Advances in Computer Science Research

Series: Advances in Computer Science Research

Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)

```
Search
+ Advanced search
    SEARCH
45 articles
```

Proceedings Article
A Minimum Coprime Number for Amalgamation of Wheel
Hafif Komarullah, Slamin, Kristiana Wijaya

Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)

< PREVIOUS VOLUME IN SERIES

The International Conference on Mathematics, Geometry, Statistics, and Computation (ICMaGeStiC) was held on November 27th, 2021, Jember, East Java, Indonesia. This conference is an excellent forum for the researchers, the lecturers, and the practitioners in Mathematics, to exchange findings and research ideas on mathematics and science education and to build networks for further collaboration.

Please click here for the conference website.

MaGeStiC 2021 Committee are willing to express our sincere thanks to all the powerful supports from all the contributors and the reviewers and the kind publications of Atlantis Press for all accepted papers. Sincerely hope for more academic cooperation with all scholars and scientists of the related fields in the future.

MaGeStiC 2021 International Committee

Bibliographic information:

Title	Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)
Editors	Kristiana Wijaya, Universitas Jember, Indonesia
Part of series	ACSR
Volume	96
ISSN	$2352-538 \mathrm{X}$
ISBN	$978-94-6239-529-9$

SEARCH

45 articles

Proceedings Article

On Ramsey Minimal Graphs for a 3-Matching Versus a Path on Five Vertices

Kristiana Wijaya, Edy Tri Baskoro, Asep Iqbal Taufik, Denny Riama Silaban
Let G, H, and F be simple graphs. The notation $F \rightarrow(G, H)$ means that any red-blue coloring of all edges of F contains a red copy of G or a blue copy of H. The graph F satisfying this property is called a Ramsey (G, H)-graph. A Ramsey (G, H)-graph is called minimal if for each edge $e \in E(F)$, there exists...

- Article details
+ Download article (PDF)
Proceedings Article

Ramsey Graphs for a Star on Three Vertices Versus a Cycle

Maya Nabila, Edy Tri Baskoro, Hilda Assiyatun
Let G, A, and B be simple graphs. The notation $G \rightarrow(A, B)$ means that for any red-blue coloring of the edges of G, there is a red copy of A or a blue copy of B in G. A graph G is called a Ramsey graph for (A, B) if $G \rightarrow(A, B)$. Additionally, if the graph G satisfies that $G-e \rightarrow(A, B)$, for any e $\in E(G), \ldots$

+ Article details
© Download article (PDF)

Proceedings Article

On Ramsey $\left(m K_{2}, P_{4}\right)$-Minimal Graphs

Asep Iqbal Taufik, Denny Riama Silaban, Kristiana Wijaya

Let F, G, and H be simple graphs. The notation $\mathrm{F} \rightarrow(\mathrm{G}, \mathrm{H})$ means that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H . Graph F is a Ramsey (G , $\mathrm{H})$-minimal if $\mathrm{F} \rightarrow(\mathrm{G}, \mathrm{H})$ but for each $e \in \mathrm{E}(\mathrm{F}),(F-e) \rightarrow(\mathrm{G}, \mathrm{H})$. The set $\mathscr{R}(\mathrm{G}, \mathrm{H})$ consists of all Ramsey (G,...
© Article details
© Download article (PDF)

Proceedings Article

Spectrum of Unicyclic Graph
 Budi Rahadjeng, Dwi Nur Yunianti, Raden Sulaiman, Agung Lukito

Let G be a simple graph with n vertices and let $A(G)$ be the $(0,1)$-adjacency matrix of G. The characteristic polynomial of the graph G with respect to the adjacency matrix $A(G)$, denoted by $\chi(\mathrm{G}, \lambda)$ is a determinant of $(\lambda \mathrm{I}-\mathrm{A}(\mathrm{G}))$, where I is the identity matrix. Suppose that $\lambda 1 \geq \lambda 2 \geq$ $\cdots \geq \lambda$ n are the adjacency...

+ Article details
(+ Download article (PDF)

Proceedings Article

Distinguishing Number of the Generalized Theta Graph

Andi Pujo Rahadi, Edy Tri Baskoro, Suhadi Wido Saputro
A generalized theta graph is a graph constructed from two distinct vertices by joining them with 1 (>=3) internally disjoint paths of lengths greater than one. The distinguishing number $D(G)$ of a graph G is the least integer d such that G has a vertex labelling with d labels that is preserved only...

+ Article details
- Download article (PDF)

Proceedings Article

Edge Magic Total Labeling of ($n, t)$-Kites

Inne Singgih
An edge magic total (EMT) labeling of a graph $G=(V, E)$ is a bijection from the set of vertices and edges to a set of numbers defined by $\lambda: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots,|\mathrm{~V}|+|\mathrm{E}|\}$ with the property that for every $x y \in E$, the weight of $x y$ equals to a constant k, that is, $\lambda(x)+\lambda(y)+\lambda(x y)=k$ for some integer...

+ Article details
+ Download article (PDF)

Proceedings Article

Further Result of H-Supermagic Labeling for Comb Product of Graphs

Ganesha Lapenangga P., Aryanto, Meksianis Z. Ndii
Let $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$ be a connected graph. H-magic labeling of graph G is a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for every subgraph H'of G isomorphic to $H, \sum v \in V\left(H^{\prime}\right) f(v)+\sum e \in E\left(H^{\prime}\right) f(e)=k$. Moreover, it is H-supermagic labeling if $f(V)=\{1,2, \ldots$, $|\mathrm{V}|\} \ldots$.
(+ Article details
† Download article (PDF)

Proceedings Article

Labelling of Generalized Friendship, Windmill, and Torch Graphs with a Condition at Distance Two

Ikhsanul Halikin, Hafif Komarullah
A graph labelling with a condition at distance two was first introduced by Griggs and Robert. This labelling is also known as $\mathrm{L}(2,1)$-labelling. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a non-multiple graph, undirected, and connected. An $L(2,1)$-labelling on a graph is defined as a mapping from the vertex set $\mathrm{V}(\mathrm{G})$ to the set...

+ Article details
+ Download article (PDF)

Proceedings Article

On the Minimum Span of Cone, Tadpole, and Barbell Graphs

Hafif Komarullah, Ikhsanul Halikin, Kiswara Agung Santoso
Let G be a simple and connected graph with p vertices and q edges. An $L(2,1)$-labelling on the graph G is a function $f: V(G) \rightarrow\{0,1, \ldots, k\}$ such that every two vertices with a distance one receive labels that differ by at least two, and every two vertices at distance two receive labels that differ by at...
\oplus Article details
\oplus Download article (PDF)
Proceedings Article

L $(2,1)$ Labeling of Lollipop and Pendulum Graphs
 Kusbudiono, Irham Af'idatul Umam, Ikhsanul Halikin, Mohamat Fatekurohman

One of the topics in graph labeling is $\mathrm{L}(2,1)$ labeling which is an extension of graph labeling. Definition of $L(2,1)$ labeling is a function that maps the set of vertices in the graph to nonnegative integers such that every two vertices u, v that have a distance one must have a label with a difference...
${ }^{+}$Article details

+ Download article (PDF)

Proceedings Article

Magic and Antimagic Decomposition of Amalgamation of Cycles

Sigit Pancahayani, Annisa Rahmita Soemarsono, Dieky Adzkiya, Musyarofah
Consider $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ as a finite, simple, connected graph with vertex set V and edge set $\mathrm{E} . \mathrm{G}$ is said to be a decomposable graph if there exists a collection of subgraphs of G, say $\mathscr{H}=\{\mathrm{Hi} \mid 1 \leq \mathrm{i}$ $\leq n\}$ such that for every $\mathrm{i} \neq \mathrm{j}, \mathrm{Hi}$ is isomorphic to $\mathrm{Hj}, \mathrm{U} \mathrm{i}=\ln \mathrm{Hi}=\mathrm{G}$ and should satisfy that $\mathrm{E}(\mathrm{Hi})$ $\cap \mathrm{E}(\mathrm{Hj}) .$.

+ Article details
- Download article (PDF)

Proceedings Article

A Minimum Coprime Number for Amalgamation of Wheel
Hafif Komarullah, Slamin, Kristiana Wijaya
Let G be a simple graph of order n. A coprime labeling of a graph G is a vertex labeling of G with distinct positive integers from the set $\{1,2, \ldots, \mathrm{k}\}$ for some $\mathrm{k} \geq \mathrm{n}$ such that any adjacent labels are relatively prime. The minimum value of k for which G has a coprime labelling, denoted as $\mathfrak{p r}(\mathrm{G})$, is...

- Article details
+ Download article (PDF)

Proceedings Article

Rainbow Connection Number of Shackle Graphs

M. Ali Hasan, Risma Yulina Wulandari, A.N.M. Salman

Let G be a simple, finite and connected graph. For a natural number k, we define an edge coloring $\mathrm{c}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}$ where two adjacent edges can be colored the same. $\mathrm{Au}-\mathrm{v}$ path (a path connecting two vertices u and v in $V(G))$ is called a rainbow path if no two edges of path receive the same color....

+ Article details
+ Download article (PDF)
Proceedings Article

Local Antimagic Vertex Coloring of Corona Product Graphs $P_{n} \circ P_{k}$

Setiawan, Kiki Ariyanti Sugeng
Let $G=(V, E)$ be a graph with vertex set V and edge set E. A bijection map $f: E \rightarrow\{1,2, \ldots,|E|\}$ is called a local antimagic labeling if, for any two adjacent vertices u and v, they have different vertex sums, i.e. $w(u) \neq w(v)$, where the vertex $\operatorname{sum} w(u)=\Sigma e \in E(u) f(e)$, and $E(u)$ is the set of edges...

+ Article details
+ Download article (PDF)

Proceedings Article

Local Antimagic Vertex Coloring of Gear Graph

Masdaria Natalina Br Silitonga, Kiki Ariyanti Sugeng

Let $G=(V, E)$ be a graph that consist of a vertex set V and an edge set E. The local antimagic labeling f of a graph G with edge-set E is a bijection map from E to $\{1,2, \ldots,|E|\}$ such that $w(u)$ $\neq w(v)$, where $w(u)=\sum e \in E(u) f(e)$ and $E(u)$ is the set of edges incident to u. In this labeling, every vertex...

+ Article details
+ Download article (PDF)
Proceedings Article

Implementations of Dijkstra Algorithm for Searching the Shortest Route of Ojek Online and a Fuzzy Inference System for Setting the Fare Based on Distance and Difficulty of Terrain (Case Study: in Semarang City, Indonesia)

Vani Natali Christie Sebayang, Isnaini Rosyida
Ojek Online is a motorcycle taxi that is usually used by people that need a short time for traveling. It is one of the easiest forms of transportation, but there are some obstacles in hilly areas such as Semarang City. The fare produced by online motorcycle taxis is sometimes not in accordance with the...

+ Article details
- Download article (PDF)

Honorary Chair	Natanael Karjanto
Kusbudiono	Sungkyunkwan University, South Korea
Universitas Jember, Indonesia	
	Novi Herawati Bong
Conference General Chair	University of Delaware, United States
Kiswara Agung Santoso	Technical Committee
Universitas Jember, Indonesia	Abduh Riski
Steering Committee	Universitas Jember, Indonesia
I Made Tirta	Ikhsanul Halikin
Universitas Jember, Indonesia	Universitas Jember, Indonesia
Moh. Hasan	Bagus Juliyanto
Universitas Jember, Indonesia	Universitas Jember, Indonesia
Inne Singgih	Millatuz Zahroh
University of Cincinnati, United States	Universitas Jember, Indonesia
Organizing Committee	
Kristiana Wijaya	
	Universitas Jember, Indonesia
Yuliani Setia Dewi	
Universitas Jember, Indonesia	Universitas Jember, Indonesia
Alfian Futuhul Hadi	Treasurer
Universitas Jember, Indonesia	
	Ahmad Kamsyakawuni
Mohamat Fatekurohman	Universitas Jember, Indonesia
Universitas Jember, Indonesia	
	Dian Anggraeni
Agustina Pradjaningsih	Universitas Jember, Indonesia
Universitas Jember, Indonesia	

A Minimum Coprime Number for Amalgamation of Wheel

Hafif Komarullah ${ }^{1, *}$, Slamin ${ }^{2}$, Kristiana Wijaya ${ }^{1}$
${ }^{1}$ Graph, Combinatorics, and Algebra Research Group, Department of Mathematics, FMIPA, Universitas Jember
${ }^{2}$ Study Program of Informatics, Universitas Jember, Indonesia
*Corresponding author. Email: hafififa4@gmail.com

Abstract

Let G be a simple graph of order n. A coprime labeling of a graph G is a vertex labeling of G with distinct positive integers from the set $\{1,2, \ldots, k\}$ for some $k \geq n$ such that any adjacent labels are relatively prime. The minimum value of k for which G has a coprime labelling, denoted as $\mathfrak{p r}(G)$, is called the minimum coprime number of G. A coprime labeling of G with the largest label being $\operatorname{pr}(G)$ is said a minimum coprime labeling of G. In this paper, we give the exact value of the minimum coprime number for amalgamations of wheel W_{n} when n is odd positive integer.

Keywords: Minimum coprime labeling, Minimum coprime number, Amalgamation of wheel.

1. INTRODUCTION

Let G be a simple graph with the vertex-set $V(G)$ and the edge-set $E(G)$. A coprime labeling of a graph G is an injective function $f: V(G) \rightarrow\{1,2, \ldots, k\}$ so that the labels of any two adjacent vertices are relatively prime. Clearly that $k \geq n$, where n is the number of vertices of a graph G. If $k=n$, then the function f is called a prime labeling of G. A graph that admits a prime labelling is called a prime. However, it does not make sense to refer to a graph as coprime, since all graphs have a coprime labeling (for instance, use the first n prime integers as the labels) (see [1]). Therefore, the problem of a coprime labeling is to find the minimum value of k namely a minimum coprime number of G and denoted as $\mathfrak{p r}(G)$. A coprime labeling of G with the largest label being $\operatorname{pr}(G)$ is said a minimum coprime labeling of G.

The concept of a prime labeling originated with Entringer and was first introduced in a paper by Tout, Dabbouvy, and Howalla [2]. Around 1980, Entringer gave conjecture that all trees are prime graphs. Among the classes of trees known as prime are paths, stars, spiders, olive trees, palm trees, binomial trees, all trees of order up to 50, banana trees, and all caterpillars with maximum degree at most 5 (see [2, 3, 4, 5, 6, 7]).

Deretsky, Lee, and Mitchem [8] proved that all cycles C_{n} (i.e., a 2 -regular graph with n vertices) are prime. Lee, Wui, and Yeh [9] proved that wheel W_{n} (i.e., a cycle
C_{n} with one central vertex adjacent to n vertices in C_{n}) is prime if and only if n is even; a complete graph K_{n} (i.e., an ($n-1$)-regular graph with n vertices) is not prime for $n \geq 4$. The other results about prime labeling can be seen in $[10,11,12,13,14,15,16]$ and completely the survey about this labeling in Galian [17].

Asplund and Fox [18] obtained the exact value of the minimum coprime number of complete graph K_{n} and odd wheel W_{n} (i.e., wheel W_{n} with odd n) namely $\mathfrak{p r}\left(K_{n}\right)=$ p_{n-1}, where p_{n-1} is the first $(n-1)$ primes; and $\mathfrak{p r}\left(W_{n}\right)=n+2$ for any odd integer $n \geq 3$. In another paper, Asplund and Fox [19] gave the minimun coprime number of Generalized Petersen and Prism Graphs. Lee [20] determine the minimum coprime number for a few well-studied classes of graphs, including the coronas of complete graphs with empty graphs and the joins of two paths.

Herein, we discuss about the minimum coprime labeling for amalgamation of wheel. Amalgamation of t copies of G at the fixed vertex $v_{0} \in V(G)$, denoted by $\operatorname{Amal}\left(G, v_{0}, t\right)$, is the graph obtained from t copies of G by identifying t copies of G at the fixed vertex v_{0}. Lee, Wui, and Yeh [11] have shown that $\operatorname{Amal}\left(G, v_{0}, t\right)$ has a prime labeling when G is a path, a cycle, or an even wheel. They also showed that the amalgamation of odd wheel is not prime. Therefore, in this paper we give the the exact value of the minimum coprime number of
$\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ when n is odd and v_{0} is the central vertex of wheel W_{n}, namely the vertex of degree n in W_{n}.

2. MAIN RESULTS

In this section we will discuss prime and coprime labeling for amalgamation of wheel W_{n} for any odd positive integer. Before doing that, we discuss about two integers said to be relatively prime. We know that $\operatorname{gcd}(a, 1)=1$ for any integer a. Any two consecutive integers also has the greatest common divisor one, namely $\operatorname{gcd}(a, a+1)=1$. Two lemmas below useful to prove that two integers are relatively prime.
Theorem 2.1 [21] Two integers a and b are said to be relatively prime, if there exist two integers x and y such that $a x+b y=1$.

Lemma 2.2 Let a be odd positive integer. If a positive integer r does not have odd factor other than one, then $\operatorname{gcd}(a, a+r)=1$.
Proof. Suppose that $\operatorname{gcd}(a, a+r)=k$. Then $a=k x$ and $a+r=k y$. So $k(y-x)=r$. Both a and $a+r$ are odd. So, k must be odd. Since r does not have odd factor other than one, we get $k=1$. Therefore $\operatorname{gcd}(a, a+r)=1$.

Let v_{0} be the central vertex of wheel W_{n}. Suppose the vertex-set and edge-set of an $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ are $V\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right)=\left\{v_{0}\right\} \cup\left\{v_{i j} \mid i \in[1, t], j \in[1, n]\right\}$, where degree of v_{0} and $v_{i j}$ is $d\left(v_{0}\right)=n t$ and $d\left(v_{i j}\right)=$ 3, respectively, and $E\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right)=$ $\left\{v_{0} v_{i j}, v_{i 1} v_{i n} \mid i \in[1, t], j \in[1, n]\right\} \cup\left\{v_{i j} v_{i j+1} \mid i \in\right.$ $[1, t], j \in[1, n-1]\}$, respectively. An $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ has $(n t+1)$ vertices. The lower bound of the minimum coprime number for amalgamation of the odd wheel is given in Lemma below.
Lemma 2.3 Let v_{0} be the central vertex of wheel W_{n}. For each integer $t>1$ and odd integer $n \geq 1$, $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right) \geq(n+1) t+1$.

Proof. Let $n, t \geq 1$ be integers where n is odd. We know that an $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ has $(n t+1)$ vertices, where the one vertex, called the central vertex v_{0} adjacent to all vertices in $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$. There are t cycles with length n where every cycle needs $\frac{n-1}{2}$ even labels and $\frac{n+1}{2}$ odd labels. So, a graph $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ needs $\left(\left(\frac{n+1}{2}\right) t+1\right)$ odd labels. Clearly that there are not enough odd labels in the set $\{1,2, \ldots, n t+1\}$. It means that an $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ cannot be labeled by $1,2, \ldots, n t+1$ such that every two adjacent vertices have the relatively prime labels. Since there are $\left(\left(\frac{n+1}{2}\right) t+1\right)$ odd labels in the set $\{1,2, \ldots,(n+1) t+1\}$, hence $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{5}, v_{0}, t\right)\right) \geq(n+1) t+1$.

To obtain the exactly of the minimum coprime number for amalgamation of odd wheel W_{n}, we consider two cases, namely for either $n=1(\bmod 4)$ or $n=$ $3(\bmod 4)$.

Theorem 2.4 Let v_{0} be the central vertex of wheel W_{n}. For each integer $t>1$ and $n=1(\bmod 4)$, the minimum coprime number for amalgamation of odd wheel W_{n} is $\operatorname{pr}\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right)=(n+1) t+1$.

Proof. Let n and t be positive integers where $n=$ $1(\bmod 4) . \quad$ By Lemma 2.3, we have $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right) \geq(n+1) t+1$.

We now show that $\operatorname{pr}\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right) \leq(n+$ 1) $t+1$ by defined a coprime labeling of a graph $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ as below. We define $f: V\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right) \rightarrow\{1,2, \ldots,(n+1) t+1\}$ where $f\left(v_{0}\right)=1 \quad$ and \quad for $\quad i=1,2, \ldots, t$, $f\left(v_{i j}\right)=\left\{\begin{array}{l}(n+1) i-(n-j), \text { for } 1 \leq j \leq \frac{n+1}{2}, \\ \quad(n+1) i+1, \text { for } j=\frac{n+3}{2}, \\ (n+1) i+\left(\frac{n+3}{2}-j\right), \text { for } \frac{n+5}{2} \leq j \leq n .\end{array}\right.$

Next, we show that the greatest common divisor of every labels of two adjacent vertices are one. We consider three cases below.

- Suppose that $\operatorname{gcd}\left(f\left(v_{i\left(\frac{n+1}{2}\right)}\right), f\left(v_{i\left(\frac{n+3}{2}\right)}\right)\right)=$ $\operatorname{gcd}\left((n+1) i-\left(\frac{n-1}{2}\right),(n+1) i+1\right)=k . \quad$ Since $n=1(\bmod 4)$, then $(n+1) i-\left(\frac{n-1}{2}\right)=$ $1\left(\bmod \left(\frac{n+1}{2}\right)\right)$ is even, while $(n+1) i+1=$ $1\left(\bmod \left(\frac{n+1}{2}\right)\right)$ is odd. So $k \neq \frac{n+1}{2}$ must be odd. Let $(n+1) i-\left(\frac{n-1}{2}\right)=k x \quad$ and $\quad(n+1) i+1=k y$. Then $k(y-x)=\frac{n+1}{2}$. So it must be $k=1$. Therefore labels of $v_{i\left(\frac{n+1}{2}\right)}$ and $v_{i\left(\frac{n+3}{2}\right)}$ are relatively prime.
- Now, consider the labels of vertex $v_{i\left(\frac{n+3}{2}\right)}$ and $v_{i\left(\frac{n+5}{2}\right)}$. Suppose that $\operatorname{gcd}\left(f\left(v_{i\left(\frac{n+3}{2}\right)}\right), f\left(v_{i\left(\frac{n+3}{2}\right)}\right)\right)=$ $\operatorname{gcd}((n+1) i+1,(n+1) i-1)=k$. Since n is odd, ($n+1) i+1$ is odd. By applying Lemma 2.2, we get $\operatorname{gcd}((n+1) i+1,(n+1) i-1)=1$.
- Last, we consider the vertex $v_{i 1}$ and $v_{i n}$. We suppose that $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i n}\right)\right)=\operatorname{gcd}((n+1) i-(n-$ 1), $\left.(n+1) i+\left(\frac{3-n}{2}\right)\right)=k$. Since $n=1(\bmod 4)$, $(n+1) i-(n-1)$ is even, and $(n+1) i+\left(\frac{3-n}{2}\right)$ is odd, but both are in $2\left(\bmod \left(\frac{n+1}{2}\right)\right)$. Hence $k \neq \frac{n+1}{2}$ must be odd. We next consider $(n+1) i-(n-1)=$
$k x$ and $(n+1) i+\left(\frac{3-n}{2}\right)=k y$. So, $k(y-x)=\frac{n+1}{2}$. Therefore $k=1$. It means $v_{i 1}$ and $v_{i n}$ have relatively prime labels.

We have shown that every label of two adjacent vertices is relatively prime. Therefore, the function f is a minimum coprime labeling with the largest label being $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{n}, v_{0}, t\right)\right)=(n+1) t+1$.

For example, a minimum coprime labeling of $\operatorname{Amal}\left(W_{5}, v_{0}, 4\right)$ can be seen in Figure 1, where $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{5}, v_{0}, 4\right)\right)=25$.

Figure 1 A coprime labelling of $\operatorname{Amal}\left(W_{5}, v_{0}, 4\right)$

We observe now an $\operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ for $n=3(\bmod 4)$. For this case, we have not got the minimum coprime labeling in general. Therefore, we give it for some positive integer n.

Proposition 2.5 Let v_{0} be the central vertex of wheel W_{3}. The minimum coprime number for amalgamation of W_{3} is $\operatorname{pr}\left(\operatorname{Amal}\left(W_{3}, v_{0}, t\right)\right)=4 t+1$, for any positive integer t.

Proof. According to Lemma 2.3, we left prove that $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{3}, v_{0}, t\right)\right) \geq 4 t+1$, by defining a labeling on the $\operatorname{Amal}\left(W_{3}, v_{0}, t\right)$. Define $f: V\left(\operatorname{Amal}\left(W_{3}, v_{0}, t\right)\right)$ $\rightarrow\{1,2, \ldots, 4 t+1\}$ where $f\left(v_{0}\right)=1$ and for $i=$ $1,2, \ldots, t$,

$$
f\left(v_{i j}\right)= \begin{cases}2 i, & \text { for } j=1 \\ 4 i-1, & \text { for } j=2 \\ 4 i+1, & \text { for } j=3\end{cases}
$$

Now, we show that the greatest common divisor of every two labels of adjacent vertices is one.

- First, $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i 2}\right)\right)=(2 i, 4 i-1)=1$, since there exists $x=2$ and $y=-1$ so that $(2 i) x+(4 i-$ 1) $y=1$ and applying Theorem 2.1.
- Suppose $\operatorname{gcd}\left(f\left(v_{i 2}\right), f\left(v_{i 3}\right)\right)=(4 i-1,4 i+1)=$ k. Since $4 i-1$ is odd, and $|(4 i-1)-(4 i+1)|=$ 2 , by Lemma 2.1, $\operatorname{gcd}(4 i-1,4 i+1)=1$.
- Suppose $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i 3}\right)\right)=\operatorname{gcd}(2 i, 4 i+1)=k$. There exists $x=-2$ and $y=1$ so that ($2 i$) $x+$ $(4 i+1) y=1$. By Theorem 2.1, we get $\operatorname{gcd}(2 i, 4 i+$ 1) $=1$.

Thus every label of adjacent vertices is relatively prime. Hence the function f is a minimum coprime labeling and $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{3}, v_{0}, t\right)\right)=4 t+1$.

Proposition 2.6 Let v_{0} be the central vertex of wheel W_{7}. For a positive integer $t \leq 47$, an $\operatorname{Amal}\left(W_{7}, v_{0}, t\right)$ has a minimum coprime labeling with the largest label being $8 t+1$.

Proof. Let t be positive integer and $t \leq 47$. Define $f: V\left(\operatorname{Amal}\left(W_{7}, v_{0}, t\right)\right) \rightarrow\{1,2, \ldots, 8 t+1\}$, where $f\left(v_{0}\right)=1$ and for $i=1,2, \ldots, 47$, we consider two cases, namely
For $i \neq 6(\bmod 7)$,

$$
f\left(v_{i j}\right)=\left\{\begin{array}{l}
8 i+j-7, \text { for } j=1,2, \ldots, 6 \\
8 i+1, \quad \text { for } j=7
\end{array}\right.
$$

while for $i=6(\bmod 7)$,

$$
f\left(v_{i j}\right)=\left\{\begin{array}{c}
8\left(\frac{i+1}{7}\right), \text { for } j=1, \\
8 i+j-7, \text { for } j=2,3, \ldots, 6 \\
8 i+1, \text { for } j=7
\end{array}\right.
$$

Now, we show that the greatest common divisor of every label of two adjacent vertices are one.

- By Lemma 2.2, we obtain $\operatorname{gcd}\left(f\left(v_{i 6}\right), f\left(v_{i 7}\right)\right)=$ $(8 i-1,8 i+1)=1$.
- Now, we consider the vertex $v_{i 1}$ and $v_{i 7}$. For $i=$ $6(\bmod 7), \quad$ namely $\quad i=6,13,20,27,34,41$, $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i 7}\right)\right)=\operatorname{gcd}\left(8\left(\frac{i+1}{7}\right), 8 i+1\right)=1$. For $i \neq 6(\bmod 7)$, suppose for a contradiction, $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i 7}\right)\right)=\operatorname{gcd}(8 i-6,8 i+1)=k \neq 1$. We know that $8 i-6=2(\bmod 4)$ is even and $8 i+$ $1=1(\bmod 4)$ is odd. So k must be odd. Let $8 i-$ $6=k x$ and $8 i+1=k y$. We get $k(y-x)=7$. Therefore $k=7$. Consequently, $i=6(\bmod 7)$, a contradiction. Thus $\operatorname{gcd}(8 i-6,8 i+1)=1$.
- For $i=6(\bmod 7)$, namely $i=6,13,20,27,34,41$, we can easily count that $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i 2}\right)\right)=$ $\operatorname{gcd}\left(8\left(\frac{i+1}{7}\right), 8 i-5\right)=1$.
Thus, every label of two adjacent vertices is relatively prime. Thus any integer $t \leq 47$, the $\operatorname{Amal}\left(W_{7}, v_{0}, t\right)$ has a minimum coprime labeling with the largest label being $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{7}, v_{0}, t\right)\right)=8 t+1$.

For an illustration, a minimum coprime labeling for $\operatorname{Amal}\left(W_{3}, v_{0}, 3\right)$ and $\operatorname{Amal}\left(W_{7}, v_{0}, 6\right)$ as depicted in Figure 2 and Figure 3, respectively.

Figure 2. A coprime labeling of $\operatorname{Amal}\left(W_{3}, v_{0}, 3\right)$

Figure 3. A coprime labeling of $\operatorname{Amal}\left(W_{7}, v_{0}, 6\right)$

Proposution 2.7 Let v_{0} be the central vertex of wheel W_{11}. For each integer $t>1$, the minimum coprime number for amalgamation of t copies of W_{11} is $\mathfrak{p r}\left(\operatorname{Amal}\left(W_{11}, v_{0}, t\right)\right)=12 t+1$.
Proof. According to Lemma 2.1, we left prove that $\operatorname{pr}\left(\operatorname{Amal}\left(W_{11}, v_{0}, t\right)\right) \geq 12 t+1$, by defining a labeling on the $\operatorname{Amal}\left(W_{11}, v_{0}, t\right)$. Define $f: V\left(\operatorname{Amal}\left(W_{11}, v_{0}, t\right)\right) \rightarrow\{1,2, \ldots, 12 t+1\}$ where
$f\left(v_{0}\right)=1$
$f\left(v_{i j}\right)= \begin{cases}12 i-(11-j), & \text { for } j=1,2, \ldots, 9, \\ 12 i+1, & \text { for } j=10, \\ 12 i-1, & \text { for } j=11 .\end{cases}$
Now, we show that the greatest common divisor of every label of any two adjacent vertices is one.

- Suppose that $\operatorname{gcd}\left(f\left(v_{i 9}\right), f\left(v_{i 10}\right)\right)=\operatorname{gcd}(12 i-$ $2,12 i+1)=k$. We know that $12 i-2$ is even, $12 i+1$ is odd, but both of them are in $1(\bmod 3)$. So $k \neq 3$. Let $12 i-2=k x$ and $12 i+1=k y$. Then $k(y-x)=3=1 \cdot 3$. Hence $k=1$. Therefore labels of $v_{i 9}$ and $v_{i 10}$ are relatively prime.
- By applying Lemma 2.2, we obtain $\operatorname{gcd}\left(f\left(v_{i 10}\right), f\left(v_{i 11}\right)\right)=\operatorname{gcd}(12 i+1,12 i-1)=1$.
- Last, suppose that $\operatorname{gcd}\left(f\left(v_{i 1}\right), f\left(v_{i 11}\right)\right)=\operatorname{gcd}(12 i-$ $10,12 i-1)=k$. We know that $12 i-10$ is even, and $12 i-1$ is odd, but both of them are in $2(\bmod 3)$. So, $k \neq 3$. Suppose $12 i-10=k x$ and $12 i-1=k y$. Then $k(y-x)=9=1 \cdot 9$. Since neither $12 i-10$ nor $12 i-1$ is not in $0(\bmod 9)$, then it must be $k=1$. Thus $f\left(v_{i 1}\right)$ and $f\left(v_{i 11}\right)$ are relatively prime, that is $\operatorname{gcd}(12 i-10,12 i-1)=1$.

Due to any two adjacent vertices having the relatively prime labels, the function f is a minimum coprime labeling with the largest label being $\operatorname{pr}\left(\operatorname{Amal}\left(W_{11}, v_{0}, t\right)\right)=12 t+1$.

For an illustration, a coprime labeling for amalgamation of 3 copies of W_{11} can be seen in Figure 4.

Figure 4. A coprime labeling of $\operatorname{Amal}\left(\boldsymbol{W}_{11}, \boldsymbol{v}_{\mathbf{0}}, \mathbf{3}\right)$

3. CONCLUDING REMARKS

We conclude this paper by providing several open questions regarding minimum coprime numbers.

Question 1. Let v_{0} be the vertex of degree 7 in W_{7}. Can the minimum coprime labeling be defined for amalgamation of wheel $W_{7}, \operatorname{Amal}\left(W_{7}, v_{0}, t\right)$, for any positive integer t ?
Question 2. Let v_{0} be the vertex of degree n in W_{n}, and t be a positive integer. Can the minimum coprime labeling be defined generally for amalgamation of odd wheel $W_{n}, \operatorname{Amal}\left(W_{n}, v_{0}, t\right)$ when $n=3(\bmod 4)$?

Question 3. Can the minimum coprime number be determined for amalgamation of complete graph, $\operatorname{Amal}\left(K_{n}, v, t\right)$?

ACKNOWLEDGMENT

The authors are thankful to support funding from the Faculty of Mathematics and Natural Sciences, Universitas Jember. The authors also are thankful to the anonymous referee for valuable comments and kind suggestions.

REFERENCES

[1] A.H. Berliner, J. Hook, A. Mbirika, N. Dean, A. Marr, and C.D. McBee, Coprime and prime labelings of graphs, Journal of Integer Sequence 19, 2016, pp. 1-14.
[2] A. Tout, A.N. Dabboucy, and K. Howalla, Prime labeling of graphs, Nat. Acad. Sci. Letters 11, 1982, pp. 365-368.
[3] H.L Fu and K.C Huang. On prime labelings, Discrete Math. 127, 1994, pp. 181-186.
[4] H. Salmasian, A result on prime labelings of trees, Bull. Inst. Combin. Appl., 28, 2000, pp. 36-38.
[5] O. Pikhurko, Trees are almost prime, Discrete Math., 307, 2007, pp. 1455-1462.
[6] L. Robertson and B. Small, On Newman's conjecture and prime trees, Integers: The Elect. J. Combin. Number Theory 9, 2009, A10, pp. 112-128.
[7] P. Haxell, O. Pikhurko, and A. Taraz, Primality of trees, J. Combinatorics 2, 2011, pp. 481-500. DOI : https://dx.doi.org/10.4310/JOC.2011.v2.n4.a1
[8] T. Deretsky, S. M. Lee, and J. Mitchem, On vertex prime labelings of graphs, in Graph Theory, Combinatorics and Applications Vol. 1, J. Alavi, G. Chartrand, O. Oellerman, and A. Schwenk, eds., Proceedings 6th International Conference Theory and applications of graphs, Wiley, New York, 1991, pp. 359-369.
[9] S.M. Lee, I. Wui and J. Yeh, On the amalgamation of prime graphs, Bull. Malaysian Math. Soc. (Second Series), 11, 1988, pp. 59-67.
[10] M.A. Seoud, A.T. Diab, and E.A. Elsahawi, On strongly-C harmonious, relatively prime, odd graceful and cordial graphs, Proc. Math. Phys. Soc. Egypt, no. 73, 1998, pp. 33-55.
[11] D.M.T.B. Dissanayake, R.A.S.T. Abeysekara, K.D.E. Dhananjaya, A.A.I. Perera, and P.G.R.S. Ranasinghe, Prime labeling of complete tripartite graphs of the form $K_{1, m, n}$, Elicxir Journal 130, 2019, pp. 53092-53094.
[12] E. Ghorbani. and S. Kamali. Prime labeling of ladders, Journal of integer sequence, 2019.
[13] A.V. Kanetkar, Prime labeling of grids, AKCE Internat. J. Graphs Combin. 1, 2009, pp. 135-142. DOI : https://doi.org/10.1080/09728600.12088880
[14] S.K. Vaidya and K.K. Kanani, Prime labeling for some cycle related graphs, Journal of Mathematics Research 2(2), 2010, pp. 98-103.
[15] S. Ashokkumar and S. Maragathavalli, Prime labeling of some special graphs, Journal of Mathematics 11, 2015, pp. 1-5.
[16] U. M. Prajapati1 and S. J. Gajjar. Prime labeling of generalized Petersen graph, International Journal of Mathematics and Soft Computing 5(1), 2015, pp. 65-71.
[17] J.A. Gallian, A dynamic survey of graph labelling, The Electron. J. Combin., 2017, \#DS6.
[18]J.Asplund and N.B. Fox, Minimum coprime labelings for operations on graphs, Journal of Integer Sequence 17, 2017, pp. 1-20.
[19] J.Asplund and N.B. Fox. Minimum coprime labelings of generalized Petersen and prism graphs, Journal of Integer Sequence 19, 2019, pp. 1-17.
[20] C. Lee, Minimum coprime graphs, Journal of Integer Sequence 20, 2020, pp. 1-11.
[21] Sukirman, Teori Bilangan (in Indonesian), ISBN 9786023920471, Tangerang Selatan: Universitas Terbuka, 2016.

