933 selulosa nitrat dialihkan dan memulai pertumbuhan pesat pada industri poli –(vinil klorida) Sejak 1980 -an, karena migrasi ftalat dan dampaknya pada kesehatan manusia, senyawa ftalat telah menjadi perhatian publik. Senyawa ftalat adalah salah satu bahan kimia yang paling banyak digunakan di dunia. Ftalat yang paling umum menghasilkan lebih dari 1 miliar pon ftalat (DEHP) di Eropa Barat pada tahun 2006. Laporan dan ringkasan tahun 2008 memperkirakan bahwa pada tahun 1994, produksi tahunan DEHP global adalah sekitar 22 hingga 8,8 miliar pound.

Plastik secara bertahap memasuki Indonesia setelah Perang Dunia II. Bagi masyarakat, plastik pada waktu itu adalah barang yang asing di kalangan masyarakat. pada tahun 1950 masyarakat Indonesia mulai terbiasa dengan plastik karena adanya pembanguan 12 pabrik untuk menciptakan kebutuhan yang terbuat dari plastik setiap hari. Pada tahun 1953, banyak perusahaan industri plastik telah didirikan. Perusahaan ini telah menghasilkan peralatan rumah tangga, sikat gigi, kancing, mainan anak-anak, dan barang kelontong lainnya. Semuanya adalah produk konsumen yang digunakan untuk kebutuhan sehari-hari. Pabrik manufaktur plastik di Indonesia mengimpor bahan baku plastik dari Belanda dan Amerika Serikat. Distributornya Shell Oil Company dan Batafsche Maatschappij.

Pengembangan industri plastik Indonesia dimulai pada pertengahan tahun 1960 -an, selain itu, pada tahun 1970 -an, Indonesia dapat menghasilkan hampir semua jenis produk plastik, termasuk polimerisasi poliester (serat sintetis untuk industri tekstil).

BAB 2 PERENCANAAN PABRIK

2.1 Pemilihan Kapasitas


Kapasitas produksi dapat didefinisikan sebagai jumlah produk yang dapat dihasilkan oleh perusahaan dalam periode tertentu dengan menggunakan sumber daya yang tersedia pada saat itu (Bactiar, 2018). Faktor yang diperlukan untuk perhitungan nilai kapasitas produksi suatu pabrik yaitu seperti persentase pertumbuhan nilai impor bahan yang diproduksi pada tahun-tahun sebelumnya. Tabel 2.1 merupakan data impor dimetil ftalat di Indonesia selama periode (2016-2022).

Tabel 2. 1 Data Impor Kebutuhan dimetil ftalat di Indonesia (2016 - 2022)

,	Tahun	Kebutuhan Impor	7
		(ton/tahun)	
	2016	6.496,715	
	2017	9.223,972	
	2018	10.018,226	
	2019	11.394,649	
	2020	13.575,156	
	2021	15.000,000	
	2022	16.666,667	

(Sumber : Badan Pusat Statistik Tahun 2023)

Berdasarkan nilai – nilai yang ada pada Tabel 2.1 di atas, kebutuhan impor dimetil ftalat pada tahun 2027 dapat diperkirakan dengan menggunakan persamaan regresi linear. Gambar 2.1 merupakan grafik kebutuhan impor dimetil ftalat di Indonesia.

Gambar 2. 1 Kebutuhan Impor dimetil ftalat

Berdasarkan hasil regresi linear di atas didapatkan grafik cenderung mengalami peningkatan sehingga dapat dijadikan dasar untuk menentukan kapasitas dan diperoleh persamaan garis untuk menghitung kebutuhan dimetil ftalat di Indonesia pada tahun 2027 yang akan mendatang sebagai berikut:

$$y = 0.0006x + 2012$$

$$0.0006x = 2027 - 2012$$

$$0.0006x = 15$$

$$x = 15/0.0006$$

$$x = 25.000 \text{ Ton/Tahun}$$
(2.1)

Keterangan:

y = periode sejak tahun 2016

x = jumlah impor dimetil ftalat (Ton/Tahun)

Berdasarkan persamaan 2.1 didapatkan kebutuhan impor dimetil ftalat di Indonesia pada tahun 2027 yang akan mendatang sebesar 25.000 ton/tahun.

2.2 Pemilihan Proses

2.2.1 Persiapan bahan baku

Pada pembuatan dimetil ftalat tidak perlu dilakukan proses *pretreatment*. Bahan baku yang digunakan dalam pembuatan dimetil ftalat adalah ftalat anhidrida dan metanol dengan adanya tambahan katalis berupa asam sulfat. Ftalat anhidrida memiliki bentuk berupa padatan sehingga disimpan di dalam silo, sedangkan asam sulfat dan juga metanol disimpan di dalam tangki pada suhu lingkungan dan juga tekanan atmosfer.

2.2.2 Tahapan reaksi

Dimetil ftalat dapat dibuat dengan satu proses saja yaitu dengan esterifikasi. Esterifikasi merupakan reaksi pembentukan ester dengan reaksi langsung antara suatu asam karboksilat dengan suatu alkohol. Reaksi esterifikasi dipengaruhi beberapa variabel, salah satunya yaitu katalis. Katalis adalah zat yang menyebabkan laju reaksi kimia menjadi lebih cepat pada suhu tertentu, tanpa mengalami perubahan kimiawi diakhir reaksi (Jaya et al., 2019). Terdapat dua katalis yang dapat digunakan pada proses pembuatan dimetil ftalat yaitu asam sulfat atau dengan menggunakan sodium bisulfat. Tabel 2.2 merupakan perbedaan katalis yang digunakan dalam proses esterifikasi.

Asam Sulfat Sodium Bisulfat 60°C 130°C Suhu Tekanan 1 atm 1 atm 95% 80% Konversi yang dihasilkan Harga (Rp/kg) Rp 20.695,57 Rp 36.956,38 1% dari bahan baku 3% dari bahan baku Kebutuhan

dalam negeri

luar negeri

Tabel 2. 2 Perbedaan Katalis Asam Sulfat dan Sodium Bisulfat

Dari Tabel 2.2 pembuatan dimetil ftalat lebih menguntungkan jika menggunakan katalis berupa asam sulfat. Hal ini dikarenakan katalis asam sulfat memiliki harga yang lebih murah dibandingkan dengan sodium bisulfat, selain itu asam sulfat lebih mudah didapatkan karena diproduksi di dalam negeri sedangkan sodium bisulfat harus impor terlebih dahulu dan konversi yang dihasilkan juga lebih besar.

2.2.3 Tahapan pemurnian

Ketersediaan

Produk hasil reaksi berupa campuran antara cairan yang tidak saling melarutkan sehingga campuran tersebut harus dipisahkan. Selain itu produk akhirnya harus dimurnikan terlebih dahulu. Pemurnian dimetil ftalat dapat dilakukan di evaporator, *flash drum* dan juga menara distilasi hingga kemurniannya mencapai 99%. Tabel 2. 3 merupakan perbandingan antara *flash drum*, menara distilasi, dan evaporator.

Flash Drum Menara Distilasi Evaporator Prinsip kerja Perbedaan titik Kesetimbangan Perbedaan titik didih didih uap cair Investasi modal murah mahal murah Ukuran kecil tinggi dan besar sedang Keefektifan campuran campuran campuran pemisahan komponen lebih komponen komponen sedikit kompleks sedikit

Tabel 2. 3 Perbandingan Flash Drum, Menara Distilasi, dan Evaporator

Dari Tabel 2. 3 pada proses pemurnian alat yang digunakan adalah evaporator hal ini dikarenakan beberapa faktor berikut :

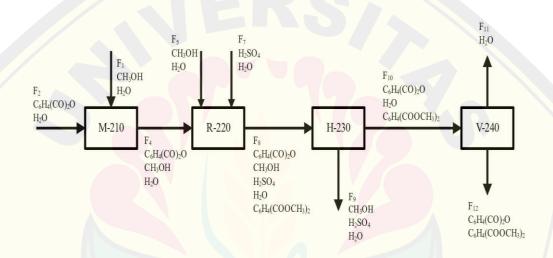
- 1. Evaporator sangat efektif dalam pemisahan komponen dengan titik didih yang relatif dekat, tetapi tidak sama persis. Hal ini membuat evaporator lebih cocok untuk pemurnian ketika komponen-komponen yang dipisahkan hanya memiliki perbedaan titik didih yang kecil, selain itu evaporator digunakan untuk menghilangkan pelarut dari larutan yang diinginkan dengan cara menguapkan pelarutnya.
- 2. Investasi modal yang lebih rendah. Evaporator umumnya lebih murah daripada menara distilasi karena memiliki struktur yang lebih sederhana dan tidak memerlukan sistem *tray* atau *packing*.
- 3. Ukuran yang sedang. Evaporator memiliki ukuran yang lebih kecil dibandingkan dengan menara distilasi yang dapat menghemat ruang dalam proses industri meskipun lebih besar dibandingkan dengan *flash drum*.
- 4. Dapat digunakan untuk campuran dengan komponen yang sedikit. Evaporator lebih efektif dalam memisahkan campuran dengan sedikit komponen, yang membuatnya ideal untuk aplikasi yang memerlukan pemisahan komponen yang relatif mudah.
- 5. Flash drum tidak dapat digunakan pada pemisahan ini meskipun hampir sama dengan evaporator jika melihat perbandingan tabel 2.3, hal ini dikarenakan tekanan yang digunakan terlalu kecil sehingga proses pemisahan tidak bisa dilakukan diantara kesetimbangan uap dan cair.

2.3 Uraian Proses

2.3.1 Persiapan bahan baku

Ftalat anhidrida disimpan di dalam silo (F-130) pada suhu 30°C dan tekanan 1 atm. Kemudian ftalat anhidrida dibawa menuju ke hopper (F-133) menggunakan *screw conveyor* (J-131) dan juga *bucket elevator* (J-132). Di hopper ftalat anhidrida hanya disimpan sementara setelah itu di umpankan menuju mixer (M-210). Metanol dengan kemurnian 98% disimpan di dalam tangki penyimpanan (F-120) dengan suhu 30°C dan tekanan 1 atm. Kemudian di pompa menuju mixer (M-210) sehingga bercampur dengan ftalat anhidrida. Asam sulfat disimpan di dalam tangki penyimpanan (F-110) dengan suhu 30°C dan tekanan 1 atm. Kemudian asam sulfat dipompa menuju reaktor (R-220) menggunakan pompa asam sulfat (L-111).

2.3.2 Tahapan reaksi


Pada tahapan ini, proses reaksi terjadi di dalam reaktor (R-220). Metanol dan ftalat anhidrida yang sudah dicampur di dalam mixer (M-210) diumpankan menuju reaktor (R-220) yang sudah berisi asam sulfat. Jenis reaktor yang digunakan yaitu Reaktor Alir Tangki Berpengaduk (RATB) hal ini dikarenakan adanya pengaduk dapat menjaga homogenitas komponen dalam reaktor. Reaksi terjadi secara eksotermal dengan suhu masuk sebesar 60°C dan suhu keluar sebesar 66°C pada tekanan 3 atm. Dikarenakan reaksi yang terjadi secara endotermal maka diperlukan adanya pendingin untuk menjaga kondisi operasi dengan adanya jaket pendingin dan air sebagai media pendinginnya. Air pendingin ini memiliki suhu masuk 30°C dan suhu keluar sebesar 50°C. Konversi yang terjadi dalam reaktor ini sebesar 90%. Reaksi pembentukan dimetil ftalat yang terjadi di dalam reaktor adalah sebagai berikut,

$$\begin{array}{ccc} & & H_2SO_4 \\ C_8H_4O_3(s) & + CH_3OH(l) & \longrightarrow & C_{10}H_{10}O_4(l) & + H_2O \\ \\ \text{Phthalate anhidrye} & \text{Metanol} & \text{Katalis Dimethyl phthalate} \end{array}$$

2.3.3 Tahapan Pemurnian

Proses selanjutnya yaitu tahapan pemurnian, setelah melalui tahapan reaksi produk hasilnya berupa campuran antara cairan yang tidak saling melarutkan pada suhu 66°C dan tekanan 1 atm. Kemudian campuran tersebut dipisah di dalam

dekanter (H-230). Di dalam dekanter terbentuk 2 lapisan yaitu fraksi ringan dan fraksi berat, untuk fraksi ringannya dialirkan menuju UPL sedangkan untuk fraksi berat dialirkan menuju evaporator (V-240). Evaporator digunakan untuk menaikkan kemurnian dimetil ftalat sampai 99% dengan menguapkan air yang masih tercampur di dalam dimetil ftalat, sehingga produk bawah evaporator (V-240) berupa dimetil falat dengan kemurnian mencapai 99%. Dimetil ftalat yang keluar dari evaporator (V-240) akan diturunkan suhunya dari 131°C hingga suhu ruang yaitu 30°C menggunakan cooler (E-242) sebelum dilairkan menuju ke tangki penyimpanan dimetil ftalat (F-310).

Gambar 2. 2 Block Flow Diagram Pabrik Dimetil Ftalat

Gambar 2. 3 Process flow diagram pabrik dimetil ftalat

2.4 Spesifikasi Bahan

2.4.1 Bahan Baku Utama

Tabel 2. 4 Bahan Utama Dimetil Ftalat

Komponen	Wujud	Rumus kimia	Berat molekul (kg/mol)	Densitas (g/cm³)	Kemurnian	Kelarutan
Ftalat Anhidrida	Kristal padat	C ₆ H ₄ (CO) ₂ O	148	1,53	99,5%	Terlarut sempurna dalam air dan alkohol
Metanol	Cairan	СН ₃ ОН	32	0,792	98%	Terlarut sempurna dalam air dan asam sulfat

2.4.2 Bahan Penunjang

A. Asam Sulfat

Rumus molekul : H₂SO₄

Bentuk : Cair kental

Warna : Tidak berwarna

Kemurnian : 98%

Berat molekul (kg/kgmol) : 98

Titik didik ($^{\circ}$ C) : 337

Kapasitas panas : 34,857 kkal/kmol.K

Densitas (g/cm^3) : 1,84

Kelarutan : Terlarut sempurna dalam air dan metanol

2.4.3 Produk

A. Dimetil Ftalat

Rumus molekul : C₆H₄(COOCH₃)₂

Bentuk : Cairan

Warna : Tidak berwarna

Kemurnian : 99%

Berat molekul (kg/kgmol) : 194

Titik didik ($^{\circ}$ C) : 298

Kapasitas panas : 71,7 kkal/kmol.K

Densitas (g/cm^3) : 1,19

: Terlarut dalam kloroform, alcohol, eter Kelarutan

dan sedikit larut dalam air

2.5 Pemilihan Lokasi dan Tata Letak

2.5.1 Lokasi Pabrik

Lokasi pabrik merupakan salah satu unsur penting dalam merancang pabrik yang dapat menunjang suatu industri. Pemilihan lokasi pabrik diperlukan dengan beberapa pertimbangan dari berbagai faktor. Faktor yang memepengaruhi pemilihan lokasi pabrik dapat dibagi menjadi 2 diantaranya:

- 1. *Primary Factors* (faktor utama) merupakan faktor yang secara langsung berhubungan dengan tujuan utama pabrik. Faktor ini meliputi sumber bahan baku, pemasaran, letak geografi, iklim, transportasi, tenaga kerja dan utilitas.
- 2. *Sekunder Factors* (faktor sekunder) adalah faktor yang menunjang kebutuhan pabrik seperti perpajakan dan hukum.

Berdasarkan faktor diatas maka pabrik dimetil ftalat akan didirikan di Kecamatan Deket, Kabupaten Lamongan, Jawa Timur.

Gambar 2. 4 Lokasi Pabrik dimetil ftalat

A. Sumber Bahan Baku

Pemilihan lokasi sangat berkaitan dengan sumber bahan baku, semakin dekat sumber bahan baku akan mengurangi biaya transportasi. Bahan baku dimetil ftalat berupa ftalat anhidrida diperoleh dari PT. Petrowidada, metanol dari PT. Kaltim Methanol Industri dan asam sulfat dari PT. Petrokimia. Lokasi dari PT. Petrowidada dan PT. Petrokimia berada di Kawasan industri Gresik dekat dengan lokasi pabrik

dimetil ftalat yang akan didirikan dengan jarak PT. Petrowidada sekitar 26 km dan jarak dengan PT. Petrokimia sekitar 25 km dari lokasi pabrik. Pabrik Metanol yaitu PT. Kaltim Metanol Industri berada di Bontang, Kalimantan Timur. Lokasi pabrik dimetil ftalat dekat dengan pelabuhan yang berada di daerah Lamongan, Gresik dan Tuban, sehingga akses bahan baku di luar jawa akan mudah. Jarak yang dapat ditempuh ke Pelabuhan paciran sekitar 44 km dan Pelabuhan Tanjung Perak sekitar 41 km dari pabrik.

B. Geografi dan Iklim

Kabupaten Lamongan merupakan salah satu Kabupaten di Jawa Timur yang terletak pada koordinat 06°51'54" - 07°23'6" Lintang Selatan dan 112°4'41" - 112°33'21" Bujur Timur. Secara administrasi pemerintah batas wilayah kabupaten Lamongan adalah bagian utara berbatas dengan Laut Jawa, bagian timur berbatas dengan Kabupaten Gresik, bagian selatan berbatas dengan Kabupaten Jombang dan Mojokerto, serta bagian barat berbatas dengan Kabupaten Bojonegoro dan Tuban.

Luas wilayah kabupaten Lamongan sebesar ±1.752,21 km², kabupaten Lamongan memiliki 27 Kecamatan, 462 Desa dan 12 Kelurahan. Kabupaten Lamongan ini dilewati oleh sungai Bengawan Solo sepanjang ±68 km dan memiliki Panjang garis pantai sepanjang 47 km. Iklim yang dimiliki Kabupaten lamongan cukup bervariasi yang disebabkan ketinggian wilayah kabupaten Lamongan berkisar 0-100 m. Musim di kabupaten Lamongan dapat diperkirakan pada bulan Maret-Agustus terjadi musim kemarau, sedangkan musim penghujan diperkirakan terjadi pada bulan September-Februari.

Kabupaten Lamongan memiliki 3 karakteristik daratan yaitu:

- a. Bagian Selatan dan Utara meliputi kecamatan Solokoro, Paciran, Modo, Sukorame, Brondong, Mantup, Ngimbang, Sambeng dan Bluluk. Kawasan ini merupakan Kawasan pegunungan kapur berbatuan dengan tingkat kesubura yang sedang.
- b. Bagian Tengan-Selatan meli[uti kecamatan Sugio, Kembangbahu, Sarirejo, Deket, Lamongan, Tikung, Sukodadi, Babat, Pucuk. Kawasan ini berupa dataran rendah dengan kesuburan tinggi.

c. Bagian Tengah-Utara meliputi Kecamatan, Turi, Glagah, Karangbinangun, Karanggeneng, Laren, Kalitengah, Maduran, Sekaran. Kawasan ini merupakan kawasan yang produktif, namun kawasan tersebut rawan banjir.

C. Populasi dan Tenaga Kerja

Tenaga kerja dalam operasi pabrik sangat penting dalam mengawasi proses jalannya produksi serta pekerjaan yang dibutuhkan dalam pabrik. Faktor tenaga kerja ini dilihat juga dari penduduk usia kerja, TPAK (Tingkat Partisipasi Angkatan Kerja) dan TPT (Tingkat pengguran Terbuka). Jumlah penduduk di Kabupaten Lamongan menurut Sensus Penduduk tahun 2020 yaitu 1.189.380 Jiwa(Badan Pusat Statistik, 2020). Penduduk usia kerja merupakan penduduk yang berusia 15 ke atas. Data penduduk usia 15 tahun ke atas menurut angkatan kerja, penduduk yang bekerja dan pengangguran di Kabupaten Lamongan pada tahun 2022 dapat dilihat pada Table 2.4:

Tabel 2. 5 Data Penduduk Usia 15 Tahun ke Atas Menurut Angkatan Kerja, Penduduk yang Bekerja dan Pengangguran di Kabupaten Lamongan pada Tahun 2022

No	Jenis Kegiatan	Laki-laki	Perempuan	Total
1.	Penduduk Usia Kerja 15 tahun ke atas (ribu)	465.198	504.899	970.097
2.	Angkatan Kerja (ribu)	392.202	280.087	672.289
	Bekerja (ribu)	366.983	264.628	631.611
	Pengguran (ribu)	25.219	15.459	40.678
3.	Bukan Angkatan Kerja	72.996	224.812	297.808
4.	Tingkat Partisipasi Angkatan Kerja (TPAK) (%)	84,31	55,47	69,30
5.	Tingkat Pengangguran Terbuka (TPT) (%)	6,43	5,52	6,05

(Badan Pusat Statistik, 2022)

D. Pasar

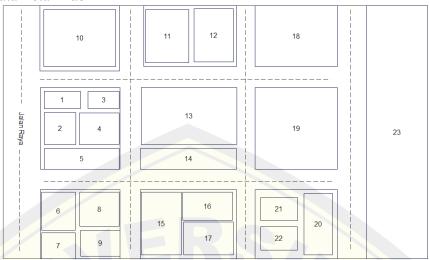
Faktor pemasaran perlu diperhatikan karena dapat mengurangi biaya transportasi serta memudahkan penjualan hasil produk. Pendirian pabrik dimetil

ftalat ini dilihat dengan dekatnya bahan baku serta diusahakan dekat dengan pabrik yang membutuhkan dimetil ftalat. Industri kimia yang banyak digunakan dimetil ftalat dalam prosesnya yaitu industri plastik seperti pipa, listrik, kabel, imitasi dari PVC, dll. Daftar perusahaan pengguna dimetil ftalat dapat dilihat pada Table 2.5:

	Tabel 2. 6 Daftar perusahaan pengguna dimetil ftalat					
	Lokasi					
No.	Nama Perusahaan	Bidang Usaha	kota/kabupaten,			
			Provinsi			
1.	PT. Amarilys	Mainan dari plastik	Balapulang,			
	Karisma Gemilang		Kabupaten Tegal,			
			Jawa Tengah			
2.	PT. Rhino Mega	Industri Manufaktur PVC	Sidoarjo, Jawa			
	Multi Plast	Clear Film dan PVC	Timur			
		Plastik Flooring				
		(Linoleum)				
3.	PT. Diansari Puri	Mainan dari plastik	Sidorjo, Jawa Timur			
	Plastindo					
4.	PT. Industri Invilon	Industri manufaktur	Bandung			
	Sagita	aneka PVC				
5.	PT. Yolita Jaya	Mainan dan jas hujan	Bandung Barat			
	Indonesia					
6.	PT. Wibindo	Pabrik Fiberglass dan	Surabaya, Jawa			
	Makmur	atap gelombang plastik	Timur			
		distrubusi bahan				
		Bangunan				
7.	PT. Multi Makmur	Bidang manufaktur	Banten			
	Lemindo	material bahan bangunan				
		dari plastik				

E. Transportasi

Keadaan jalan dalam transportasi darat juga mempengaruhi kelancaran perhubungan darat. Tahun 2020 Kabupaten Lamongan memiliki jalan dangan kondisi baik sepanjang 332,116 km, kondisi sedang sekitar 39 km, rusak sepanjang 16,5 km dan rusak berat 28,5 km (Badan Pusat Statistik, 2020). Data kondisi jalan menjelaskan bahwa transportasi untuk pemasaran maupun pengambilan bahan baku bisa lebih mudah. Jalan raya yang dapat dilalui oleh kendaraan pabrik merupakan jalan raya desa dan jalan raya primer. Jalan desa yang dilalui merupakan jalan dengan kondisi aspal dengan jarak sekitar 14 km, sedangkan lainnya merupakan jalan raya kecamatan dan jalan raya primer. Pelabuhan yang dekat dengan kabupaten lamongan adalah Pelabuhan Tanjung Perak. Pelabuhan ini akan memudahkan dalam pemasaran baik dalam nilai ekpor/impor.


F Utilitas

Kebutuhan air diperoleh dari Sungai Plalangan daerah kecamatan Deket, kabupaten Lamongan yang memberikan kemudahan dalam memenuhi kebutuhan air pabrik dan air proses. Kebutuhan untuk pabrik utilitas meliputi kebutuhan air, bahan bakar dan tenaga listrik. Kebutuhan listrik dapat dipenuhi oleh PLN dan untuk cadangan dapat menggunakan generator.

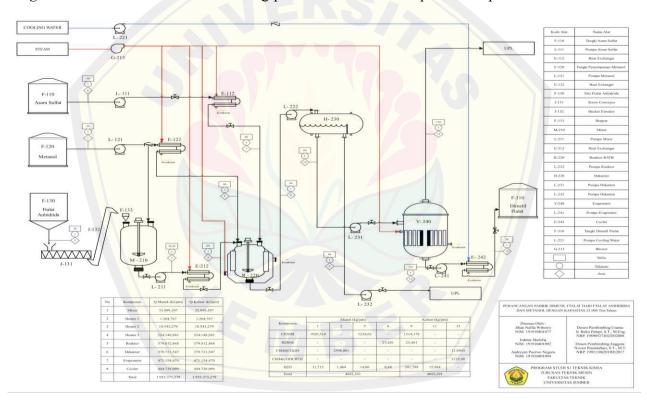
G. Hukum

Hukum adalah segala bentuk peraturan dari pemerintah yang harus dipatuhi oleh perusahaan dalam membangun pabrik d area tertentu. Hukum secara langsung maupun tidak langsung akan mempengaruhi proses produksi. Landasan hukum yang digunakan yaitu Peraturan Daerah Kabupaten Lamongan Nomor 3 Tahun 2021 tentang Rencana Tata Ruang Wilayah Kabupaten Lamongan Tahun 2021-2026 Pasal 83 menjelaskan tentang peraturan zonasi kawasan peruntukan industri, hal ini menjelasakan tentang perizinan pembangunan industri. Lokasi yang dipilih yaitu kecamatan Deket termasuk dalam lingkup industri yang menyebabkan mudahnya dalam perizinan.

2.5.2 Tata Letak Pabrik

Gambar 2. 5 Tata Letak Pabrik

Keterangan:


- 1. Masjid
- 2. Mess Karyawan
- 3. Toilet
- 4. Kantin
- 5. Supermarket Khusus Karyawan
- 6. Pos Satpam
- 7. Parkiran Karyawan
- 8. Perpustakaan dan Arsip
- 9. Unit Keamanan
- 10. Poliklinik
- 11. Unit Pemadam Kebakaran
- 12. Parkit Truk

- 13. Titik Kumpul
- 14. Gudang Produk
- 15. Kantor Pusat
- 16. Aula
- 17. Gudang Alat
- 18. Gudang Bahan Baku
- 19. Unit Proses
- 20. Unit Utilitas
- 21. Laboratorium
- 22. Ruang Kontrol
- 23. Area Perluasan

BAB 3 NERACA MASSA DAN NERACA ENERGI

3.1 Process Flow Diagram Neraca Massa dan Neraca Energi

Process flow diagram neraca massa dan neraca energipabrik dimetil ftalat dapat dilihat pada Gambar 3.1.

Gambar 3. 1 Process Flow Diagram Neraca Massa dan Neraca Energi

BAB 4 SPESIFIKASI ALAT

4.1 Tangki Penyimpanan Asam Sulfat (F-110)

Tabel 4. 1 Spesifikasi Alat Tangki Penympanan Asam Sulfat

(F-110)

Spesifikasi		Keterangan
Fungsi	:	Menyimpan bahan katalis asam sulfat
Kapasitas	:	29,1668 m ³
Temperatur		30°C
Tekanan	:	1 atm
Daya Tampung	:	30 hari
Bahan Konstruksi	:	High Alloy Steel SA 240 Grade S
Jumlah	:	1 unit
Course	:	2
Diameter luar	:	3,0480 m
Diameter dalam	:	3,0607 m
Tinggi total	:	3,9641 m
Tebal tutup atas	:	0,0064 m
Tebal silinder	:	0,0064 m

4.2 Pompa Asam Sulfat (L-111)

Tabel 4. 2 Spesifikasi Pompa Asam Sulfat (L-111)

Spesifikasi Spesifikasi		Ketei	angan	
Fungsi	•	Memompa	bahan	baku
		asam sulfa	t ke reakt	or
Jenis	:	Centrifuga	ıl pump	
Bahan konstruksi	:	Commerci	al steel pi	pe
Kapasitas	:	26,357	kg/jam	
Power pompa	:	0,001	kW/jam	
Power motor	:	0,003	kW/jam	
Jumlah	:	1	unit	
NPS	:	0,006	m	
<i>Wall thickness</i> (tw)	:	0,002	m	
Inside diameter (ID)	:	0,006	m	
Outside diameter (OD)	:	0,01	m	
Inside Cross Sectional Area (A)	:	0,000037	m^2	

4.3 Heater Asam Sulfat (E-112)

Tabel 4. 3 Heater Asam Sulfat (E-112)

Spesifikasi		Keterangan
Fungsi	:	Memanaskan Bahan katalis
		asam sulfat dari suhu 30°C
		menjadi 60°C menuju ke reaktor
Bahan konstruksi	:	High Alloy Steel, SA-240
		Grade C
Tipe HE	:	Double Pipe Heat Exchanger
Luas Transfer panas	:	0,43500 ft ²
Beban panas	;	1047,4650 kj/jam
Massa pemanas (steam)	:	2,0440 kj/jam
Tekanan	:	1 atm
Suhu feed masuk	:	30°C
Suhu feed keluar	:	60°C
Massa fluida dingin	:	24,4490 kg/jam

4.4 Tangki Penyimpanan Metanol (F-120)

Tabel 4. 4 Spesifikasi Alat Tangki Penyimpanan Metanol

(F-120)

		(1-120)
Spesifikasi		Keterangan
Fungsi	:	Menyimpan bahan baku metanol
Kapasitas	i	1236,4158 m ³
Temperatur	:	30°C
Tekanan	:	1 atm
Daya Tampung	:	30 hari
Bahan Konstruksi	:	Carbon Steel SA-283 grade C
Jumlah	:	1 unit
Course	:	7
Diameter luar	:	10,6680 m
Diameter dalam	;	10,6902 m
Tinggi total	:	13,7799 m
Tebal tutup atas	:	0,0111 m
Tebal silinder	:	0,0111 m

4.5 Pompa Metanol (L-121)

Tabel 4. 5 Spesifikasi Alat Pompa Metanol (L-121)

Spesifikasi		K	(eterangan
Fungsi	:	Memomp	a metanol dari tangki
		penyimpa	nan ke mixer
Jenis	:	Centrif <mark>ug</mark>	al pump
Bahan konstruksi	÷	Commerc	rial steel
Kapasitas	:	1033,23	kg/jam
Laju alir volumetrik	:	1,45	m ³ /jam
Power pompa		0,049	kW/jam
Power motor	:	0,06	kW/jam
Jumlah	:	1	unit
NPS	:	0,0027	m
Schedule number (Sch)	:	40	
Wall thickness (tw)	:	0,003	m
Inside diameter (ID)	:	0,0027	m
Outside diameter (OD)	:	0,04	m
Inside Cross Sectional	_	0.0005	2
Area (A)	:	0,0005	m^2

4.6 Heater Metanol (E-122)

Tabel 4. 6 Spesifikasi Alat Heater Metanol (E-122)

Spesifikasi		Keterangan
Fungsi	:	Memanaskan Bahan metanol
		dari suhu 30°C menjadi 60°C
		menuju ke reaktor
Bahan konstruksi		Carbon Steel SA-283 grade C
Tipe HE	:	Double Pipe Heat Exchanger
Luas Transfer panas	:	5,220 ft ²
Beban panas	,	95635,5305 kj/jam
Massa pemanas (steam)	:	36,1620 kj/jam
Tekanan	:	1 atm
Suhu feed masuk	:	30°C
Suhu feed keluar	:	60°C
Massa fluida dingin		1032,2290 kg/jam

4.7 Silo (F-130)

Tabel 4. 7 Spesifikasi Alat Silo (F-130)

Spesifikasi		Keterangan
Nama Alat	:	Silo
Fungsi	:	Menyimpan bahan baku ftalat anhidrida
Tipe alat	:	chylinrical vertical tank, Flat, conical bottom
Bahan kontruksi	:	Carbon steel SA-283 grade C
Volume tangki	:	327,7214093 m ³
Diameter	:	6,030778755 m
Kedalaman	:	9,0 <mark>46168133</mark> m
Tinggi conis	:	12,1217 m
Tebal shell	:	3/8 in
Tebal konis bottom	•	1/4 in

4.8 Screw Conveyor (J-131)

Tabel 4. 8 Spesifikasi Screw Conveyor (J-131)

Spesifikasi		ŀ	Keterangan
Nama Alat	:	Screw Cor	iveyor
Fungsi		Mengangk	ut ftalat anhidrida dar
3.11-8-1		silo ke buc	eket elevator
Tipe alat		Screw cov	eyor
Bahan kontruksi	:	Carbon ste	el SA-283 grade C
Kapasitas	:	55,111	ft ³ /jam
Diameter feed	:	6	in
Panjang	:	15	ft
Kecepatan		11.022	
Putaran	;	11,022	rpm
Power motor	/:/	0,43	Нр

4.9 Bucket Elevator (J-132)

Tabel 4. 9 Spesifikasi Alat Bucket Elevator (J-132)

Spesifikasi		Keterangan					
Nama Alat	:	Bucket Elevator					
Fungsi		Mengangkut ftalat anhidrida dari screw					
	٠	conveyor ke bucket elevator					
Tipe alat	:	Centifugal Discharge					
Bahan kontruksi	:	Carbon steel SA-283					
Kapasitas	:	55,11129689 ft ³ /jam					
Tinggi	:	39,7682 in = $3,31402$					
Ukuran	:	6 in × 4 in × 4 1/4 in					
Putaran head		42					
shaft	:	43 rpm					
Lebar belt	:	7 in					
Power motor	:	2,24 Hp					

4.10 Hopper (F-133)

Tabel 4. 10 Spesifikasi Alat Hopper (F-133)

Spesifikasi		Keterangan				
Nama Alat	:	Hopper				
Paradi		Menampung ftalat anhidrida				
Fungsi	:	menuju mixer				
		Chylinrical vertical tank, Flat,				
Tipe alat		conical bottom				
Bahan kontruksi	:	Carbon steel SA-283 grade C				
Volume tangki	:	11,482 m ³				
Diameter	:/	0,60148 m				
Kedalaman		0,90222 m				
Tinggi conis	/: /	1,2574 m				
Tebal shell	:	1/5 in				
Tebal konis bottom	:	1/5 in				

4.11 Mixer (M-210)

Tabel 4. 11 Spesifikasi Alat Mixer (M-210)

Spesifikasi		k	Keterangan
Nama alat	:	Mixer	
Eunosi		Mencam	purkan metanol
Fungsi	·	dan ftala	at anhidrida
Diameter	ż	1,05	m
Tinggi mixer	:	2,76	m
Tebal Shell	:	0,1875	in
Tebal Head	:	0,1875	in
Space Time	\:	1	jam
Volume mixer	:	4,57	m^3
Power	i	0,47	Нр
Tekanan	:	1	atm
Suhu	:	30	°C
Jenis Bahan	:	SA-212	Grade B Tipe C-Si
Jenis Pengaduk	:	Turbin	
Kecepatan putaran pengaduk	:	120 rj	pm

4.12 Pompa Mixer (L-211)

Tabel 4. 12 Spesifikasi Alat Pompa Mixer (L-211)

Spesifikasi		Kete	erangan
Fungsi	:	Memomp	a bahan yang
		keluar dar	i mixer ke reaktor
Jenis	:	Centrifug	al pump
Bahan konstruksi	:	Commerc	ial steel pipe
Kapasitas	;	3,429.76	kg/jam
Laju alir volumetrik	:	0.0009	m³/jam
Power pompa	:	0,03	kW/jam
Power motor	:	0,04	kW/jam
Jumlah	:	1	unit
NPS	:	0,048	m
Schedule number (Sch)	:		
Wall thickness (tw)	:	0,004	m
Inside diameter (ID)	:	0,040	m
Outside diameter (OD)	:	0,048	m
Inside Cross Sectional		0,0013	m^2
Area (A)	٠	0,0013	111

4.13 Heater Mixer (E-212)

Tabel 4. 13 Spesifikasi Alat Heater Mixer (E-212)

Spesifikasi		Keterangan
Kode	:	E-212
Fungsi	:	Memanaskan bahan keluar
		mixer arus 3 dari suhu 30,39°C
		menjadi 60°C menuju ke reaktor
Bahan konstruksi	•	Carbon Steel SA-283 grade C
Tipe HE	•	Double Pipe Heat Exchanger
Luas area transfer	:	69,60 ft ²
Beban panas	,	190159,6343 kJ/jam
Massa pemanas (steam)	:	110,6905 kJ/jam
Suhu feed masuk	:	30,39°C
Suhu steam masuk &		12090
keluar	•	120°C
Massa fluida dingin	:	3429,7550 kg/jam

4.14 Reaktor (R-220)

Tabel 4. 14 Spesifikasi Alat Reaktor (R-220)

Tuber 4. 14 Spesifikusi Mat Reaktor (R 220)							
Spesifikasi		Keterangan					
Nama alat	:	Reaktor					
Fungsi		Merekas	Merekasikan bahan dari mixer dengan				
		adanya p	penambahan katalis asam sulfat				
		dan met	anol berlebih				
Jenis Reaktor) <u>.</u>	Reaktor	RATB				
Diameter	:	1,2	m				
Tinggi reaktor	:	1,93	m				
Tebal shell	:	0,1875	in				
Tebal head	:	0,1875	in				
Volume reaktor	:	2,50	m^3				
Power	:	0,41	Нр				
Tekanan	;	1	atm				
Suhu	÷	60	°C				
Jenis Bahan	:	SA-167	tipe 316 A				
Kecepatan		150	rnm				
pengaduk	٠	130	rpm				

4.15 Pompa Reaktor (L-222)

Tabel 4. 15 Spesifikasi Alat Pompa Reaktor (L-222)

Spesifikasi		Kete	erangan
Fungsi	:	Memompa keluar d dekanter	a bahan yang ari reactor ke
Jenis	:	Centrifuge	al pump
Bahan konstruksi	:	Golvonize	d iron
Kapasitas	;	4,692.39	kg/jam
Laju alir volumetrik	:	0,0014	m ³ /jam
Power pompa	:	0,315	hp/jam
		0,173	kW/jam
Power motor		0,268	hp/jam
	:	0,2	kW/jam
Jumlah	:	1	unit
NPS	:	0,052	m
Wall thickness (tw)	:\	0,004	m
Inside diameter (ID)	:	0,052	m
Outside diameter (OD)	:	0,06	m
Inside Cross Sectional Area (A)	:	0,002	m^2

4.16 Dekanter (H-230)

Tabel 4. 16 Spesifikasi Alat Dekanter (H-230)

Spesifika	asi		Keterangan
Nama alat	:	Dek	canter
Fungsi	:	Mei	misahkan fase berat dan fase ringan
Bahan Kontru	ksi :	Stai	nless Steel SA-167 grade 8 tipe 309
Jenis		Hor	rizontal dekanter
Diameter		0,70)2 m
Panjang dekar	nter :	1,76	67 m
Tebal shell		0,18	38 in
Tebal head	:	0,18	38 in
Volume dekar	nter :	0,46	m^3
Power		3	Нр
Perancangan	Pipa Ke	luar	Perancangan Pipa Keluar
Fase Ringan	•		Fase Berat
Nominal pipe	1/2	in	Nominal pipe 1 in
size	: 1/2	111	size :
Shedule	40		Shedule 40
Number	: 10		Number :
Outside	0,84	in	Outside 1,32 in
Diameter	<u>;</u>		Diameter :
Inside Diameter	0,62	in	Inside 1,05 in Diameter :
Flow Area		_	Flow Area per :2
per pipe	: 0,31	in^2	pipe : 0,34 in

4.18 Pompa Dekanter (L-232)

Tabel 4. 18 Spesifikasi Alat Pompa Dekanter (L-232)

4.17 Pompa Dekanter (L-231)

Tabel 4. 17 Spesifikasi Alat Pompa Dekanter (L-231)

Spesifikasi	Kete	rangan			Spesifikasi]	Keterangan		
Fungsi	:	Memompa	bahan yang keluar		Fungsi	:	Memomp	a bahan yar	ng
		dari dekant	er ke Evaporator				keluar dar	i dekanter ke UF	P L
Jenis	:	Centrifuga	Centrifugal pump		Jenis	:	Centrifug	al pump	
Bahan konstruksi	;	Commercia	al Steel		Bahan konstruksi	:	Golvonize	d iron	
Kapasitas	i i	3152.943	kg/jam		Kapasitas	:	1,253.54	kg/jam	
Laju alir volumetrik	:	3,01	m ³ /jam		Laju alir volumetrik	:	0,0005	m ³ /jam	
Power pompa	:	0,11	kW/jam		Power pompa	:	0,07	kW/jam	
Power motor	:	0,14	kW/jam		Power motor	:	0,08	kW/jam	
Jumlah	:	1	unit		Jumlah	:	1	unit	
NPS	:	0,040	m		NPS	:	0,035	m	
Schedule number (Sch) :				Schedule number (Sch)	:			
Wall thickness (tw)	:	0,004	m		Wall thickness (tw)	:	0,004	m	
Inside diameter (ID)	:	0,040	m		Inside diameter (ID)	:	0,035	m	
Outside diameter (OD)) :	0,04	m		Outside diameter (OD)	:	0,042	m	
Inside Cross Sectional	_	0.001	m^2		Inside Cross Sectional		0.0000	m^2	
Area (A)	÷	0,001	III-		Area (A)	:	0,0009	III-	

4.19 Evaporator (V-240)

Tabel 4. 19 Spesifikasi Alat Evaporator (V-240)

Spesifikasi	Keterangan				
Nama Alat	: Evaporator				
Fungsi	Menguapkan kandungan air dari d talat dan ftalat anhidrida	Menguapkan kandungan air dari dimetil ftalat dan ftalat anhidrida			
Tipe	: Short-Tube Vertical				
Bahan	: Carbon Steel SA-204 grade A				
Jumlah	: 1 buah				
Jumlah <i>tube</i>	: 31				
Diameter	: 4,691 ft				
Tinggi	: 10,55 ft				
Tebal shell	: 0,5 in				
Tebal head	: 0,5 in				
Tinggi Head	: 12,63 in				

4.20 Pompa Evaporator (L-241)

Tabel 4. 20 Spesifikasi Alat Pompa Evaporator (L-241)

Spesifikasi	I	Keterangan	
Fungsi		Memompa keluar da Evaporator <i>Positif disp</i>	ri dekanter ke
Jenis	:	Rotary Lob	
Bahan konstruksi	:	Commercia	al Steel
Kapasitas	:	3152.943	kg/jam
Laju alir volumetrik	:	3,01	m³/jam
Power pompa	:	0,11	kW/jam
Power motor	:	0,14	kW/jam
Jumlah	:	1	unit
NPS	:	0,040	m
Schedule number (Sch)	:	40	
Wall thickness (tw)	:	0,004	m
Inside diameter (ID)	:	0,040	m
Outside diameter (OD)	:	0,04	m
Inside Cross Sectional Area (A)	:	0,001	m^2

4.22 Tangki Penyimpanan Produk Dimetil Ftalat (F-310) Tabel 4. 22 Spesifikasi Alat Tangki Penyimpanan Dimetil

DIGITAL REPOSITORY UNIVERSITAS JEMBER

4.21 Cooler (E-242)

Tabel 4. 21 Spesifikasi Alat Cooler (E-242)

Spesifikasi	Keterangan	Ftalat (F-310)		
Kode	: E-242	Spesifikasi	Keterangan	
Fungsi	: Mendinginkan bahan keluar dari	Fungsi : N	Menyimpan bahan produk dimetil ftalat	
	evap menuju tangka	Kapasitas : 2	2.602,8920 m ³	
	penyimpanan produk dari suhu	Temperatur : 3	30°C	
	110°C sampai 30°C	Tekanan : 1	atm	
Bahan konstruksi	: Carbon Steel SA-283 grade C	Bahan Konstruksi : (<mark>Car</mark> bon Steel SA-283 grade C	
Tipe HE	: Double Pipe Heat Exchanger	Daya Tampung : 3	<mark>80</mark> hari	
Luas area transfer	: 1,09 ft ²	Jumlah : 1	unit	
Suhu feed masuk	: 11 <mark>0°C</mark>	Faktor Pengelasan : I	Double Welded butt Joint	
Suhu feed keluar	: 30°C	Course : 7	1	
Suhu air masuk	: 25°C	Diameter luar : 1	5,2400 m	
Suhu air keluar	: 40°C	Diameter dalam : 1	5,2718 m	
Beban panas	; 420.295,6 <mark>839 kJ</mark> /jam	Tinggi total : 1	4,1830 m	
Massa pendingin	: 6.700,07 <mark>47 kJ/jam</mark>	Tebal tutup atas : 0),0159 m	
Massa fluida panas	: 3.152,9432 kg/jam	Tebal silinder : 0	0,0159 m	

BAB 5 EVALUASI EKONOMI

5.1 Total Modal

Total modal terdiri dari modal tetap dan modal kerja. Penentuan total modal dengan detail perhitungan yang terdapat pada Lampiran 4 – Perhitungan Evaluasi Ekonomi.

Tabel 5. 1 Penentuan Total Capital Invesment (TCI) atau Total Modal

Kategori	Sumber Perhitungan	Biaya (US\$)
PEC		\$ 1.099.505,88
SEC	30% PEC	\$ 329.851,76
ETC	9% PEC	\$ 98.955,53
DEL	5% PEC	\$ 54.975,29
IIP	8% PEC	\$ 87.960,47
IC	6% PEC	\$ 65.970,35
Pins	30% PEC	\$ 329.851,76
Eins	20% PEC	\$ 219.901,18
SFYI	40% PEC	\$ 13.148.685,42
В	Lampiran 4	\$ 13.148.685,42
L	Lampiran 4	\$ 12.431.484,40
DC	PEC+SEC+ETC+DEL+IIP+IC+ Pins+Eins+SFYI+B+L	\$ 15.875.460,00
ES	5% DC	\$ 793.773,00
CE	10% DC	\$ 1.587.546,00
Contg	5% FCI	\$ 960.883,11
IDC	ES+CE+Contg	\$ 3.342.202,11
FCI	DC+IDC	\$ 19.217.662,11
WCI	10% TCI	\$ 2.135.295,79
TCI	FCI+WCI	\$ 21.352.957,90

5.2 Ongkos Produksi

Penentuan *Total Production Cost* (TPC) atau biaya produksi secara ringkas dapat dilihat pada Tabel 5.2 di bawah ini.

Kategori	Sumber Perhitungan	Biaya (US\$)
RM	Lampiran 4	28.424.459,47
OL	Lampiran 4	1.067.977,97
DSCL	10% OL	106.797,80
Ult	13% TPC	5.603.911,53
MR	2% FCI	384.353,24
LC	10% OL	106.797,80
PR	2% TPC	862.140,23
DPC	RM+OL+DSCL+Ult+MR+LC+PR	36.556.438,03
D	10% FCI	1.921.766,21
LT	1% FCI	192.176,62
Ins	1% FCI	192.176,62
FChg	D+L+Ins	2.306.119,45
POC	50% dari OL+DSCL+MR	779.564,50
MC	DPC+FC+POC	39.642.121,99
Adm	15% dari OL+DSCL+MR	233.869,35
DM	2% TPC	862.140,23
RD	5% TPC	2.155.350,59
Fnc	1% TCI	213.529,58
GE	Adm+DM+RD+Fnc	3.464.889,75
TPC	MC+GE	43.107.011,74

Tabel 5. 2 Penentuan Total Production Cost (TPC)

5.3 Keuntungan

Keuntungan (profit) merupakan tujuan utama dari didirikannya sebuah pabrik. Mengetahui keuntungan dari sebuah pabrik menggunakan perhitungan annual cash flow (ACF) atau total uang yang diperoleh perlu dilakukan. Penentuan ACF dapat dilihat pada Lampiran 4 – Perhitungan Evaluasi Ekonomi. Berdasarkan perhitungan tersebut, pabrik dimetil ftalat ini memberikan keuntungan seperti yang diharapkan. Dalam kurun waktu 1 (satu) tahun, diperoleh laba bersih yang sudah dipotong pajak (NPAT) sebesar \$ 6.507.498,46 dengan perolehan uang tiap tahunnya (ACF) sebesar \$ 8.429.264,67. Parameter kelayakan pendirian pabrik

apabila persentase ACF lebih besar dari persentase bunga bank yang ditetapkan, yaitu sebesar 8,8%. Berdasarkan data di atas persentase ACF sebesar 39,48% telah melebihi persentase bunga bank, hal ini membuktikan bahwa pabrik ini layak untuk didirikan

5.4 Lama Waktu Pengembalian

5.4.1 Lama Pengembalian Modal

Pengembalian modal yang dipinjamkan oleh bank pada pabrik dimetil ftalat dari ftalat anhidrida dan metanol ini ditentukan selama 4 (empat) tahun pengangsuran. Modal yang dipinjam harus dikembalikan beserta dengan bunganya, seperti yang terdapat pada Tabel 5.3. besaran angsuran tiap tahunnya dapat ditentukan dengan menggunakan Persamaan 5.1 dengan perhitungan sebagai berikut.

Bunga angsuran (A) =
$$TCI \left[\frac{b(1+b)^{N}}{(1+b)^{N}-1} \right]$$
 5-1

Tabel 5. 3 Lama Pengembalian Modal

Tahun ke-	Pinjaman (US\$)	Bungan (US\$)	Total Pinjaman (US\$)	Ansuran (US\$)	Sisa Pinjaman (US\$)
0	\$21.352.957,90	\$ 0	\$21.352.957,90	\$ 0	\$21.352.957,90
1	\$21.352.957,90	\$1.879.060,29	\$23.232.018,19	\$6.562.078,27	\$16.669.939,92
2	\$16.669.939,92	\$1.466.954,71	\$18.136.894,64	\$6.562.078,27	\$11.574.816,37
3	\$11.574.816,37	\$1.018.583,84	\$12.593.400,21	\$6.562.078,27	\$6.03 <mark>1</mark> .321,94
4	\$6.031.321,94	\$530.756,33	\$6.562.078,27	\$6.562.078,27	\$ 0
Total	\$76.981.994,02	\$4.895.355,18	\$81.877.349,20	\$26.248.313,08	\$55.629.036,12

Berdasarkan perhitungan di atas, pabrik dimetil ftalat dari ftalat anhidrida dan metanol layak untuk didirikan karena pinjaman beserta bunga dapat dilunasi dalam kurun waktu 4 tahun. Jangka waktu pengembalian modal harus kurang dari setengah umur pabrik agar dapat dikatakan layak. Jika dibandingkan dengan setengah umur pabrik selama 5 tahun, maka pabrik ini layak untuk didirikan.

5.4.2 Pay Out Time (POT)

Pay Out Time (POT) adalah waktu minimum yang diperlukan untuk mengembalikan modal tetap Fixed Capital Investment (FCI) berdasarkan keuntungan tiap tahun.

Ketika nilai POT yang didapat lebih kecil dari setengah umur pabrik, maka pabrik tersebut layak untuk didirikan. Berdasarkan perhitungan dari Persamaan 5-3 nilai POT yang didapat pada pabrik ini adalah 2,86 tahun. Angka tersebut lebih kecil jika dibandingkan setengah umur pabrik selama 5 tahun. Hal ini menunjukkan bahwa pabrik dimetil ftalat dari ftalat anhidrida dan metanol ini layak untuk dibangun.

5.5 Laju Pengembalian Model

5.5.1 Rate of Return (ROR)

Rate of Return (ROR) merupakan laju pengembalian modal dengan mempertimbangkan laba dibagi dengan total modal. Penentuan ROR dapat dihitung dengan Persamaan 5-4 berikut.

5.5.2 *Discounted Cash Flow Rate of Return* (DCF-ROR)

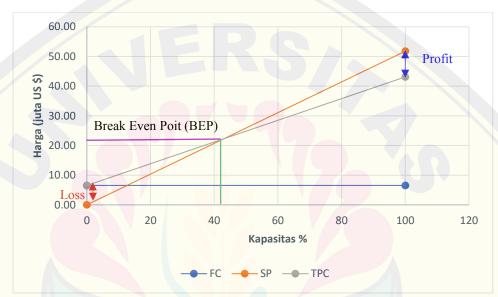
DCF-ROR merupakan laju pengembalian modal yang diperoleh dari perhitungan nilai bunga pinjaman selama seumur pabrik. Berdasarkan Peters & Timmerhaus (2002), nilai DCF-ROR dapat dihitung dengan persamaan 5.4 berikut.

$$TCI = ACF \left[\frac{1}{(1+i)^1} + \frac{1}{(1+i)^2} + \dots + \frac{1}{(1+i)^n} \right] + \frac{WCI + Vs}{(1+i)^n}$$
 5-4

Nilai DCF-ROR merupakan nilai i yang diperoleh dari trial and error serta solver pada excel yang detail perhitungannya ada pada Lampiran 4 – Perhitungan Evaluasi Ekonomi. Parameter kelayakan untuk aspek ini ialah apabila persentase DCF-ROR lebih besar daripada persentase bunga bank yang ditetapkan. Berdasarkan perhitungan, nilai DCF-ROR yang diperoleh ialah sebesar 42,60%. Nilai tersebut lebih besar dari persentase bunga bank yaitu 8,8% yang menunjukkan bahwa pabrik ini layak untuk didirikan.

5.6 Break Event Point

Break Event Point (BEP) merupakan titik impas yang menunjukkan persentase kapasitas yang harus dicapai agar seluruh pinjaman lunas atau untuk mengetahui titik dimana biaya produksi total sama dengan total penjualan. Sumber data untuk perhitungan BEP meliputi fixed cost (Fcost), Selling price (SP), dan direct production cost (DPC). Perhitungan Fcost dan BEP dapat dilihat pada Persamaan 5-5 dan 5-6 berikut.


$$Fixed\ Cost\ (Fcost) = FChg + POC + GE$$
 5-5

Break Event Point (BEP) =
$$\frac{Fcost}{SP - DPC} \times 100\%$$
 5-6

a. Fixed Cost (Fcost)

b. Break Event Point (BEP)

Pabrik dapat dikatakan layak didirikan apabila nilai BEP tidak terlalu besar ataupun terlalu kecil. Berdasarkan Kusnarjo (2010), nilai BEP yang umum untuk pabrik kimia adalah berkisar dari 40% hingga 50%. Perhitungan di atas menghasilkan nilai BEP sebesar 43% yang sesuai dengan range yang ada, sehingga pabrik dimetil ftalat dari ftalat anhidrida dan metanol ini layak didirikan. Analisa BEP dengan cara grafik juga dapat dilihat pada Gambar 5.1. perpotongan antara garis total penjualan produk (SP) dan total biaya produksi (TPC) merupakan nilai BEP.

Gambar 5. 1 Grafik Break Event Point

BAB 6 KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan uraian dan pembahasan yang terdapat pada 8 bab sebelumnya, maka dapat disimpulkan sebagai berikut:

- 1. Lokasi pabrik dimetil ftalat berada di Kecamatan Deket, Kabupaten Lamongan, Provinsi Jawa Timur dengan total luas lahan seluas 14,585 hektar dengan lahan utama seluas 12,085 hektar;
- 2. Pabrik dimetil ftalat ini memiliki kapasitas produksi sebesar 25.000 kg/jam;
- 3. Bahan baku yang dibutuhkan yaitu ftalat anhidrida sebanyak 20.989,5 ton/tahun dan metanol sebesar 19.667,4 ton/tahun.
- 4. Pabrik ini direncanakan beroprasi secara kontinyu selama 330 hari/tahun dan 24 jam/hari.
- 5. Terdapat 3 tahapan proses pada pabrik ini yaitu persiapan bahan baku, tahapan reaksi dan tahapan pemurnian.
- 6. Jumlah peralatan yang dibutuhkan adalah sebanyak 22 peralatan.
- 7. Bentuk badan usaha yang direncanakan pada pabrik ini adalah Perseroan Terbatas (PT) dengan berbagai pertimbangan dan jumlah karyawan sebanyak 198 orang.
- 8. Pabrik layak didirikan berdasarkan evaluasi ekonomi yang meliputi beberapa parameter kelayakan seperti pada tabel berikut.

Tabel 6. 1 Rangkuman Evaluasi Ekonomi

No.	Parameter	Hasil Perhitungan	Syarat Kelayakan
1.	Annual Cash	20.480/	Lebih besar dari bunga bank
	Flow (ACF)	39,48%	(ACF >8,8%)
2.	Pay out time	2.06.4-1	Kurang dari setengah umur
	(POT)	2,86 tahun	pabrik (POT<5)

3.	Netprofit over		Lebih dari TCI + Σ bunga
	total lifetime of	\$ 90.655.154,44	pinjaman
	the project	\$ 90.033.134,44	(NPOTLP>\$ 26.248.313,08)
	(NPOTLP)		
4.	Total capital sink	Ф 50 044 22 <i>СС</i>	Lebih besar dari TCI
	(TCS)	\$ 58.044.33,66	(TCS>\$21.352.957,90)
5.	Rate of return	20.400/	Lebih besar dari bunga bank
	(ROR)	30,48%	(ROR>8,8%)
6.	Discounted Cash		Lebih besar dari bunga bank
	Flow Rate of		(DCF-ROR>8,8%)
	Return (DCF-	42,60%	
	ROR)		
7.	Break Event	420/	BEP berada di <i>range</i> 40-50%
	Point (BEP)	43%	

Hasil uraian diatas dengan ditinjau dari segi teknis, ekonomi, dan lingkungan Pabrik Dimetil Ftalat dari Ftalat Anhidrida dan Metanol layak didirikan.

6.2 Saran

Penulis menyarankan agar pembaca dapat menggunakan tugas akhir ini sebagai referensi dengan sebaik-baiknya. Penulis berharap tugas akhir ini dapat bermanfaat bagi masyarakat luas, tidak hanya bagi mahasiswa dengan prodi yang relevan. Penulis juga berharap untuk kedepannya tugas akhir ini dapat dikaji lebih lanjut sebagai referensi penelitian kedepannya dengan pengembangan teknologi yang lebih advance.

DAFTAR PUSTAKA

- Adidharma, M. I., & Utama, A. Y. (2022). Pra rancangan Pabrik Dimethyl Pthalate dari Pthalic Anhydride dan Metanol dengan Katalis Asam Sulfat Kapasitas 20.000 Ton/ Tahun. Skripsi.
- Ambat, R. E., & Prasetyo, R. A. (2015). Perancangan Bak Prasedimentasi. Potensi: Jurnal Sipil Politeknik, 17(1).
- Apriliyani, O.:, Iriyanti, D., Wlfx, E., Jurusan, M., Kimia, P., Universitas, F., & Yogyakarta, N. (N.D.). Pengaruh Penambahan Pemlastis Dimetil Ftalat Terhadap Konduktivitas Membran Selulosa Asetat Litium Effect Dimethil Phthalate As Plasticizer For Cellulose Acetate Lithium Membrane Conductivity.
- Aribowo, D., Desmira, dan Danan Ahlan Fauzan. 2020. SISTEM perawatan mesin genset di pt (persero) pelabuhan indonesia ii. Prosiding Seminar Nasional Pendidikan FKIP
- Badan Pusat Statistik Lamongan 2021.
- Badan Pusat Statistik Kabupaten Lamongan 2021.
- Bactiar, A. (2018). Perencanaan Kapasitas Produksi dengan Pendekatan Biaya Marjinal Pada Pabrik Tahu "SBR" Bengkulu. Creative Research Management Journal. Vol. 1, No. 1
- Belladona, M., 2017. Analisis Tingkat Pencemaran Sungai Akibat Limbah Industri Karet di Kabupaten Bengkulu Tengah. Prosiding Seminar Nasional Sains dan Teknologi
- Carberry, J. J., Walker, W. H., White, A. H., Jackson, D. D., James, J. H., Lewis, W. K., & Curtis H C Parmelee, H. A. (N.D.). Mcgraw-Hill Chemical Engineering Series Editorial Advisory Board Building The Literature Of A Profession.

- Christie J. Geankoplis Transport Processe And Unit Operations 3rd Ed. (N.D.).
- Couper, J. R. (2010). Chemical Process Equipment: Selection And Design. Butterworth-Heinemann.
- Essentials Of Chemical Reaction Engineering Second Edition. (N.D.).
- Gustiana, H. S. E. A., & Wijayanto, N. T. (2011). Prarancangan Pabrik Dimetyl Pthalate dari Phtahlic Anhydride dan Metanol dengan Kaspasitas 35.000 Ton/Tahun. Skripsi.
- Jaya, J. M., Yulistia, A., Hunga, M., Nikmah, S. S., & Susanti, M. M. (2019).
 Sintesis Senyawa Etil Laurat Menggunakan Variasi Volume Katalis Asam
 Sulfat Pekat. Jurnal Labora Medika, 3(1), 1–9.
- Karyadi L. 2010. Partisipasi Masyarakat Dalam Program Instalasi Pengolahan Air Limbah (IPAL) Komunal Di RT 30 RW 07 Kelurahan Warungboto, Kecamatan Umbulharjo, Kota Yogyakarta. Skripsi. Yogyakarta (ID): Universitas Negeri Yogyakarta
- Ledyana Sari, N., Saskia Zulaikha, S., Yani Km, J. A., Unlam Banjarbaru, K., & Selatan, K. (N.D.). Jurnal Tugas Akhir Teknik Kimia (Vol. 4, Issue 1). Www.Klikbontang.Com
- Lloyd E. Brownell, Edwin H. Young Process Equipment Design-Wiley-Interscience (1959). (N.D.).
- Martini, S., Yuliwati, D., Martini, S., Yuliwati, E., & Kharismadewi, D. (2020). Pembuatan Teknologi Pengolahan Limbah Cair Industri (Vol. 5, Issue 2).
- Rarindo, H. (2018). Keselamatan Dan Kesehatan Kerja (K3): Suatu Analisis Studi Kasus Kecelakaan Kerja Di Pabrik, Kebijakan Hukum Dan Peraturannya. Jurnal Ilmiah Teknologi FST Undana. Vol. 12, No. 2.
- Saputra. M. A. (2019). Pra Rancangan Pabrik Dibutil Fatalat dari Anhidrida Fatalat dan N-Butanol dengan Katalis Asam Sulfat Kapasitas 15.000 Ton/Tahun. Skripsi.

- Sofyan, D.K. (2018). Peramalan Kebutuhan Klorin (Cl₂) pada Bagian Produksi di PT Pupuk Iskandar Muda. Industrial Engineering Journal Vol.7, No.1
- Sulistia, S., Cahaya Septisya, A., Teknologi Lingkungan -BPPT dan Program Studi Analisis Kimia Sekolah Vokasi, P., & Pertanian Bogor, I. (2019). Analisis Kualitas Air Limbah Domestik Perkantoran. Analisis Kualitas Air.... Jrl, 12(1), 41–57
- Suhardi, B., P. W. Laksono, dan R. Hakim. 2015. Analisis dan usulan perbaikan pencahayaan pada ruang skripsi perpustakaan pusat universitas sebelas maret surakarta. PERFORMA: Media Ilmiah Teknik Industri. 14(2):133–140
- Syafa'at, M., Kuba, S., Suryana, I., Lisnawati, D., Kunci, K., Sedimentasi, :, Sabo, D., & Jeneberang, S. (2019). Studi Pengaruh Bangunan Consolidation Dam Cd 1-1 Terhadap Laju Sedimentasi Di Sungai Jeneberang. In Jurnal Teknik Hidro (Vol. 12, Issue 1).
- Pratama, M. A. (2021). Scooping Review: Efektivitas Penggunaan Alat Pelindung Diri dengan Kejadian Dermatitis Kontak pada Pekerja Pabrik. Jurnal Riset Kedokteran, 1(1), 26–31
- Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry's Chemical Engineers' Handbook. Mcgraw-Hill.
- Wati, Y. R. (2021). Bioplastik dari Bagase dan Tongkol Jagung dengan Penambahan Dimethyl Pthalate. Skripsi.
- Yanti, H. (2021). Pra Rancangan Pabrik Dimetil Ftalat Dari Ftalat Anhidrida Dan Metanol Kapasitas 60.000 Ton/Tahun. Skripsi
- Yaws, C. L. (1999). Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, And Health Related Properties For Organic And Inorganic Chemicals. Mcgraw-Hill.
- Yudo S dan Setiyono. 2008. Perencanaan instalasi pengolahan limbah domestik di rumah susun Karang Anyar Jakarta. Jurnal Teknik Lingkungan. 9(1): 31-40

LAMPIRAN

Berikut merupakan link untuk perhitungan neraca massa, neraca energi, analisis ekonomi, utilitas dan faktor keselamatan, serta manajemen pabrik:

https://drive.google.com/drive/folders/1ywqTGdspGY9-uXv1QLOddt4qB54d3svG?usp=sharing

