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Abstract. The Sampean Baru watershed is categorized as an area with a very high level of vulnerability to 

drought. The purpose of this study was to assess the hydrological drought in the Sampean Baru watershed. NCEP 

/ NCAR Reanalysis climate change data is used to obtain synthetic rainfall models of the past. This climate 

change data has crude resolution and is global in scale. The NCEP / NCAR Reanalysis data was processed 

through a downscaling process to obtain local scale climate data in the form of past synthetic rains. Artificial 

Neural Network (ANN) is one of the downscaling models used in this study. The ANN downscaling output was 

processed through discharge modeling using SWAT. Hydrological drought assessment used the Standardized 

Precipitation Index (SRI) method. The SRI calculation was based on the accumulated discharge over a period of 

time. The results indicated that the ANN downscaling process can bridge global scale climate data to local scale 

climate data. SWAT modeling gave excellent results. SRI-6 can describe past droughts. It can be seen from the 

compatibility between the results of the drought assessment and the drought data belonging to the relevant 

authorities.  
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INTRODUCTION  
 

 In the last few decades, climate change has become a common problem. CO2 emissions from fossil 

fuel combustion and industrial processes contributed approximately 78% to the total increase in GHG 

emissions between 1970 and 2010, with the same percentage contribution over the 2000-2010 period [1]. 

This results in the composition of the atmosphere changing constituent elements, resulting in global 

warming and climate change [2]. Climate change causes the frequency, duration, and intensity of natural 

events, such as drought, to increase [3]. Many countries are working to bring climate change under 

control together. 

The Sampean Baru Watershed area has a very high level of drought threat [4]. The impact of this 

drought is the increasing demand for clean water in several areas. As the authority for providing clean 

water services, the Regional Drinking Water Company (PDAM) is working with the Regional Disaster 

Management Agency (BPBD) to distribute clean water to areas affected by drought. 11 villages in 6 sub-

districts have submitted requests for clean water to PDAM [5]. The drought also has an impact on the 

agricultural sector, such as crop failure.  
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Drought occurs slowly without people being aware of it [6]. However, its impact is damaging. 

Monitoring of drought by conducting hazard assessment is a necessity and a solution to minimize its 

impact. However, a limitation in this process is the lack of updated rainfall data available in the Sampean 

Baru watershed. This study employed NCEP/NCAR Reanalysis dataset to overcome this problem. It is a 

real-time global reanalysis of atmospheric data from 1979 to the present [7]. This dataset was the result of 

the reanalysis assimilation data system that continuously used with current data in real-time [8]. This 

dataset has been widely used in various climate-related researches such as drought assessment [9], 

precipitation downscaling[10][11], runoff simulation[12], cyclones analysis[13], and so on. The 

NCEP/NCAR Reanalysis dataset has a global gridded data scale and has a coarse resolution, so it must be 

processed through a downscaling. Downscaling can determine the relationship between global gridded 

data and local gridded data, in this case, rainfall data in the Sampean Baru watershed. Downscaling 

technique consists of Dynamical Downscaling (DD) and Statistical Downscaling (SD) [14]. In this study, 

the statistical downscaling type is used because of several advantages, namely: it is cheap and does not 

require large memory hardware[15]. Artificial Neural Network (ANN) is a statistical downscaling method 

that will be used to obtain a model of rainfall. 

This study aims to assess the hydrological drought in the Sampean Baru watershed. The hydrological 

drought index used for the assessment was the Standardized Runoff Index (SRI) method. SRI is suitable 

for hydrological drought assessment due to climate change [16]. SRI uses accumulated discharge data 

over a specific duration as input [17]. Another problem that arises is that discharge data is not always 

available for a long duration. Thus, rainfall-runoff modeling is necessary. The Soil and Water Assessment 

Tools (SWAT) is software that can be used for modeling runoff using rainfall input data. 

METHODOLOGY  

Descriptions of the study area 

As seen in Fig. 1., the research was located at the Sampean Baru watershed in Bondowoso Regency, 

East Java. The Sampean Baru watershed area is 1206 km
2
. The Sampean Baru watershed has a main 

water control building, namely the Sampean Baru dam.  

 

 

FIGURE 1. Sampean Baru watershed 

 

Updated rainfall data were needed to assess drought. It can be obtained by processing updated global 

atmospheric datasets taken from the National Center for Atmospheric Research (NCEP / NCAR 

Reanalysis). The climate data set on the NCEP / NCAR Reanalysis were obtained from the global data 

assimilation system and various data observation sources, such as satellites, aircraft, ships, and radiosonde 
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[18]. These data were then quality controlled and assimilated with a data assimilation system kept 

unchanged over the reanalysis period [8]. NCEP / NCAR Reanalysis data are available from 1979 

onwards. Table 1. presents several outputs of climate parameters in the NCEP / NCAR Reanalysis data. 

The NCEP / NCAR Reanalysis data output has a global resolution measuring 2.5
o
 x 2.5

o
; therefore, it 

cannot be used directly for modeling watershed discharge [19].  

TABLE 1. NCEP/NCAR Reanalysis variables 

No Description Variables 

1 Relative humidity at 500 hPa geopotential height  rhum 500 

2 Relative humidity at 850 hPa geopotential height  rhum850 

3 Specific humidity at 500 hPa geopotential height  shum500 

4 Specific humidity at 850 hPa geopotential height  rhum850 

5 Precipitation water at the surface prec_wtr 

6 Zonal velocity component at 500 hPa geopotential height uwd500 

7 Zonal velocity component at 850 hPa geopotential height uwd850 

8 

Meridional velocity component at 850 hPa geopotential 

height vwd850 

9 Zonal velocity component at the surface uwd 

10 Meridional velocity component at surface vwd 

 

A downscaling technique is a method to obtain precipitation by processing coarse resolution data (or 

large-scale data) into smooth resolution data (or local scale data), in this case, the Sampean Baru 

watershed. Downscaling techniques consist of a dynamic downscaling model (DD) and statistical 

downscaling (SD) [14]. DD simulates climatic variables through a higher resolution climate model nested 

within a GCM grid to define time-varying atmospheric boundary conditions and resolve regional 

processes [20][21]. The DD approach has a weakness. However, it requires high cost and complicated 

computational process [14]. In the SD approach, downscaling is carried out by applying empirical 

equations to obtain a relationship between climate parameters (predictors) on a global scale with local-

scale climate parameters (predictants) at a certain period [15]. SD can be done through computation, 

which is fast and does not require large memory [22]. One of the SD approach models used is the 

Artificial Neural Network (ANN) model. 

ANN is developing an SD empirical method to obtain the relationship between predictors and 

predictors of non-linear regression models [10]. In this case, the prediction used was the rainfall data 

(1988-2018) at 28 rain observation stations obtained from the Public Works and Water Resources Office 

of Bondowoso Regency. The ability of ANN to overcome non-linear relationship problems makes ANN 

often used for downscaling rain [19]. Several previous studies have shown that ANN gives better results 

than other SD models [23]–[25]. ANN’s work concept resembles that of the human brain. It results in 

ANN having the ability to adapt to new things [26]. In the process, predictors as input data were 

processed through the transfer function to obtain the output data. The output data were then tested for the 

reliability of the predictions. If the output data provided results with a good reliability test, then the output 

data in the form of a synthetic rain model can be used in the next process. If the output data gave 

unsatisfactory results with the reliability test, then the downscaling process was carried out again [27]. 

The process in ANN was indicated by a simple mathematical equation below: 

  ( )    (∑   ( )  ( )   
 
   ) (1) 

where xi is input data; wi is the weight value; b is biased; F is the transfer function, and y (k) is the output 

The SRI hydrological drought assessment used discharge data as input data. This study used SWAT 

software to get the discharge model in the Sampean Baru watershed. Some of the data entered in the 

discharge modeling process are 1) Synthetic rain data from ANN, 2) Land use data obtained from the 

Geospatial Information Agency (BIG), and 3) Earth surface data using ASTER 30M DEM obtained from the 

United States Geological Survey (USGS). The SWAT process results were re-tested for reliability against the 

Sampean Baru river discharge data (1988-2018) of Sampean Baru dam obtained from the Public Works and 

Water Resources Office of Bondowoso Regency The reliability test of a model is expressed in two indicators, 

namely the Deterministic Coefficient (R
2
) and the Nash Sutcliffe Error (NSE)[28]. The classification of 

reliability test results using these two indicators can be seen in Table 2. If the reliability test gives 

satisfactory results, the discharge model can be used at the drought modeling stage. 

SRI applies a similar work concept to SPI, where the accumulated discharge over a certain period is 

used as input data [17]. The result of drought modeling in the Sampean Baru watershed is the SRI value. 

The period for determining the value of SRI is based on a time scale of 1, 3, 6, 9, 12, 24, and 48 months. 

The SRI value indicates the severity of drought. The SRI drought severity classification is shown in 

Table 3. 
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TABLE 2. Reliability test using R2 and NSE classification  

No Classification NSE R² 

1 Very Good 0.75 < NSE ≤ 1.00 0.75 < R² ≤ 1.00 

2 Good 0.60 < NSE ≤ 0.75 0.60 < R² ≤ 0.75 

3 Satisfactory 0.36 < NSE ≤ 0.60 0.50 < R² ≤ 0.60 

4 Bad 0.00 < NSE ≤ 0.36 0.25 < R² ≤ 0.50 

5 Inappropriate NSE ≤ 0.00 R² ≤ 0.25 

Source: [28] 

TABLE 3. SRI drought classification 

No Classification SRI Index 

1 Extreme Wet SRI ≥ 2.00 

2 Severe Wet 1.50 < SRI ≤ 1.99 

3 Moderate Wet 1.00 < SRI ≤ 1.49 

4 Normal 

-0.99 < SRI ≤ 

0.99 

5 Moderate Dry 

-1.00 > SRI ≥ -

1.49 

6 Severe Dry 

-1.50 > SRI ≥ -

1.99 

7 Extreme Dry -2.00 ≥ SRI 

Source: [29] 

 

RESULT AND DISCUSSION  
 

ANN’s downscaling process aims to obtain a synthetic rain model for the past 30 years. The 

architecture of ANN used a multilayer perceptron network and backpropagation learning methods. This 

study employed the sigmoid function as an activation function of 30 neurons and a linear function of the 

output neurons. The Levenberg-Marquardt method was used to improve the weight of backpropagation 

learning. The division of the training period by validation is 90:10. The results of the ANN downscaling 

process can be seen in Table 4. The coefficient of determination (R
2
) in the downscaling process of the 

NCEP / NCAR Reanalysis of the data has shown good results with a value close to 1. The monthly 

average plotting of synthetic rain provided results resembling the average plotting observation rain. It is 

shown in Fig. 2. Overall, the downscaling process can describe past climatic conditions. 

TABLE 4. ANN downscaling result 

Model Performances NCEP/NCAR 

Reanalysis 

Coefficient of Determination 

(R²) 0.91 

Root Mean Square Error 

(RMSE) 60.57 
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FIGURE 2. The result of plotting synthetic rainfall against observation rainfall 

 

Discharge modeling in the Sampean Baru watershed used SWAT software. In the discharge modeling, 

the Sampean Baru watershed was divided into 21 sub-watersheds. Synthetic rain resulting from ANN 

downscaling was used as one of the input data in addition to observation rain data, land use data, earth 

surface relief data, and soil data. The Sampean Baru river discharge data was the model reference data. In 

the first step, observational rainfall data is used as input data in modeling discharge. The result is called 

model 1. It can be seen in Table 5 and Fig. 3. The calibration result of discharge model 1 showed R
2
 and 

NSE of 0.7528 and 0.7422. The validation result of discharge model 1 showed R
2
 and NSE of 0.7933 and 

0.7782.  In the second step, NCEP/NCAR Reanalysis rainfall data from ANN downscaling was used as 

input data in modeling discharge. The result was called model 2. Discharge model 2 showed good results 

on the observation discharge of the Sampean Baru river, which can be seen in Table 6 and Fig. 3. It is 

indicated by the calibration result of discharge model 2 showed R
2
 and NSE of 0.7858 and 0.7620. The 

validation result of discharge model 1 showed R
2
 and NSE of 0.7741 and 0.7333. These results are 

categorized as very good. 

TABLE 5. Reliability test of model 1 

Model Performances Calibration Validation 

Coefficient of Performance (R²) 0.7528 0.7933 

Nash-Sutcliffe Efficiency (NSE) 0.7422 0.7782 

TABLE 6. Reliability test of model 2 

Model Performances Calibration Validation 

Coefficient of Performance (R²) 0.7858 0.7741 

Nash-Sutcliffe Efficiency (NSE) 0.7620 0.7333 

 

 

(a) 
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(b) 

FIGURE 3. Discharge simulation using: (a) Observation rainfall; (b) NCEP/NCAR Reanalysis rainfall. 

Hydrological drought assessment of the Sampean Baru watershed using SRI with a time scale of 6 

months (SRI-6). The SRI index chart with a time scale of 6 months is shown in Fig. 4. The calculation of 

SRI-6 was based on the results of watershed discharge modeling with synthetic rainfall input data. The 

SRI-6 assessment was carried out at 21 discharge observation points in the Sampean Baru watershed. The 

results show that 1992, 1994, 1996, 2015, and 2018 had SRI-6 values smaller than minus two, so that 

those few years experienced extreme drought. The assessment results were evaluated against data on rice 

plant areas affected by the 2003-2010 drought belonging to the Directorate of Food Crops, the Ministry of 

Agriculture, and data on clean water distribution for 2018 belonging to BPBD-PDAM Bondowoso. Based 

on data from the Directorate of Food Crops, the highest area affected by drought occurred in 2007, 

followed by 2008 and 2005. It is shown in Fig. 5. It follows the results of drought assessment in 

2007,2008 and 2005, where SRI-6 shows a value of -1,9555; -1,8565; and -1.5105. Based on the results 

of the evaluation of BPBD-PDAM data, the drought assessment results show the suitability of the 2018 

clean water distribution data. As seen in Fig 6, the data shows that Wringin, Jatisari, Pameton, 

Karangsengon, Botolinggo, and Gayam have received clean water distribution due to drought. It is in line 

with the SRI-6 drought assessment results, where the villages experienced extreme drought (SRI <-2.00). 

 

 

FIGURE 4. Drought assessment using SRI-6 

 

FIGURE 5. Rice field area affected by drought 
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FIGURE 6. Drought assessment SRI-6 in 2018 

 

CONCLUSION 

 
Downscaling using ANN successfully bridged climate variable data from the global scale 

NCEP/NCAR Reanalysis to local climate data in the form of observed rainfall. The results at this 

downscaling stage can be seen from the coefficient of determination, close to one. With this, the output 

data in the form of historical downscaling rainfall can be used at the discharge modeling stage. 

Discharge modeling using SWAT has yielded good results. Through the calibration process of the 

discharge model with observational rain input data, the R
2
 and NSE values increased until they reached 

the very good category. It caused the model to be used with synthetic rainfall input data. The reliability 

test results of the discharge model with synthetic rain input data were categorized as very good. 

The hydrological drought assessment SRI-6 can describe the drought that occurred in the past 30 

years. The evaluation of the drought assessment on the clean water distribution data belonging to the 

BPBD-PDAM Bondowoso and the data on the area of rice plants affected by drought belonging to the 

Directorate of Food Crops show suitability. The hydrological drought assessment SRI-6 can be used as a 

good reference for future drought assessments. 
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