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Abstract 

Maximum information from the Multi-environment trials (MET) can be reached by seeking the best estimator of each genotype’s 
mean yield in a given environment. AMMI (additive main-effects and multiplicative interaction) is popular for analyzing MET 
data with fixed effect. When the environment included in MET is the sample of large environment, then environment effects 
regarded as random may be preferable, so the model is called mixed model. The assessment of it may be viewed as a problem of 
prediction rather than estimation. The prediction of the outcome of random variables is commonly done by Best Linear Unbiased 
Prediction (BLUP).Both methods are compared using the experimental rice data set from the Indonesian Rice Consortium’s 
research which aims to evaluate the phenotypic performance of rice (Oryza sativa). Applying postdictive success method 
resultedAMMI10 as the best model, and its Root Mean Square Error Prediction is smaller than BLUP. AMMI was found to 
outperform BLUP in this rice dataset. 
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1. Introduction 

The yield trial is one of the most common experiments in agricultural research. It is conducted by testing a 
number of genotypes in a number of environments, called multi-environment trials (MET). MET is commonly 
conducted to obtain information that supports recommendations of superior cultivars for cultivation. There are two 
factors included in MET, genotypes and environments. Environment can be a set of locations, sites, years, etc. 
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(Mattjik & Sumertajaya, 2000). In order to study about the best genotype, we have to extract maximum information 
from the data, and seek the best estimate of the mean yield of each genotype in a given environment. The common 
estimate is the arithmetic mean of a genotype across replicates in an environment. This mean is often called the cell 
mean. This method is simple, but not fully exploiting all information contained in the dataset.  

Such models have been popularized as additive main effects and multiplicative interaction (AMMI) and a number 
of applications have been found (Gauch, 1988; 1992). AMMI model combines additive components for main effects 
(genotype and environment) and multiplicative components for genotype-environment interaction (GEI). It 
combines a univariate technique (ANOVA) for the main effects and a multivariate technique (PCA-principal 
component analysis) for GEI. Crossa (1990) suggests that the use of multivariate techniques permits a better use of 
information than the regression methods in the MET analysis. 

AMMI analysis considers the main and interaction effects as fixed. Sometimes, this feature is not suitable in 
analyzing field data. A factor is commonly taken as random if the observed levels is the random sample from a 
population. Although the assumption of a truly random sample is often arguable for both environments and 
genotypes, it is frequently assumed that environments are random, because the environment included in MET is only 
the sample of large environment. This allows inferences which are not restricted to the observed environments 
(Piepho, 1998). When environment effects regarded as random and the genotype as fixed, so the model is called 
mixed model.  

In the case of random environment effects, the assessment of the mean yield of a genotype in a certain 
environment may be viewed as a problem of prediction rather than one of estimation (Searle, Casella & McCulloch 
1992). Random environment also implies random genotype-environmental interaction, so the prediction of yield 
involves prediction of a genotype's random interaction with a specific environment. The prediction of the outcome 
of random variables is commonly done by Best Linear Unbiased Prediction (BLUP), as originally suggested by 
Henderson (1975).  

The purpose of this paper is to compare the accuracy of these two methods (i.e. AMMI and BLUP). The 
predictive accuracy was assessed based on the root mean square error prediction (RMSEP). The error is the 
difference between the yield estimation and the true yield measured in the original data. The smaller the RMSEP 
valueis, the better its ability to predict yield. 

2. Methods 

2.1. BLUP (Best Linear Unbiased Prediction) in Mixed Model 

In the MET data set, g genotypes are tested in each of e environment. In each environment, the genotype can be 
arranged in randomized complete or incomplete block design. For further analysis in this paper, we consider the 
randomized complete block design (RCBD) in each environment, with the same number of replication or block in 
each environment. According to Yang (2007), the conventional ANOVA model for this situation is given by: 

  (1) 

i=1,…,g; j=1,…,e; k=1,…r 

Where γijk is measured response (i.e., yield) of the k-th replication of the i-th genotype in the j-th environment, µ 
is the overall mean, τiis the effect of the i-th genotype, δjis the effect of the j-th environment, (τδ)ij is the interaction 
effect of the i-th genotype with the j-th environment, γ(δ)jkis the effect of the k-th replication in the j-th environment, 
εijk is the random error.  

There are three possible versions of Eq. (1): (i) Random model with all effect being random except ;(ii) fixed 
model with all effects being fixed except  and ; (iii) mixed model with either of genotypic and 
environmental effect is fixed whereas the other is random (Yang 2007). When it is considered that the genotypic 
effect is fixed and the environmental effect is random,  dan  are fixed effects whiles , , and  are 
independently and normally distributed with zero mean and variances , , , and  respectively. Eq. (1) 
can be written in the standard linear mixed model (Littell et al., 2006; Yang, 2007), 
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where y is an ger×1 vector of observations  ; ββ is a (g+1)×1 vector of unknown fixed 

effects β ; u is an (e+ge+er)×1 vector of random effects,  

 

X is a (g+1)×1 design matrix,  is a ger×1 vector of random errors . Random vector u 
and are assumed to be normally and independently distributed with zero mean vectors and variance-covariance 
matrixes G and R respectively, such that  

 

Thus, E(y)= Xβ and Var(y)= .The simple form of G and R suggested by Yang (2007): 

 

and R= , where  and  are the identity matrixes of orders e, g e, er and ger, respectively.  
In the statistical terminology, estimation of random effects is referred to as prediction (Searle et al., 1992). The 

corresponding procedure for mixed linear models is BLUP. The basic idea is to estimate the effects in the linear 
model and then to weight some or all of the effects by an estimate of the pattern-to-noise ratio associated with the 
respective effect.  

The BLUPs of the ij-th cell means from a balanced data set using the development of Cornelius and Crossa 
(1999) is:  

BLUP BLUE +BLUP +BLUP[ ] 

Where BLUE ==simple mean of the i-th genotype( , 

BLUP (  and 

BLUP[ ]=  

With  and E( )= . and E( ) are expected mean 
squares for environmental and GEI factors from the ANOVA table, respectively, and Thus, 

BLUP +   

Where and are the shrinkage factor for environmental and GEI 
effects, respectively. 

2.2. AMMI (Additive Main-effects and Multiplicative Interactions) 

The AMMI analysis is the technique to analyze the two-way experimental data, which main effects are additive 
and the interaction effect is multiplicative. AMMI is assuming that all effects (except error) are fixed. The mean  
of genotype i in environment j is the arithmetic mean of r replicates (e.g. Cornelius and Crossa, 1999) by averaging 
Eq(1) across replication within an environment: 

Where  )/r (2) 
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The arithmetic mean is an estimate of the yield of the ith genotype in j-th environment. The arithmetic mean is 
a Best Linear Unbiased Estimator (BLUE) of  (Searle 1987). The better estimate can be 
obtained by AMMI (Gauch, 1992). First, AMMI fit additive main effects for genotypes and environments by an 
ANOVA procedure using BLUE and then apply principle component analysis (PCA) using SVD (Singular Value 
Decomposition) to the remaining residuals after the fitting of main effects (Piepho, 1994). The interaction plus mean 
error +  can be decomposed into s PCA axes:  

 

Where  is the singular value for PCA axis s,  the eigenvector of genotype for axis s and  is the eigenvector 
of environment, and   is residual that remains if not all axes are used (Crossa, 1990; Gauch, 1992). There are at 
most min (g - 1, e - 1) axes. The models are denoted as AMMIO, AMMI1,..., AMMIF. Depending on the number of 
PCA axes retained, using the postdictive success method (Gauch & Zobel, 1988; Dias & Krzanowski, 2003). 
AMMIO means no PCA axis is fitted, while AMMIF means all axes is used in the model i.e. the cell means model is 
used.  

AMMI may be viewed as a procedure to separate pattern in interaction effect  from noise. It can be 
achieved by PCA, where the interaction effect is decomposed to many PC axes. In the frequent case, most of the 
patterns are recovered by the first few components, while most of the noise in later axes. PCA provides a useful low-
dimensional representation of the data. The variation captured can be expressed as a percentage of the original total 
variation (Gauch, 2006). 

3. Result and Discussion 

We will now compare the predictive accuracy of AMMI to that of BLUP, employing the data taken from the 
research of Indonesian Rice Consortium. The trial aims in evaluating the phenotypic performance of rice from the 
latest generation in the different environment. There are 14genotypesevaluated at 20 sites (The environments in this 
trial are sites). There are 3 genotypesfrom BATAN, 4 genotypes from ICRR, 2 genotypesfrom Biogen, and 2 
genotypesfrom IPB, with 3 commercial varieties (Ciherang, Inpari1, Cimelati). It used randomized complete block 
design (RCBD), 3 plots of replication for each genotypesin each environment.  

Table 1. ANOVA degrees of freedom, means squares (MS) and p-value of rice data set 

Source of variation Degrees freedom MS P-value 

Environment 19 81.11     0.001 

Block(environment) 40 1.21      0.001 

Genotype 13 7.89      0.001 

G×E 247 0.81 0.001 

Error 520 0.18  

As described, the grand mean of this rice data is 5.759. The mean yield of the genotype range from 5.132 
(genotype 2) to 6.219 (genotype 12). While the mean yield of the environment range from 3.868 (environment 19) 
to 9.511 (environment 4). A combined analysis of variance for grain yield of the 14rice genotypes tested across 20 
environments is presented in Table 1. The main effect differences among genotypes, environments, and the G×E 
interaction effects were highly significant (P ≤ 0.001). Presence of the G×E interaction indicates that the phenotypic 
expression of one genotype might be superior to another genotype in one environment but inferior in a different 
environment (Falconer & Mackay, 1996), and indicates that AMMI and BLUP procedures that will be applied in 
this paper is appropriate.  

Table 2. The significant IPC axes of rice data 
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Source Dfa Sum square Mean square F p-value 

IPC1                       31 46.36 1.50 8.52 0.000 

IPC2                       29 43.00 1.48 8.45 0.000 

IPC3                       27 35.16 1.30 7.42 0.000 

IPC4                       25 19.88 0.80 4.53 0.000 

IPC5                       23 15.05 0.65 3.73 0.000 

IPC6                       21 12.12 0.58 3.29 0.000 

IPC7                       19 8.70 0.46 2.61 0.000 

IPC8                       17 6.36 0.37 2.13 0.005 

IPC9                       15 5.64 0.38 2.14 0.007 

IPC10                     13 4.00 0.31 1.75 0.046 
aDegrees of freedom of each IPC are computed using the method suggested in Gollob (1968) 

 
Table 2 shows the significant principle components of the interaction matrix (IPC) resulting from postdictive 

success method. After the estimates of main effects using its BLUE have been calculated, they use to achieve the 
GEI matrix. There are 280 combinations that serve as reference points to conduct PCAusing SVD method that is 
applied to the GEI matrix. Decomposing the GEI matrix results the multiplicative term. The postdictive success 
method through the multiplicative terms results 10 IPC which are significant at 0.05 level. Based on those results, 
the best model is built from 10 significant IPC, and the modelis called AMMI10. The singular value and its 
percentage is shown in Table 3. The first singular value as the largest, recover 23.09 % of variation. AMMI10 model 
used the first 10 singular value in the model, so it recovers 97.74 % variation of the G×E interaction. 

Table 3. Singular value and percent 

Singular value of fixed GEI Percent Cumulative percent 

3.9313 23.09 23.09 

3.7861 21.42 44.5 

3.4234 17.51 62.01 

2.5742 9.9 71.91 

2.2396 7.49 79.41 

2.0097 6.03 85.44 

1.7025 4.33 89.77 

1.4563 3.17 92.94 

1.3714 2.81 95.75 

1.1546 1.99 97.74 

0.8837 1.17 98.91 

0.7535 0.85 99.76 

0.404 0.24 100 

Table 4 shows the variance components estimates of random effects for sites, block (environments), G××E 
interaction and errors using the MIVQUE0 method that suggested by Hartley, Rao & LaMotte (1978). Here, the 
environment accounts 80.3% of the total variation, and the other is lower than 10% of the total variation. This result 
shows that grain yield was significantly affected by changes in environment. The highly significant environment 
effect and its high variance component could be attributed to the large differences among the test locations in 
fertility or both amount and distribution of annual rainfall. The high variations due to environmental differences is 
expected in MET conducted through several years (Yan & Kang, 2003). The G×E interaction is not too strong, and 
it reduces the limitation in selection. Because the strong G×E interaction for quantitative traits such as seed yield can 
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severely limit gain in selecting superior genotypes for improved cultivar development (Baker, 1996). A cultivar 
grown in different environments will show significant fluctuations in yield performance relative to other cultivars. 
These changes are influenced by the different environmental conditions and are referred to as genotype-by-
environment interaction or G×E (Dias & Krzanowski, 2003; Gauch, 2013).  

Table 4. Variance Component Estimates for environments (E),  block(environments)and G××  E interaction 

variance component Estimate % 

Environments 1.88720 80.32211 

block(environments) 0.07424 3.159767 

environments ××genotype        0.21250 9.044324 

Residual                    0.17560 7.473803 

Variance component estimates in Table 4 is used to estimate the shrinkage of random effect in order to achieve 
the estimate of BLUP. It results the shrinkage of 0.985 and 0.784 for environmental and interaction effects, 
respectively. Evaluation through the estimation using best AMMI model and EBLUP results the RMSEP of 
AMMI10 is 0.4146693, and 1.7982 for EBLUP. It means that AMMI estimation is closer to the true value of yield 
than BLUP prediction. So, in Rice data set, AMMI is better procedure to estimate the yield. This RMSEP is 
reasonable according to the Stroup and Mulitze (1991) who emphasized that in variety trials, BLUP is typically 
more efficient than BLUE if the number of random effects (sites) more than 200, provided that the distribution of 
treatment effects is reasonably symmetric. Piepho (1994) suggested that AMMI and BLUP applied together 
routinely. The assessment will show which model is better in a given situation. 

4. Conclusion 

Predictive accuracy as assessed by the RMSEP showed that AMMI10 as the best AMMI model is better than 
BLUP model. The RMSEP is 0.4146693and 1.7982 for AMMI10 and BLUP model respectively. It means that 
AMMI’s estimation is closer to the true value of yield than BLUP prediction. So, in this rice data set, AMMI is 
better procedure to estimate the mean yield of genotype in each environment 
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