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ABSTRACT: Cataract is the most common causes of blindness worldwide. The most common kind of cataract is age-related 

cataract. Measures to prevent the development of cataracts are urgently needed. Significant data suggests that increased endoplasmic 

reticulum stress is a significant role in cataract development.  

The goal of this review is to investigate the involvement of endoplasmic reticulum as a factor in cataracts caused by the buildup of 

unfolded proteins from lens epithelial cells.  

GRP78 is one of the key signs of endoplasmic reticulum stress, and it promotes the UPR to limit the increase in unfolded protein 

levels. The significance of GRP78 signaling in cataract prevention is discussed in this paper.  
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INTRODUCTION  

Cataracts are caused by a decrease of transparency in the crystalline lens, which impairs vision.[1]  

Cataracts are the leading cause of blindness, accounting for more than half of all cases globally.[2] According to the WHO, 314 

million people have visual issues, 45 million of them are blind, with developing nations accounting for more than 90% of cases. 

Cataracts are the most common cause of blindness and impaired vision worldwide. The WHO assessed it to be over 17 million 

(47.8%) in 2002.[3]  

Surgery is the only available and effective way to treat cataracts, but it costs a lot of money and requires highly trained personnel. 

Unfortunately, maximum cataract patients stay in growing international locations wherein get admission to to surgical operation is 

limited. Therefore it is necessary to think about how to prevent it, namely by developing a non-surgical approach. These strategies 

not only improve the quality of life, but also reduce the burden on public health.[4]  

The pathophysiology of senile cataracts is complex, with oxidative stress being the primary initiator of cataract development. 

Oxidative stress causes endoplasmic reticulum stress in lens epithelial cells. Endoplasmic reticulum stress occurs when there is a 

protein imbalance between unfolded and folded proteins.[5] Endoplasmic reticulum stress that is not resolved immediately will affect 

the folding process of the protein, causing defective proteins that are not folded or misfolded (missfolding or unfolding). The 

accumulation of proteins that fail to fold will lead to aggregation into large aggregate particles resulting in cataracts.[6]  

To overcome failed or misfolded proteins, the endoplasmic reticulum releases heavy-chain binding immunoglobulin Binding 

immunoglobulin Protein (BiP) / Glucose Regulated Protein (GRP78) by digesting failed proteins via the Endoplasmic Reticulum 

Associated Degradation (ERAD) pathway. If the misfolded protein remains in the endoplasmic reticulum, GRP78 functions as an 

initiator to trigger the Unfolding Protein Response (UPR). The UPR regulates endoplasmic reticulum stress by activating three 

transducers: Inositol-requiring kinase 1 (IREI), protein-like endoplasmic reticulum kinase (PERK), and activating transcription 

factor 6. (ATF6). These three transducers are dormant under normal conditions and are strictly guarded by GRP78. They are only 

released when the endoplasmic reticulum is under stress to detect and bind to proteins that fail to fold. [6,7]  

Although scientific evidence suggests a functional link between oxidative stress and endoplasmic reticulum stress, the mechanisms 

behind this correlation remain unknown. Future research will look at the pathophysiology of cellular changes in the protein folding 

process that result in the synthesis of unfoldable proteins, as well as the pathways involved in the exact mechanism of interaction 

between oxidative stress and endoplasmic reticulum stress. The goal is to get a thorough grasp of. These findings contribute 

significantly to the development of cataract treatment methods including oxidative stress and endoplasmic reticulum stress.[8,9]  
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METHODS  

 
Figure 1. Method of Literature Search 

 

From  systematic searches to decisive approaches, we  collected 763 articles from  Google Scholar. After filtering, duplicate searches 

excluded 397 articles. 189 articles had no title or abstract and were neither full-text nor in English. 154 articles were irrelevant 

content. Only 23 articles met the requirements of this study.  

 

RESULTS  

 
Figure 2. Comparison between normal cells and cells with stressed endoplasmic reticulum 

 

Description: Compared to normal cells, stressed endoplasmic reticulum cells show significant differences in the structure of the 

endoplasmic reticulum, including luminal swelling and ribosome breakdown.  
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Figure 3. ER stress-induced apoptotic pathways 

 

Endoplasmic reticulum stress activates many redundant caspase activation mechanisms, including mitochondrial and independent 

routes. TRAF2 was recruited for JNK phosphorylation and activation by activated IRE1. Caspase-12 is the caspase-activation 

cascade's proximal effector, leading procaspase-9 to cleave procaspase-3, a crucial cell death enforcer. The transcriptional activation 

of genes encoding proapoptotic activity mediates a second cell death signaling pathway triggered by endoplasmic reticulum stress. 

Apoptotic transcriptional CHOP activation is caused by PERK, ATF6, and maybe IRE1 activation by upregulating the genes 

Gadd34, Dr5, and Trb3 or decreasing the expression of the anti-apoptotic gene Bcl2. Endoplasmic reticulum stress-induced Ca + 2 

release and mitochondrial inner membrane depolarization create mitochondrial ROS. Oxidative stress thus leads to multiple cell 

death pathways with unresolved ER-stress interactions.  

 

 
Figure 4. UPR downstream signaling pathways. 

 

Description: GPR78 is the starter of the UPR process and is also involved in protein biosynthetic quality control, including protein 

synthesis, folding, and assembly.[10] The UPR was found to be initiated by three local endoplasmic reticulum-transmembrane signal 

converters. These converters are called IRE1, PERK, and ATF. It is constitutively produced in cells, but its expression is tightly 

regulated by GRP78, making it inactive under normal conditions.[11,12] Can bind to  misfolded proteins. This triggers the converter 

and initiates the UPR downstream signaling cascade. After activation, ATF6 localizes to the nucleus and acts as a transcription 

factor to increase gene expression of several endoplasmic reticulum proteins involved in protein folding, secretion, modification, 

and ERAD activities. Basic Leucine Zipper is abbreviated as bZIP. eIF2 is an abbreviation for Eukaryotic Initiation Factor 2. ERAD 

is an abbreviation for endoplasmic reticulum-associated degradation. S1P is an abbreviation for sphingosine-1-phosphate, whereas 

S2P is an abbreviation for sphingosine-2phosphate.  
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DISCUSSION  

Reticulum Endoplasmic Stress  

The folding technique of proteins withinside the Endoplasmic Reticulum may be very crucial and really touchy to intracellular and 

extracellular stimuli, including endoplasmic reticulum calcium ions, power garage as well as redox homeostasis, accelerated 

translation of mRNA, cytotoxicity, and inflammation.[13,14] Several proteins that fail to fold are usually observed withinside the 

endoplasmic reticulum.[15] A variety of studies have shown that any disruption in protein biosynthesis, such as an unexpected 

increase in protein production, blockage of disulfide bond formation, depletion of metabolic capacity, and interference with N-

glycosylation, can result in the generation of failed proteins.[15,16] Misfolding of the most important proteins is related to the 

complexity and quantity of protein produced. Because goblet cells produce a significant number of complicated proteins, they 

produce more misfolded proteins and are more prone to the buildup of failed folding proteins than other cells. Under ordinary 

conditions, the endoplasmic reticulum has state-of-the-art protein great manage mechanisms to multiply and remove misfolded 

proteins. However, endoplasmic reticulum equilibrium can be jeopardized if the level of protein misfolding surpasses the normal 

refolding threshold, resulting in a buildup of failed folding proteins and an unusual condition known as endoplasmic reticulum 

stress.[17]  

Endoplasmic reticulum stress has far-reaching consequences for all cellular activities. It has been shown to be capable of reversing 

functioning transcription and translation processes, as well as intra- and extracellular signaling pathways. The result is it can cause 

a variety of ailments. [18,19]  

Unfolded Protein Response (UPR)  

To reduce endoplasmic reticulum stress, cells create the UPR, a network of parallel and distinct multifactorial transcriptional and 

signaling pathways. The endoplasmic reticulum stress response is made up of several transcription factors and enzymes that have 

been found and investigated throughout the years.[20, 21] The endoplasmic reticulum's refolding ability is enhanced, and ERAD 

reduces the buildup of collapsed proteins. When the stress is too great, the apoptotic signaling system is triggered, or when the UPR 

is disturbed and the UPR fails. (Fig. 2)[22]  

GPR78 initiates the UPR process and is also in charge of controlling protein biosynthesis quality, including protein synthesis, 

folding, and assembly.[10] It has been discovered that UPR is initiated by three local-endoplasmic reticulum transmembrane signal 

transducers. These transducers are referred to as IRE1, PERK, and ATF. It is constitutively produced in cells, but its expression is 

strictly regulated by GRP78, making it inactive under normal.[11,12] When a misfolded protein forms in the endoplasmic reticulum, 

GRP78 unbinds and releases this transducer, allowing it to identify and bind to the misfolded protein. This triggers the transducer 

and initiates a UPR downstream signaling cascade,[23] as depicted in Figure 3.  
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