AKCE International Journal of Graphs and Combinatorics

On Ramsey (4K2,P3)-minimal graphs

Kristiana Wijaya, Edy Tri Baskoro, Hilda Assiyatun \& Djoko Suprijanto

To cite this article: Kristiana Wijaya, Edy Tri Baskoro, Hilda Assiyatun \& Djoko Suprijanto (2018) On Ramsey (4K2,P3)-minimal graphs, AKCE International Journal of Graphs and Combinatorics, 15:2, 174-186, DOI: 10.1016/j.akcej.2017.08.003

To link to this article: https://doi.org/10.1016/j.akcej.2017.08.003

Â © 2017 Kalasalingam University.
Publishing Services by Elsevier B.V.

Published online: 10 Jun 2020.

Submit your article to this journal

Article views: 255

View related articles

View Crossmark data \triangle

Citing articles: 3 View citing articles

On Ramsey ($4 K_{2}, P_{3}$)-minimal graphs
 Kristiana Wijaya ${ }^{\text {a,b,*, }}$, Edy Tri Baskoro ${ }^{\text {a }}$, Hilda Assiyatun ${ }^{\text {a }}$, Djoko Suprijanto ${ }^{\text {a }}$
 ${ }^{\text {a }}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia
 ${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, and CGANT Research Group, University of Jember, Jalan Kalimantan 37, Jember 68121, Indonesia

Received 3 July 2015; received in revised form 22 August 2017; accepted 23 August 2017
Available online 28 September 2017

Abstract

Let F, G, and H be simple graphs. We write $F \rightarrow(G, H)$ to mean that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H. A graph F (without isolated vertices) satisfying $F \rightarrow(G, H)$ and for each $e \in E(F)$, $(F-e) \nrightarrow(G, H)$ is called a Ramsey (G, H)-minimal graph. The set of all Ramsey (G, H)-minimal graphs is denoted by $\mathscr{R}(G, H)$. In this paper, we derive the necessary and sufficient condition of graphs belonging to $\mathscr{R}\left(4 K_{2}, H\right)$, for any connected graph H. Moreover, we give a relation between Ramsey $\left(4 K_{2}, P_{3}\right)$ - and ($3 K_{2}, P_{3}$)-minimal graphs, and Ramsey $\left(4 K_{2}, P_{3}\right)$ - and $\left(2 K_{2}, P_{3}\right)$-minimal graphs. Furthermore, we determine all graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$. © 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Ramsey minimal graph; Edge coloring; Matching; Path

1. Introduction

Let F be a graph with n vertices and m edges. If $v \in V(F)$ and $e \in E(F)$, then $F-\{v\}$ is a graph on $n-1$ vertices obtained by deleting the vertex v together with all edges incident with v, and $F-e$ is a graph on $m-1$ edges obtained by deleting the edge e from F. A complete graph, cycle, and path with n vertices are denoted by K_{n}, C_{n}, and P_{n}, respectively. $m K_{2}$ will denote a graph consisting of m disjoint copies of a K_{2}.

Let F, G, and H be graphs without isolated vertices. We write $F \rightarrow(G, H)$ to mean that any red-blue coloring of the edges of F will contain either a red copy of G or a blue copy of H. A red-blue coloring of F such that neither a red G nor a blue H occurs is called a (G, H)-coloring. A graph F will be called a Ramsey (G, H)-minimal if $F \rightarrow(G, H)$ but for each $e \in E(F),(F-e) \nrightarrow(G, H)$. The set of all Ramsey (G, H)-minimal graphs will be denoted by $\mathscr{R}(G, H)$.

[^0]http://dx.doi.org/10.1016/j.akcej.2017.08.003
0972-8600/② 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fig. 1. Graph in $\mathscr{R}\left(2 K_{2}, K_{3}\right)$.

Fig. 2. All connected graphs with circumference 6 in $\mathscr{R}\left(3 K_{2}, P_{3}\right)$.

The problem of characterizing all graphs F in $\mathscr{R}(G, H)$ for a fixed pair of graphs G and H is very interesting but it is also a difficult problem, even for small graphs G and H. Burr [1] showed that deciding whether $F \nrightarrow(G, H)$ is an $N P$-complete problem if G and H are fixed 3-connected graphs (or triangles).

Numerous papers discuss the problem of determining the set $\mathscr{R}(G, H)$. In particular, Burr et al. [2] proved that the set $\mathscr{R}\left(m K_{2}, H\right)$ is finite for any graph H. In particular, they proved that $\mathscr{R}\left(2 K_{2}, 2 K_{2}\right)=\left\{3 K_{2}, C_{5}\right\}$, $\mathscr{R}\left(2 K_{2}, K_{3}\right)=\left\{2 K_{3}, K_{5}, G\right\}$, where G is the graph in Fig. 1. They also gave the maximal number of edges of graph F belonging to $\mathscr{R}\left(m K_{2}, H\right)$, that is $|E(F)| \leq \sum_{i=1}^{b} n^{i}$ where $n=|V(H)|$ and $b=(m-1)\left(\binom{2 m-1}{2}+1\right)+1$ for m a positive integer. Burr et al. [3] gave some characterizations of all graphs in $\mathscr{R}\left(t K_{2}, 2 K_{2}\right)$ for any $t \geq 2$. Mengersen and Oeckermann [4] proved that $\mathscr{R}\left(2 K_{2}, P_{3}\right)=\left\{2 P_{3}, C_{4}, C_{5}\right\}$. In the same paper, they also determined all graphs in $\mathscr{R}\left(2 K_{2}, K_{1,3}\right)$. Baskoro and Yulianti [5] determined all graphs in $\mathscr{R}\left(2 K_{2}, P_{n}\right)$ for $n=4,5$. The characterization of all graphs which belong to $\mathscr{R}\left(2 K_{2}, 2 P_{n}\right)$ for $n=4,5$ was given by Tatanto and Baskoro [6]. Mushi and Baskoro [7] derived the properties of graphs belonging to the class $\mathscr{R}\left(3 K_{2}, P_{3}\right)$ and determined all graphs in this class. They proved that $\mathscr{R}\left(3 K_{2}, P_{3}\right)=\left\{3 P_{3}, C_{4} \cup P_{3}, C_{5} \cup P_{3}, C_{7}, C_{8}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$ where $H_{1}, H_{2}, H_{3}, H_{4}$, and H_{5} are the graphs in Fig. 2.

The following lemma about the necessary conditions of graphs in $\mathscr{R}\left(3 K_{2}, P_{3}\right)$ given by Mushi and Baskoro [7].
Lemma 1.1 ([7]). Let $F \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. Then
(i) $F-\{u, v\} \supseteq P_{3}$ for every $u, v \in V(F)$;
(ii) $F-\{u\}-E\left(C_{3}\right) \supseteq P_{3}$ for every $u \in V(F)$ and $C_{3} \subseteq F$;
(iii) $F-E\left(2 C_{3}\right) \supseteq P_{3}$ for every $2 C_{3} \subseteq F$;
(iv) $F-E\left(F_{m}^{*}\right) \supseteq P_{3}$ for every $F_{m}^{*} \subseteq F$ where F_{m}^{*} is an induced connected subgraph with m vertices ($m=4$ or 5);
(v) Every vertex in F is contained in some P_{3} in F.

In this paper, we derive the necessary and sufficient condition for graphs belonging to $\mathscr{R}\left(4 K_{2}, H\right)$. We give a relation between Ramsey ($4 K_{2}, P_{3}$)-minimal graphs and Ramsey ($3 K_{2}, P_{3}$)-minimal graphs as well as Ramsey $\left(2 K_{2}, P_{3}\right)$-minimal graphs. Finally, we give characterizations of all graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

2. Main results

2.1. Necessary and sufficient conditions

In this section, we derive the necessary and sufficient conditions for graphs in $\mathscr{R}\left(4 K_{2}, H\right)$ for any connected graph H. Let F be a graph in $\mathscr{R}\left(4 K_{2}, H\right)$. Let X, Y, and Z be induced subgraphs of F by 3,5 , and 7 vertices, respectively. If there are two different induced subgraphs on 3 vertices of F, then we will use the notation X_{1} and X_{2}, where $V\left(X_{1}\right) \neq V\left(X_{2}\right)$. Then, we have the following theorem.

Theorem 2.1. Let H be a connected graph. $F \in \mathscr{R}\left(4 K_{2}, H\right)$ if and only if the following conditions are satisfied:
(i) For every $u, v, w \in V(F), F-\{u, v, w\} \supseteq H$;
(ii) For every $u, v \in V(F)$ and X in $F, F-\{u, v\}-E(X) \supseteq H$;
(iii) For every $u \in V(F)$ and X_{1}, X_{2} in $F, F-\{u\}-E\left(X_{1} \cup X_{2}\right) \supseteq H$;
(iv) For every X_{1}, X_{2}, X_{3} in $F, F-E\left(X_{1} \cup X_{2} \cup X_{3}\right) \supseteq H$;
(v) For every $u \in V(F)$ and Y in $F, F-\{u\}-E(Y) \supseteq H$;
(vi) For every X and Y in $F, F-E(X \cup Y) \supseteq H$;
(vii) For every Z in $F, F-E(Z) \supseteq H$;
(viii) For every edge $e \in E(F)$, at least one of seven conditions below is satisfied.
(a) There exists $u, v, w \in V(F)$ such that $(F-e)-\{u, v, w\} \nsupseteq H$;
(b) There exists $u, v \in V(F)$ and X in F such that $(F-e)-\{u, v\}-E(X) \nsupseteq H$;
(c) There exists $u \in V(F)$ and X_{1}, X_{2} in F such that $(F-e)-\{u\}-E\left(X_{1} \cup X_{2}\right) \nsupseteq H$;
(d) There exists X_{1}, X_{2}, X_{3} in F such that $(F-e)-E\left(X_{1} \cup X_{2} \cup X_{3}\right) \nsupseteq H$;
(e) There exists $u \in V(F)$ and Y in F such that $(F-e)-\{u\}-E(Y) \nsupseteq H$;
(f) There exists X and Y in F such that $(F-e)-E(X \cup Y) \nsupseteq H$;
(g) There exists Z in F such that $(F-e)-E(Z) \nsupseteq H$.

Proof. Let H be a connected graph. Let $F \in \mathscr{R}\left(4 K_{2}, H\right)$. So, $F \rightarrow\left(4 K_{2}, H\right)$ and for each edge $e \in E(F),(F-e) \nrightarrow$ $\left(4 K_{2}, H\right)$. We first consider $F \rightarrow\left(4 K_{2}, H\right)$. We will prove that cases (i)-(vii) are satisfied. Suppose to the contrary that at least one of cases (i)-(vii) is violated. Then, color by red all edges incident to u, v, or w in cases (i)-(iii); all edges of all X in cases (ii), (iii), and (iv); all edges of Y in cases (v) and (vi); or all edges of Z in case (vii). Next, the remaining edges are colored by blue. Then, in any case we obtain a $\left(4 K_{2}, H\right)$-coloring of F, a contradiction.

We now consider for each edge $e \in E(F),(F-e) \nrightarrow\left(4 K_{2}, H\right)$. Then, there exists a $\left(4 K_{2}, H\right)$-coloring of $F-e$. In such a coloring, the subgraph of $F-e$ induced by all red edges does not contain a $4 K_{2}$ and the subgraph of $F-e$ induced by all blue edges does not contain an H. Thus, the subgraph of $F-e$ induced by all blue edges is one of subgraphs: $(F-e)-\{u, v, w\},(F-e)-\{u, v\}-E(X),(F-e)-\{u\}-E\left(X_{1} \cup X_{2}\right),(F-e)-E\left(X_{1} \cup X_{2} \cup X_{3}\right)$, $(F-e)-\{u\}-E(Y),(F-e)-E(X \cup Y)$, or $(F-e)-E(Z)$, for some $u, v, w \in V(F)$ and the induced subgraphs $X, X_{1}, X_{2}, X_{3}, Y, Z$ of F whose order are 3, 3, 3, 3, 5, 7, respectively. Thus, we obtain case (viii).

Conversely, suppose that all cases (i)-(viii) are satisfied. Consider any red-blue coloring of F not containing a red $4 K_{2}$. Then, we have either all blue edges or the subgraph of F induced by all red edges contains at most 3 independent edges. Now, remove all red edges. This removal can be done by one of the cases (i)-(vii), namely deleting three vertices in case (i), deleting two vertices and all edges of the induced subgraph with 3 vertices in case (ii), deleting one vertex and all edges of two induced subgraphs with 3 vertices in case (iii), deleting all edges of three induced subgraphs with 3 vertices in case (iv), deleting one vertex and all edges of the induced subgraph with 5 vertices in case (v), deleting all edges of the induced subgraphs with 3 and 5 vertices in case (vi), or deleting all edges of the induced subgraph with 7 vertices in case (vii). In all cases, the existence of a blue H occurs. Thus, by cases (i)-(vii), we obtain $F \rightarrow\left(4 K_{2}, H\right)$.

We now consider case (viii). We define a red-blue coloring ϕ of all edges of $F-e$ such that $\phi(x)=$ blue for every edge x in one of subgraphs $(F-e)-\{u, v, w\},(F-e)-\{u, v\}-E(X),(F-e)-\{u\}-E\left(X_{1} \cup X_{2}\right)$, $(F-e)-E\left(X_{1} \cup X_{2} \cup X_{3}\right),(F-e)-\{u\}-E(Y),(F-e)-E(X)-E(Y)$, or $(F-e)-E(Z)$, for some $u, v, w \in V(F)$ and the induced subgraphs $X, X_{1}, X_{2}, X_{3}, Y, Z$ of F whose order are $3,3,3,3,5,7$, respectively and $\phi(x)=$ red otherwise. We obtain a $\left(4 K_{2}, H\right)$-coloring ϕ of $F-e$. Thus, for each edge $e \in E(F),(F-e) \nrightarrow\left(4 K_{2}, H\right)$.

We now give some relations between a graph in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ and graph in $\mathscr{R}\left(t K_{2}, P_{3}\right)$ for $t=3$ and $t=2$ in the following lemmas.

Lemma 2.2. $F \rightarrow\left(4 K_{2}, P_{3}\right)$ if and only if the following conditions are satisfied:
(i) for every $v \in V(F), F-\{v\} \rightarrow\left(3 K_{2}, P_{3}\right)$;
(ii) for every $C_{3} \subset F, F-E\left(C_{3}\right) \rightarrow\left(3 K_{2}, P_{3}\right)$;
(iii) for every induced subgraph on 7 vertices Z of $F, F-E(Z) \supseteq P_{3}$.

Proof. Suppose to the contrary that at least one of cases (i)-(iii) is violated. Then, there exists a ($3 K_{2}, P_{3}$)-coloring ϕ_{1} of the edges of either $F-\{v\}$ in case (i) or $F-E\left(C_{3}\right)$ in case (ii). Now, let us define a new coloring ϕ of the edges of F such that $\phi(e)=\phi_{1}(e)$ for $e \in F-\{v\}$ in case (i) or $e \in F-E\left(C_{3}\right)$ in case (ii), and $\phi(e)=$ red for all edges e incident to v in case (i) or all edges $e \in E\left(C_{3}\right)$ in case (ii). In both cases, we obtain a ($4 K_{2}, P_{3}$)-coloring of F, a contradiction. Next, suppose that $F-E(Z)$ does not contain a P_{3} for an induced subgraph Z of F on 7 vertices. Color all edges $e \in E(Z)$ by red and otherwise by blue. We obtain a ($4 K_{2}, P_{3}$)-coloring of F, a contradiction.

Conversely, let all cases (i)-(iii) be satisfied. By applying Lemma 1.1, the cases (i)-(vii) in Theorem 2.1 are satisfied. We obtain $F \rightarrow\left(4 K_{2}, P_{3}\right)$.

Corollary 2.3. Let $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$. For every $v \in V(F)$ and C_{3} in F, then graphs $F-\{v\}$ and $F-E\left(C_{3}\right)$ contain a Ramsey $\left(3 K_{2}, P_{3}\right)$-minimal graph.

Proof. Suppose one of $F-\{v\}$ or $F-E\left(C_{3}\right)$ does not contain $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$ for some $v \in V(F)$ or C_{3} in F. Then $F-\{v\} \nrightarrow\left(3 K_{2}, P_{3}\right)$ or $F-E\left(C_{3}\right) \nrightarrow\left(3 K_{2}, P_{3}\right)$. By Lemma 2.2, $F \nrightarrow\left(4 K_{2}, P_{3}\right)$. This contradicts $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Lemma 2.4. If $F \rightarrow\left(4 K_{2}, P_{3}\right)$, then
(i) for every $u, v \in V(F), F-\{u, v\} \rightarrow\left(2 K_{2}, P_{3}\right)$;
(ii) for every $u \in V(F)$ and C_{3} in $F, F-\{u\}-E\left(C_{3}\right) \rightarrow\left(2 K_{2}, P_{3}\right)$;
(iii) for every $2 C_{3}$ in $F, F-E\left(2 C_{3}\right) \rightarrow\left(2 K_{2}, P_{3}\right)$.

Proof. Suppose that at least one of cases (i)-(iii) is violated for some $u, v \in V(F), C_{3}$ in F, or $2 C_{3}$ in F. Then, there exists a $\left(2 K_{2}, P_{3}\right)$-coloring ϕ_{1} of all edges of either $F-\{u, v\}, F-\{u\}-E\left(C_{3}\right)$, or $F-E\left(2 C_{3}\right)$. We now define a red-blue coloring ϕ of F such that $\phi(e)=\phi_{1}(e)$ for all edges $e \in F-\{u, v\}, e \in F-\{u\}-E\left(C_{3}\right)$, or $e \in F-E\left(2 C_{3}\right)$ and $\phi(e)=$ red otherwise. In any case, we obtain a $\left(4 K_{2}, P_{3}\right)$-coloring of F, a contradiction.

Corollary 2.5. If $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$, then for every $u, v \in V(F)$ and $t C_{3}$ in F with $t=1,2$, all graphs $F-\{u, v\}$, $F-\{u\}-E\left(C_{3}\right)$, and $F-E\left(2 C_{3}\right)$ contain a Ramsey $\left(2 K_{2}, P_{3}\right)$-minimal graph.

Proof. It follows directly from Lemma 2.4.

2.2. $\mathscr{R}\left(4 K_{2}, P_{3}\right)$

In this section, we determine all graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$. These graphs are constructed by applying Theorem 2.1. These graphs can be connected or disconnected. We first prove that all disconnected graphs in $\mathscr{R}\left(m K_{2}, P_{3}\right)$ are a disjoint union of graphs in $\mathscr{R}\left(s K_{2}, P_{3}\right)$ and $\mathscr{R}\left((m-s) K_{2}, P_{3}\right)$ for any positive integers $s, m \geq 1$ and $s<m$. We then give all disconnected graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Theorem 2.6. Let G and H be connected graphs. The graph $G \cup H \in \mathscr{R}\left(m K_{2}, P_{3}\right)$ if and only if $G \in \mathscr{R}\left(s K_{2}, P_{3}\right)$ and $H \in \mathscr{R}\left((m-s) K_{2}, P_{3}\right)$ for any integers $s, m \geq 1$ and $s<m$.

Proof. First, we prove that $G \cup H \rightarrow\left(m K_{2}, P_{3}\right)$ if $G \in \mathscr{R}\left(s K_{2}, P_{3}\right)$ and $H \in \mathscr{R}\left((m-s) K_{2}, P_{3}\right)$ for any integers $s, m \geq 1$ and $s<m$. Let φ_{1} be a red-blue coloring of G such that G contains at most $(s-1)$ independent red edges (form a red $(s-1) K_{2}$) and a blue P_{3}. Let φ_{2} be a red-blue coloring of H such that H contains a red $(m-s) K_{2}$ and no blue P_{3}. Use such a coloring in $G \cup H$. Thus, the red-blue coloring of $G \cup H$ implies $G \cup H$ containing at most $(m-1)$ independent red edges (form a red $(m-1) K_{2}$) and a blue P_{3}. Now, we show that for every $e \in E(G \cup H),(G \cup H)-e \nrightarrow\left(m K_{2}, P_{3}\right)$. Without loss of generality, we need only to consider when $e \in E(G)$. So, $G-e \nrightarrow\left(s K_{2}, P_{3}\right)$. Thus, there exists an $\left(s K_{2}, P_{3}\right)$-coloring ϕ_{1} of all edges of $G-e$. We define a red-blue coloring ϕ of all edges of $(G \cup H)-e$ such that $\phi(a)=\phi_{1}(a)$ for all edges $a \in E(G-e)$ and $\phi(a)=\varphi_{2}(a)$ for all edges $a \in E(H)$. Thus, we obtain an $\left(m K_{2}, P_{3}\right)$-coloring ϕ of $(G \cup H)-e$.

Conversely, let $G \cup H \in \mathscr{R}\left(m K_{2}, P_{3}\right)$. Suppose that $G \notin \mathscr{R}\left(s K_{2}, P_{3}\right)$ for a positive integer s. If $G \nrightarrow\left(s K_{2}, P_{3}\right)$, then there exists an $\left(s K_{2}, P_{3}\right)$-coloring ϕ_{2} of all edges of G. Now, let us define a red-blue coloring ϕ of $G \cup H$ such
that $\phi(e)=\phi_{2}(e)$ for all edges $e \in E(G)$ and $\phi(e)=\varphi_{2}(e)$ for all edges $e \in E(H)$. Then, ϕ is an $\left(m K_{2}, P_{3}\right)$-coloring of $G \cup H$. It means that $G \cup H \rightarrow\left(m K_{2}, P_{3}\right)$, a contradiction. If $G \rightarrow\left(s K_{2}, P_{3}\right)$ but G is not minimal, then there exists a Ramsey ($s K_{2}, P_{3}$)-minimal graph $G^{*} \subseteq G$. By the first case, we have $G^{*} \cup H$ is a Ramsey ($m K_{2}, P_{3}$)-minimal graph, a contradiction to the minimality of $G \cup H$.

Corollary 2.7. The only disconnected graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ are $4 P_{3}, C_{4} \cup 2 P_{3}, C_{5} \cup 2 P_{3}, 2 C_{4}, 2 C_{5}, C_{4} \cup C_{5}$, $C_{7} \cup P_{3}, C_{8} \cup P_{3}, H_{1} \cup P_{3}, H_{2} \cup P_{3}, H_{3} \cup P_{3}, H_{4} \cup P_{3}, H_{5} \cup P_{3}$, where H_{i} for $i \in[1,5]$ is the graph depicted in Fig. 2.

Proof. We know that $\mathscr{R}\left(K_{2}, P_{3}\right)=\left\{P_{3}\right\}$ in [2], $\mathscr{R}\left(2 K_{2}, P_{3}\right)=\left\{2 P_{3}, C_{4}, C_{5}\right\}$ in [4] and $\mathscr{R}\left(3 K_{2}, P_{3}\right)=\left\{3 P_{3}, C_{4} \cup\right.$ $\left.P_{3}, C_{5} \cup P_{3}, C_{7}, C_{8}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$ in [7]. We then apply Theorem 2.6.

Start now, we will investigate all connected graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$. We will prove that all connected graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ must contain a cycle. For $u, v \in V$, we will use the notation $u \sim v$ to denote u adjacent to v. Observe that if $F, G \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$, then by the minimality property $F \nsubseteq G$ and $G \nsubseteq F$. In the following, we will use this fact to eliminate graphs not belonging to $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Lemma 2.8. $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no tree.
Proof. Suppose to the contrary that $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains a tree T. Let L be the longest path in T, then $|V(L)| \leq 11$. Otherwise $T \supseteq 4 P_{3}$, contradict to the minimality of F. Suppose $V(L)=\left\{v_{1}, v_{2}, \ldots, v_{\ell}\right\}$. We consider the vertex v_{2}. If $d\left(v_{2}\right)=2$, then v_{2} is only adjacent to two vertices in $V(L)$, namely v_{1} and v_{3}. By Corollary $2.3, T-\left\{v_{3}\right\}$ must contain a Ramsey minimal graph $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. So, G is a acyclic graph. Hence, $G=3 P_{3}$. Clearly v_{1}, v_{2}, v_{3} are not contained in G. It implies that $T \supseteq 4 P_{3}$, a contradiction. If $d\left(v_{2}\right) \geq 3$, then there exists a vertex $u \notin V(L)$ such that $u \sim v_{2}$. Since L is the longest path in $T, d(u)=1$. By Corollary $2.3, T-\left\{v_{2}\right\} \supseteq G$ for some $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. So, $G=3 P_{3}$. Clearly v_{1}, v_{2}, u are not contained in G. It implies that $T \supseteq 4 P_{3}$, a contradiction.

Since there is no tree in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$, for every connected graph in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ must contain a cycle. Therefore, we will construct all connected graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ based on the circumference. The circumference is the length of the longest cycle in a graph. In general, the construction graph in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ is done by applying Theorem 2.1.

Lemma 2.9. Let F be a connected graph in $\mathscr{R}\left(m K_{2}, P_{3}\right)$. If t is the circumference of F, then $3 \leq t \leq 3 m-1$.
Proof. Let t be the circumference of F. It implies $t \geq 3$. Next, suppose that $t \geq 3 m$, then F contains $C_{3 m}$. Hence, $F \supseteq m P_{3}$. By Theorem 2.6, $m P_{3} \in \mathscr{R}\left(m K_{2}, P_{3}\right)$. So, F is not minimal, a contradiction.

In the following lemmas, we show that the set $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no connected graphs with circumferences 3,4 , or 5 .

Lemma 2.10. $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no connected graph with circumference 3 .
Proof. Suppose to the contrary that there exists a connected graph F with circumference 3 such that $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$. Let C_{3} be a cycle in F, where $V\left(C_{3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. By Corollary $2.5, F-\left\{v_{1}, v_{2}\right\}$ contains a Ramsey minimal $G \in \mathscr{R}\left(2 K_{2}, P_{3}\right)$. Since $2 P_{3}$ is the only graph in $\mathscr{R}\left(2 K_{2}, P_{3}\right)$ having the circumference less than $3, G=2 P_{3}$. Thus, we obtain $E(F) \supseteq E\left(C_{3}\right) \cup E\left(2 P_{3}\right)$ and $V\left(C_{3}\right) \cap V\left(2 P_{3}\right)=\left\{v_{3}\right\}$. Next, by Corollary 2.3, there must be a P_{3} in $F-E\left(C_{3}\right)$ containing no vertices of $2 P_{3}$. Without loss of generality, we assume the vertex v_{2} is contained in the P_{3}. We obtain $E(F) \supseteq E\left(C_{3}\right) \cup E\left(3 P_{3}\right)$ and $V\left(C_{3}\right) \cap V\left(3 P_{3}\right)=\left\{v_{2}, v_{3}\right\}$. Next, by Corollary 2.3, $F-\left\{v_{2}\right\}$ must contain a $3 P_{3}$. But the $3 P_{3}$ in $F-\left\{v_{2}\right\}$ implies that $F \supseteq 4 P_{3}$, contradicts to the minimality of F.

Lemma 2.11. $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no connected graph with circumference 4 .
Proof. Suppose to the contrary that there exists a connected graph $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$ with circumference 4. Then, F contains a C_{4}, where $V\left(C_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By Corollary $2.3, F-\left\{v_{1}\right\}$ contains a Ramsey minimal $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. Since $3 P_{3}$ and $C_{4} \cup P_{3}$ are the only graphs in $\mathscr{R}\left(3 K_{2}, P_{3}\right)$ having the circumference at most 4,

Fig. 3. Graphs A_{1}, A_{2}, and A_{3}.
$G=3 P_{3}$ or $G=C_{4} \cup P_{3}$. We now consider $F-\left\{v_{1}\right\} \supseteq 3 P_{3}$. Then, there is at most a P_{3} containing no vertices in $V\left(C_{4} \backslash v_{1}\right)$. Otherwise $F \supseteq C_{4} \cup 2 P_{3}$. Next, by Corollary 2.3, for every $i=2,3,4, F-\left\{v_{i}\right\}$ must contain a $3 P_{3}$. Otherwise F is not minimal or F has circumference greater than 4 . But the $3 P_{3}$ in $F-\left\{v_{i}\right\}$ forces that F is not minimal, a contradiction.

We next consider $F-\left\{v_{1}\right\} \supseteq C_{4} \cup P_{3}$. Since $F \nsupseteq 2 C_{4}, F$ contains a C_{4} containing either (i) one vertex in $V\left(C_{4} \backslash v_{1}\right)$, say v_{2} or (ii) all vertices in $V\left(C_{4} \backslash v_{1}\right)$. Otherwise F has circumference greater than 4 . For case (i), by Corollary 2.3, $F-\left\{v_{2}\right\} \supseteq 3 P_{3}$, otherwise F is not minimal. But the $3 P_{3}$ in $F-\left\{v_{2}\right\}$ implies that F is not minimal. For case (ii), there exists a vertex $u \in V\left(F \backslash C_{4}\right)$ such that $u v_{2}, u v_{4} \in E(F)$. By Corollary $2.3, F-\left\{v_{2}\right\}$ can contain a $3 P_{3}$ or $C_{4} \cup P_{3}$. But the $3 P_{3}$ or $C_{4} \cup P_{3}$ in $F-\left\{v_{2}\right\}$ implies that F is not minimal or F has circumference greater than 4 , a contradiction.

Lemma 2.12. $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no connected graph with circumference 5.

Proof. Suppose to the contrary that there exists a connected graph $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$ with circumference 5. Then, F contains a C_{5}, where $V\left(C_{5}\right)=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$. By Theorem 2.1(vii), F has order at least 8 . By Corollary 2.3, $F-\left\{v_{1}\right\}$ contains a $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. Then, one of the following 3 cases must hold: (i) $G=3 P_{3}$, (ii) $G=C_{4} \cup P_{3}$, or (iii) $G=C_{5} \cup P_{3}$.

For case (i), $F-\left\{v_{1}\right\} \supseteq 3 P_{3}$. Consider $3 P_{3}=2 P_{3} \cup P_{3}$. Since there is a P_{3} in C_{5}, say $v_{3} v_{4} v_{5}$, then v_{2} is contained in $2 P_{3}$. By Corollary 2.3, $F-\left\{v_{2}\right\}$ must contain a Ramsey minimal $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. By the minimality of F, there is no G satisfying this condition.

For case (ii), $F-\left\{v_{1}\right\} \supseteq C_{4} \cup P_{3}$. Then, one of the following 3 cases must hold: (a) one vertex in $V\left(C_{5} \backslash v_{1}\right)$, say v_{2} is contained in a C_{4}, (b) 3 vertices in $V\left(C_{5} \backslash v_{1}\right)$, say v_{2}, v_{3}, v_{4} are contained in a C_{4}, or (c) all vertices in $V\left(C_{5} \backslash v_{1}\right)$ are contained in a C_{4}. Otherwise F has circumference greater than 5 . Next, by Corollary 2.3, $F-\left\{v_{2}\right\}$ must contain a Ramsey minimal $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. By the minimality of F, there is no G satisfying this condition.

For case (iii), $F-\left\{v_{1}\right\} \supseteq C_{5} \cup P_{3}$. Then, one of the following 2 cases must hold: (a) one vertex in $V\left(C_{5} \backslash v_{1}\right)$, say v_{2} is contained in a C_{5} or (b) all vertices in $V\left(C_{5} \backslash v_{1}\right)$ are contained in a C_{5}. Otherwise F has circumference greater than 5. Next, by Corollary 2.3, $F-\left\{v_{2}\right\}$ must contain a Ramsey minimal $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. By the minimality of F, there is no G satisfying this condition.

We now construct graphs with circumference 6 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$. Furthermore, we show that the set $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no graph with circumference 7 . We first consider graphs A_{1}, A_{2}, and A_{3} as pictured in Fig. 3.

Lemma 2.13. Let F be a connected graph with circumference 6 . If $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$ then F contains A_{3}, where A_{3} is the graph as depicted in Fig. 3.

Proof. Let F be a connected graph with circumference 6 . So, F contains a C_{6}, where $V\left(C_{6}\right)=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$. If $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$, then $V(F) \geq 8$, by Theorem 2.1(vii). Now, suppose $u, w \in V\left(F \backslash C_{6}\right)$ and assume u adjacent to v_{1}. By Theorem 2.1(i) and (vii), $F-\left\{v_{1}, v_{3}, v_{5}\right\}$ and $F-E(Z)$ must contain a P_{3} where $V(Z)=V\left(C_{6}\right) \cup\{u\}$. Since we cannot have a cycle of length greater than 6 in F, then one of the following 3 cases must hold: (i) both $w \sim v_{2}$ and $w \sim v_{4}$, (ii) both $w \sim v_{2}$ and $w \sim v_{6}$, or (iii) both $w \sim u$ and $w \sim v_{4}$ (the graphs A_{1}, A_{2}, A_{3}, respectively in Fig. 3). Therefore, if $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$, then F must contain either A_{1}, A_{2}, or A_{3}.

Fig. 4. All connected graphs with circumference 6 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

We now prove that if $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$, then F contains neither A_{1} nor A_{2}. Let us consider $F \supseteq A_{1}$. By Theorem 2.1(i), $F-\left\{v_{1}, v_{2}, v_{4}\right\}$ must contain a P_{3}. Then, one of the following 3 cases must hold: (i) $x_{1} \sim v_{5}$, (ii) $x_{1} \sim v_{6}$, or (iii) both $x_{1} \sim v_{3}$ and $x_{1} \sim x_{2}$ (up to isomorphism), where $x_{1}, x_{2} \in V\left(F \backslash A_{1}\right)$. For all cases, by Theorem 2.1(i), $F-\left\{v_{2}, v_{4}, v_{6}\right\}$ and $F-\left\{v_{1}, v_{3}, v_{4}\right\}$ must contain a P_{3}. But the P_{3} in both $F-\left\{v_{2}, v_{4}, v_{6}\right\}$ and $F-\left\{v_{1}, v_{3}, v_{4}\right\}$ forces F containing $C_{4} \cup 2 P_{3}, H_{4} \cup P_{3}$, or $H_{5} \cup P_{3}$, a contradiction to the minimality of F.

Let us consider $F \supseteq A_{2}$. By Theorem 2.1(i), $F-\left\{v_{2}, v_{4}, v_{6}\right\}$ must contain a P_{3}. Then one of the following 4 cases must hold: (i) $x_{1} \sim v_{1}$, (ii) $x_{1} \sim u$, (iii) both $v_{3} \sim x_{1}$ and $x_{1} \sim x_{2}$, or (iv) both $w \sim x_{1}$ and $x_{1} \sim x_{2}$, where $x_{1}, x_{2} \in V\left(F \backslash A_{1}\right)$. For cases (i) and (ii), by Corollary $2.3, F-\left\{v_{1}\right\}$ must contain a Ramsey minimal $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$. Every $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$ yields F which is not minimal, since F contains $G \cup P_{3}$ for every $G \in \mathscr{R}\left(3 K_{2}, P_{3}\right)$, a contradiction. For cases (iii) and (iv), by Theorem 2.1(i) $F-\left\{v_{2}, v_{3}, v_{6}\right\}$ and $F-\left\{v_{1}, v_{4}, w\right\}$ must contain a P_{3}. But the P_{3} in both $F-\left\{v_{2}, v_{3}, v_{6}\right\}$ and $F-\left\{v_{1}, v_{4}, w\right\}$ yields F containing $C_{4} \cup 2 P_{3}, H_{4} \cup P_{3}$, or $H_{5} \cup P_{3}$, a contradiction.

Since F does not contain both A_{1} and A_{2}, F must contain A_{3}.
The next lemma, we prove that graphs F_{1} and F_{2} as depicted in Fig. 4 are the only graphs with circumference 6 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Lemma 2.14. Let F_{1} and F_{2} be graphs as depicted in Fig. 4. Then, F_{1} and F_{2} are the only connected graphs with circumference 6 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Proof. We first show that $F_{1}, F_{2} \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$. We can easily prove that F_{1} and F_{2} satisfy Theorem 2.1(i)-(vii). But if one edge of F_{1} or F_{2} is deleted, then the resulted graph satisfy Theorem 2.1 (viii). So, $F_{1}, F_{2} \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Let $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$ be a connected graph with circumference 6 but $F \neq F_{1}$ and $F \neq F_{2}$. By Lemma 2.13, F contains A_{3}. By Theorem 2.1(i), there must be a P_{3} in $F-\left\{v_{1}, v_{2}, v_{4}\right\}$. Then, up to isomorphism, F contains a vertex $x \in V\left(F \backslash A_{3}\right)$ adjacent to $w \in V(F)$. Next, $F-\left\{v_{1}, v_{4}, w\right\}$ must contain a P_{3}, by Theorem 2.1(i). Therefore, there must be a vertex $y \in V\left(F \backslash\left(A_{3} \cup x\right)\right)$ such that either (i) $y \sim v_{2}$, (ii) $y \sim v_{3}$, (iii) $y \sim v_{5}$, or (iv) $y \sim v_{6}$. From all cases, we obtain graphs F_{1} and F_{2} (up to isomorphism), a contradiction.

Lemma 2.15. $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains no connected graph with circumference 7 .
Proof. Suppose to the contrary that $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ contains a connected graph F with circumference 7 . So, $F \supseteq C_{7}$ where $V\left(C_{7}\right)=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$. By Theorem 2.1(vii), F has order at least 8 . Now, we assume $v \in V(F)$ and v adjacent to v_{4}, then $F-E\left(C_{7}\right)$ must contain a P_{3} by Theorem 2.1 (vii). Then, one of the following 2 cases must hold: (i) $v_{6} \sim v$ or (ii) $v_{7} \sim v$. So, we have a graph A or B is contained in F where $V(A)=V(B)=V\left(C_{7}\right) \cup\{v\}$, $E(A)=E\left(C_{7}\right) \cup\left\{v v_{4}, v v_{6}\right\}$ and $E(B)=E\left(C_{7}\right) \cup\left\{v v_{4}, v v_{7}\right\}$.

We first consider $F \supseteq A$. By Corollary $2.5, F-\left\{v_{4}, v_{6}\right\}$ must contain a Ramsey minimal graph $G \in \mathscr{R}\left(2 K_{2}, P_{3}\right)=$ $\left\{C_{4}, C_{5}, 2 P_{3}\right\}$. By the minimality of F, there is no $G \in \mathscr{R}\left(2 K_{2}, P_{3}\right)$ satisfying this condition.

We next consider $F \supseteq B$. By Theorem 2.1(i), there must be a P_{3} in $F-\left\{v_{2}, v_{4}, v_{7}\right\}$. Then, F must contain an edge connecting v_{1} to v_{6}. Thus, we have $E(F) \supseteq E(B) \cup\left\{v_{1} v_{6}\right\}$. Furthermore, by Theorem 2.1(ii), $F-\left\{v_{2}, v_{4}\right\}-E(X)$ must contain a P_{3} for $V(X)=\left\{v_{1}, v_{6}, v_{7}\right\}$. Since F does not contain a cycle of length greater than 7, there must be a vertex $u \in V(F \backslash B)$ such that one of the following 4 cases must hold: (a) $u \sim v_{5}$, (b) $u \sim v_{6}$, (c) $u \sim v_{7}$, or (d) $u \sim v$ (see Fig. 5). We now have F containing a graph B_{1}, B_{2}, B_{3}, or B_{4}.

Fig. 5. Graphs B_{1}, B_{2}, B_{3}, and B_{4}.

By Theorem 2.1(i), $F-\left\{v_{1}, v_{4}, v_{6}\right\}$ (for $F \supseteq B_{1}$ or $F \supseteq B_{2}$) must contain a P_{3}. Since F has circumference 7, there must be a vertex $w \in V(F)$ adjacent to one of 4 vertices: $v_{2}, v_{3}, v_{5}, v_{7}$. By Theorem 2.1(i), $F-\left\{v_{1}, v_{4}, v_{7}\right\}$ (for $F \supseteq B_{3}$ or $F \supseteq B_{4}$) must contain a P_{3}. Since F has circumference 7 , there must be a vertex $w \in V(F)$ adjacent to one of 4 vertices: $v_{2}, v_{3}, v_{5}, v_{6}$. On both cases, it implies that F contains F_{1} or F_{2}, a contradiction. Hence, $\mathscr{R}\left(4 K_{3}, P_{3}\right)$ contains no connected graph with circumference 7 .

In the following lemmas, we determine all graphs F with circumference $8,9,10$, and 11 belonging to $\mathscr{R}\left(4 K_{2}, P_{3}\right)$. These graphs are constructed by applying Theorem 2.1 and we obtain graphs $F_{3}, F_{4}, \ldots, F_{37}$ in Fig. 6 and graphs $F_{38}, F_{39}, \ldots, F_{54}$ in Fig. 7 as elements of $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ with circumference 8 and 9 , respectively. Moreover, we will show that the only cycle of order 10 and 11 as elements of $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ with circumference 10 and 11 , respectively.

Lemma 2.16. Let F be a connected graph with circumference 8 or 9 . If $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$ then $|E(F)| \geq 11$.
Proof. Let F be a connected graph with circumference 8 or 9 . If F has circumference 8 , then F contains a cycle C_{8}. Let $V\left(C_{8}\right)=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$. We now assume $V\left(X_{i}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ for $i=1,2, \ldots, 6, V\left(X_{7}\right)=\left\{v_{7}, v_{8}, v_{1}\right\}$, $V\left(X_{8}\right)=\left\{v_{8}, v_{1}, v_{2}\right\}$, and $V\left(Y_{i}\right)=V\left(C_{8} \backslash X_{i}\right)$ for $i=1,2, \ldots, 8$.

By Theorem 2.1(i) and (iv), $F-\left\{v_{2}, v_{5}, v_{8}\right\}$ and $F-E\left(X_{4} \cup Y_{4}\right)$ must contain a P_{3}. Then, up to isomorphism, there is a new edge in F, namely $v_{4} v_{7}$. Therefore, we now have $E(F) \supseteq E\left(C_{8}\right) \cup\left\{v_{4} v_{7}\right\}$. Next, by Theorem 2.1(i), there must be a P_{3} in $F-\left\{v_{2}, v_{4}, v_{7}\right\}$ and $F-\left\{v_{1}, v_{4}, v_{7}\right\}$. Then, one of the following 3 cases must hold (1) $v_{5} \sim v_{8}$, (2) $v_{6} \sim v_{8}$, or (3) $v_{5} \sim u$. We have $|E(F)|=10$. Now, let us consider F when $E(F) \supseteq E\left(C_{8}\right) \cup\left\{v_{4} v_{7}, v_{5} v_{8}\right\}$. This graph does not satisfy Theorem 2.1 (ii), since $F-\left\{v_{5}, v_{7}\right\}-E\left(X_{1}\right)$ does not contain a P_{3}. Next, let us consider F when $E(F) \supseteq E \cup\left\{v_{4} v_{7}, v_{6} v_{8}\right\}$. This graph does not satisfy Theorem 2.1(ii), since $F-\left\{v_{2}, v_{4}\right\}-E\left(X_{6}\right)$ does not contain a P_{3}. Last, let us consider F when $E(F) \supseteq E \cup\left\{v_{4} v_{7}, v_{5} u\right\}$. This graph does not satisfy Theorem 2.1(i), since $F-\left\{v_{2}, v_{5}, v_{7}\right)$ does not contain a P_{3}. For all cases, we conclude that $|E(F)| \geq 11$.

If F has circumference 9 , then F contains a cycle C_{9}. Let us consider $|E(F)|=10$. Then, there exists at least one vertex in C_{9} of degree 3, say v_{1}. But this graph does not satisfy Theorem 2.1(i), since $F-\left\{v_{1}, v_{4}, v_{7}\right\}$ does not contain a P_{3}. Therefore $|E(F)| \geq 11$.

Lemma 2.17. Let $F_{3}, F_{4}, \ldots, F_{37}$ be graphs as depicted in Fig. 6. Then, these graphs are the only connected graphs with circumference 8 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Proof. Let $F \in\left\{F_{3}, F_{4}, \ldots, F_{37}\right\}$. We can easily show that F satisfy Theorem 2.1. So, $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$.
Next, we prove that the connected graphs with circumference 8 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ are $F_{3}, F_{4}, \ldots, F_{37}$. Suppose that there exists a graph $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$ with circumference 8 other than $F_{3}, F_{4}, \ldots, F_{37}$. So $F \supseteq C_{8}$, where $V\left(C_{8}\right)=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$. We now assume $V\left(X_{i}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ for $i=1,2, \ldots, 6, V\left(X_{7}\right)=\left\{v_{7}, v_{8}, v_{1}\right\}$, $V\left(X_{8}\right)=\left\{v_{8}, v_{1}, v_{2}\right\}$, and $V\left(Y_{i}\right)=V\left(C_{8} \backslash X_{i}\right)$ for $i=1,2, \ldots, 8 . F$ can have order 8 or greater than 8.

For case F has order 8 , by Theorem 2.1(i) and (iv), $F-\left\{v_{2}, v_{5}, v_{8}\right\}$ and $F-E\left(X_{4} \cup Y_{4}\right)$ must contain a P_{3}. Then, up to isomorphism, there is a new edge in F, namely $v_{4} v_{7}$. Therefore, we now have $E(F) \supseteq E\left(C_{8}\right) \cup\left\{v_{4} v_{7}\right\}$. Next, by Theorem 2.1(i), there must be a P_{3} in $F-\left\{v_{2}, v_{4}, v_{7}\right\}$ and $F-\left\{v_{1}, v_{4}, v_{7}\right\}$. Then, one of the following 2 cases must hold (1) $v_{5} \sim v_{8}$ or (2) $v_{6} \sim v_{8}$. Now, let us consider F when $E(F) \supseteq E\left(C_{8}\right) \cup\left\{v_{4} v_{7}, v_{5} v_{8}\right\}$. By Theorem 2.1(ii) and (v), $F-\left\{v_{5}, v_{7}\right\}-E\left(X_{1}\right)$ and $F-\left\{v_{2}\right\}-E\left(Y_{1}\right)$ must contain a P_{3}. But the P_{3} in $F-\left\{v_{5}, v_{7}\right\}-E\left(X_{1}\right)$ and $F-\left\{v_{2}\right\}-E\left(Y_{1}\right)$ implies that F is the graph F_{3} or not minimal, a contradiction. Next, let us consider F when

F_{3}

F_{4}

F_{5}

F_{6}

F_{7}

F_{20}

F_{32}

Fig. 6. All connected graphs with circumference 8 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.
$E(F) \supseteq E \cup\left\{v_{4} v_{7}, v_{6} v_{8}\right\}$. By Theorem 2.1(ii) and (vi), $F-\left\{v_{2}, v_{4}\right\}-E\left(X_{6}\right)$ and $F-E\left(X_{6} \cup Y_{6}\right)$ must contain a P_{3}. Then one of the following 2 cases must hold: (1) $v_{5} \sim v_{7}$ or (2) $v_{5} \sim v_{8}$. For both cases, there must be a P_{3} in $F-\left\{v_{2}\right\}-E\left(Y_{1}\right)$ and $F-E\left(X_{1} \cup Y_{1}\right)$ by Theorem 2.1(v) and (vi). But the P_{3} in $F-\left\{v_{2}\right\}-E\left(Y_{1}\right)$ and $F-E\left(X_{1} \cup Y_{1}\right)$ implies that F is one of the graphs $F_{4}, F_{5}, F_{6}, F_{7}$ (up to isomorphism) or not minimal, a contradiction.

For case F has order greater than 8 , there exist at least one vertex $u \in F$ but $u \notin C_{8}$ adjacent to a vertex in C_{8}. We assume $u \sim v_{2}$. By Theorem 2.1(v), $F-\left\{v_{2}\right\}-E\left(Y_{1}\right)$ must contain a P_{3}. Then one of the following 8 cases must hold: (1) $v_{1} \sim v_{6}$, (2) $v_{1} \sim v_{3}$, (3) $v_{1} \sim v_{7}$, (4) $v_{1} \sim v_{5}$, (5) $v_{1} \sim v_{4}$, (6) $v_{1} \sim w$, (7) $v_{4} \sim u$, or (8) $v_{4} \sim w$. Otherwise F is the graph F_{11} or not minimal. So, F contains one of graphs $D_{1}, D_{2}, \ldots, D_{8}$ where $E\left(D_{1}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, v_{1} v_{6}\right\}, E\left(D_{2}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, v_{1} v_{3}\right\}, E\left(D_{3}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, v_{1} v_{7}\right\}, E\left(D_{4}\right)=$ $E\left(C_{8}\right) \cup\left\{u v_{2}, v_{1} v_{5}\right\}, E\left(D_{5}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, v_{1} v_{4}\right\}, E\left(D_{6}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, w v_{1}\right\}, E\left(D_{7}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, u v_{4}\right\}$, or $E\left(D_{8}\right)=E\left(C_{8}\right) \cup\left\{u v_{2}, w v_{4}\right\}$.

$\mathrm{F}_{41} \quad \mathrm{~F}_{42}$

Fig. 7. All connected graphs with circumference 9 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Fig. 8. Graphs $D_{1 a}, D_{1 b}, D_{1 c}$, and $D_{1 d}$.

For F contains D_{1}. By Theorem 2.1(i), (ii), (v) and (vi), $F-\left\{v_{1}, v_{3}, v_{6}\right\}, F-\left\{v_{1}, v_{3}\right\}-E\left(X_{5}\right), F-\left\{v_{6}\right\}-E\left(Y_{5}\right)$, and $F-E\left(X_{5} \cup Y_{5}\right)$ must contain a P_{3}. Then one of the following 4 cases must hold: (1) $v_{2} \sim v_{8}, v_{3} \sim v_{5}$, (2) $v_{2} \sim v_{8}, v_{3} \sim v_{7}$, (3) $v_{4} \sim v_{8}, v_{1} \sim v_{5}$, or (4) $v_{4} \sim v_{8}, v_{1} \sim v_{7}$, (graph $D_{1 a}, D_{1 b}, D_{1 c}$, or $D_{1 d}$, respectively in Fig. 8). Otherwise F is one of the graphs $F_{8}, F_{9}, F_{10}, F_{12}, F_{13}, \ldots, F_{23}$ (up to isomorphism) or not minimal. Next, when F contains $D_{1 a}, D_{1 b}, D_{1 c}$, or $D_{1 d}$, by Theorem 2.1(ii), $F-\left\{v_{3}, v_{6}\right\}-E\left(X_{8}\right)$ and $F-\left\{v_{1}, v_{6}\right\}-E\left(X_{2}\right)$ must contain a P_{3}. But this leads to F which is not minimal, a contradiction.

Now, we observe when F contains D_{2}. By Theorem 2.1(i), (v) and (vi), $F-\left\{v_{1}, v_{3}, v_{6}\right\}, F-\left\{v_{6}\right\}-E\left(Y_{5}\right)$, $F-\left\{v_{5}\right\}-E\left(Y_{4}\right), F-\left\{v_{7}\right\}-E\left(Y_{6}\right)$, and $F-E\left(X_{1} \cup Y_{1}\right)$ must contain a P_{3}. Then one of the following 3 cases must hold: (1) both $v_{4} \sim v_{8}$ and $v_{2} \sim v_{7}$, (2) both $v_{4} \sim v_{8}$ and $v_{1} \sim v_{5}$, or (3) both $v_{4} \sim v_{8}$ and $v_{1} \sim v_{7}$ (graph $D_{2 a}, D_{2 b}$, or $D_{2 c}$, respectively in Fig. 9). Otherwise F is one of the graphs $F_{24}, F_{25}, F_{26}, F_{33}$ (up to isomorphism) or not minimal. Next, when F contains $D_{2 a}, D_{2 b}$, or $D_{2 c}$, there must be a P_{3} in both $F-\left\{v_{4}, v_{7}\right\}-E\left(X_{1}\right)$ and $F-\left\{v_{4}, v_{8}\right\}-E\left(X_{1}\right)$ by Theorem 2.1(ii). But it causes F which is not minimal, a contradiction.

We consider F contains D_{3}. By Theorem 2.1(i), (ii) and (v), all graphs $F-\left\{v_{1}, v_{3}, v_{6}\right\}, F-\left\{v_{2}, v_{4}, v_{7}\right\}$, $F-\left\{v_{2}, v_{5}, v_{7}\right\}, F-\left\{v_{1}, v_{6}\right\}-E\left(X_{2}\right), F-\left\{v_{5}\right\}-E\left(Y_{4}\right)$, and $F-\left\{v_{7}\right\}-E\left(Y_{6}\right)$ must contain a P_{3}. Then, one of the following 5 cases must hold: (1) $v_{1} \sim v_{3}, v_{4} \sim v_{8}$, (2) $v_{1} \sim v_{6}, v_{5} \sim v_{7}$, (3) $v_{3} \sim v_{6}, v_{5} \sim v_{7}$, (4) $v_{4} \sim v_{6}$, $v_{5} \sim v_{8}$, or (5) $v_{4} \sim v_{8}, v_{5} \sim v_{8}$. (graph $D_{3 a}, D_{3 b}, D_{3 c}, D_{3 d}$, or $D_{3 e}$, respectively, in Fig. 10). Otherwise F is one of the graphs $F_{16}, F_{17}, F_{23}, F_{27}, F_{28}, F_{29}, F_{34}$ (up to isomorphism) or not minimal. Next, when F contains one of graphs in Fig. 10, by Theorem 2.1(ii) and (iii), there must be a P_{3} in all graphs $F-\left\{v_{4}, v_{7}\right\}-E\left(X_{1}\right), F-\left\{v_{1}, v_{3}\right\}-E\left(X_{5}\right)$, $F-\left\{v_{2}, v_{7}\right\}-E\left(X_{4}\right)$, and $F-\left\{v_{2}\right\}-E\left(X_{4} \cup X_{7}\right)$. But the P_{3} in these graphs yields F which is not minimal, a contradiction.

Fig. 9. Graphs $D_{2 a}, D_{2 b}$, and $D_{2 c}$.

Fig. 10. Graphs $D_{3 a}, D_{3 b}, D_{3 c}, D_{3 d}$, and $D_{3 e}$.

Fig. 11. Graphs $D_{4 a}, D_{4 b}, D_{4 c}$, and $D_{4 d}$.

We observe when F contains D_{4}. By Theorem 2.1(i), (ii), (v) and (vi), all graphs $F-\left\{v_{2}, v_{5}, v_{7}\right\}, F-\left\{v_{2}, v_{5}, v_{8}\right\}$, $F-\left\{v_{1}, v_{3}, v_{6}\right\}, F-\left\{v_{1}, v_{6}\right\}-E\left(X_{2}\right), F-\left\{v_{2}, v_{5}\right\}-E\left(X_{6}\right), F-\left\{v_{5}, v_{7}\right\}-E\left(X_{1}\right), F-\left\{v_{2}, v_{8}\right\}-E\left(X_{4}\right)$, $F-\left\{v_{7}\right\}-E\left(Y_{6}\right), F-\left\{v_{5}\right\}-E\left(Y_{4}\right)$, and $F-E\left(X_{6} \cup Y_{6}\right)$ must contain a P_{3}. Then one of the following 4 cases must hold: (1) $v_{1} \sim v_{3}, v_{4} \sim v_{8}$, (2) $v_{1} \sim v_{4}, v_{2} \sim v_{8}$, (3) $v_{1} \sim v_{6}, v_{5} \sim v_{7}$, or (4) $v_{3} \sim v_{6}, v_{5} \sim v_{7}$ (graph $D_{4 a}, D_{4 b}, D_{4 c}$, or $D_{4 d}$, respectively, in Fig. 11). Otherwise F is one of the graphs $F_{15}, F_{18}, F_{22}, F_{30}, F_{31}$ (up to isomorphism) or not minimal. Furthermore, when F contains $D_{4 a}, D_{4 b}, D_{4 c}$, or $D_{4 d}$, by Theorem 2.1(ii), all graphs $F-\left\{v_{2}, v_{7}\right\}-E\left(X_{2}\right)$, $F-\left\{v_{1}, v_{3}\right\}-E\left(X_{5}\right)$, and $F-\left\{v_{5}, v_{8}\right\}-E\left(X_{1}\right)$ must contain a P_{3}. But the P_{3} in these graphs lead to F which is not minimal, a contradiction.

We consider F contains D_{5}. By Theorem 2.1(i), (ii), (v) and (vi), all graphs $F-\left\{v_{2}, v_{4}, v_{7}\right\}, F-\left\{v_{1}, v_{3}, v_{6}\right\}$, $F-\left\{v_{1}, v_{3}\right\}-E\left(X_{5}\right), F-\left\{v_{2}, v_{4}\right\}-E\left(X_{6}\right), F-\left\{v_{4}, v_{7}\right\}-E\left(X_{1}\right), F-\left\{v_{6}\right\}-E\left(Y_{5}\right), F-\left\{v_{7}\right\}-E\left(Y_{6}\right)$, and $F-E\left(X_{6} \cup Y_{6}\right)$ must contain a P_{3}. But the P_{3} in these graphs implies F which is one of the graphs F_{27}, F_{30} (up to isomorphism) or not minimal, a contradiction.

Now, we observe F containing D_{6}. All graphs $F-\left\{v_{1}, v_{3}, v_{6}\right\}, F-\left\{v_{2}, v_{5}, v_{8}\right\}, F-\left\{v_{1}, v_{3}\right\}-E\left(X_{5}\right)$, $F-\left\{v_{1}\right\}-E\left(X_{2} \cup X_{5}\right)$ and $F-\left\{v_{6}\right\}-E\left(Y_{5}\right)$ must contain a P_{3} by Theorem 2.1(i)-(iii), and (v). But the new P_{3} in these graphs causes F which is the graph F_{36} or not minimal, a contradiction.

Lastly, we consider F contains D_{7} or D_{8}. By Theorem 2.1(i), (ii), and (v), all graphs $F-\left\{v_{2}, v_{4}, v_{7}\right\}$, $F-\left\{v_{2}, v_{4}\right\}-E\left(X_{6}\right)$, and $F-\left\{v_{7}\right\}-E\left(Y_{6}\right)$ must contain a P_{3}. But the new P_{3} in these graphs implies that F is one of the graphs $F_{12}, F_{32}, F_{35}, F_{36}, F_{37}$ (up to isomorphism), F is not minimal or F has circumference 9 , a contradiction. For all cases, we conclude that the connected graphs with circumference 8 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ are $F_{3}, F_{4}, \ldots, F_{37}$.

Lemma 2.18. Let $F_{38}, F_{39}, \ldots, F_{54}$ be graphs as depicted in Fig. 7. Then, these graphs are the only connected graphs with circumference 9 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

Proof. Let $F \in\left\{F_{38}, F_{39}, \ldots, F_{54}\right\}$. We can easily show that F satisfy Theorem 2.1. So, $F \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$.
Next, we prove that the connected graphs with circumference 9 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ are $F_{38}, F_{39}, \ldots, F_{54}$. Suppose that F having circumference 9 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ but $F \notin\left\{F_{38}, F_{39}, \ldots, F_{54}\right\}$. Since F has circumference 9 then $F \supseteq C_{9}$. Let $V\left(C_{9}\right)=\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}$. We may assume $V\left(X_{i}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ for $i=1,2, \ldots, 7, V\left(X_{8}\right)=\left\{v_{8}, v_{9}, v_{1}\right\}$, $V\left(X_{9}\right)=\left\{v_{9}, v_{1}, v_{2}\right\} . F$ can have order 9 or greater than 9.

First, we consider F having order 9. By Theorem 2.1(i), $F-\left\{v_{2}, v_{5}, v_{8}\right\}$ must contain a P_{3}. So, one of the following 3 cases must hold: (1) $v_{1} \sim v_{7}$, (2) $v_{1} \sim v_{6}$, or (3) $v_{7} \sim v_{9}$.

For case (1), we have $E(F) \supseteq E\left(C_{9}\right) \cup\left\{v_{1} v_{7}\right\}$. By Theorem 2.1(iii), there must be a P_{3} in $F-\left\{v_{1}\right\}-E\left(X_{3} \cup X_{6}\right)$. Since $F-\left\{v_{1}\right\}-E\left(X_{3} \cup X_{6}\right)=3 K_{2}$, namely three independent edges $v_{2} v_{3}, v_{5} v_{6}$, and $v_{8} v_{9}$, then the P_{3} in $F-\left\{v_{1}\right\}-E\left(X_{3} \cup X_{6}\right)$ is formed by connecting two of the three edges. The eligible edge is only $v_{2} v_{9}$. Otherwise F is one of the graphs F_{38}, F_{39}, F_{40}, or not minimal. So, we now have $E(F) \supseteq E\left(C_{9}\right) \cup\left\{v_{1} v_{7}, v_{2} v_{9}\right\}$. By Theorem 2.1(iii) and (iv), both graphs $F-\left\{v_{7}\right\}-E\left(X_{3} \cup X_{9}\right)$ and $F-E\left(X_{3} \cup X_{6} \cup X_{9}\right)$ must contain a P_{3}. The P_{3} in both graphs is formed by connecting v_{6} to v_{8} and v_{1} to v_{4}. Otherwise F is one of the graphs F_{41} or F_{42}, or not minimal. Thus, we obtain $E(F) \supseteq E\left(C_{9}\right) \cup\left\{v_{1} v_{7}, v_{2} v_{9}, v_{6} v_{8}, v_{1} v_{4}\right\}$. Next, there must be a P_{3} in $F-\left\{v_{4}\right\}-E\left(X_{6} \cup X_{9}\right)$ by Theorem 2.1(iii). But it implies F which is not minimal, a contradiction.

For case (2), we have $E(F) \supseteq E\left(C_{9}\right) \cup\left\{v_{1} v_{6}\right\}$. By Theorem 2.1(i) and (iii), both graphs $F-\left\{v_{3}, v_{6}, v_{9}\right\}$ and $F-\left\{v_{6}\right\}-E\left(X_{2}\right)-E\left(X_{8}\right)$ must contain a P_{3}. Then, one of the following 7 cases must hold: (a) $v_{1} \sim v_{4}$, (b) $v_{1} \sim v_{5}$, (c) $v_{1} \sim v_{7}$, (d) $v_{2} \sim v_{7}$, (e) $v_{4} \sim v_{7}$, (f) $v_{4} \sim v_{8}$, or (g) $v_{5} \sim v_{7}$. Otherwise F is the graph F_{40} or not minimal. For all cases, there must be a P_{3} in all graphs $F-\left\{v_{1}, v_{4}, v_{7}\right\}, F-\left\{v_{1}, v_{7}\right\}-E\left(X_{3}\right), F-\left\{v_{1}, v_{4}\right\}-E\left(X_{6}\right)$ and $F-\left\{v_{1}\right\}-E\left(X_{3} \cup X_{6}\right)$ by Theorem 2.1(i)-(iii). Then, the P_{3} in these graphs is formed by connecting two of the three independent edges $v_{2} v_{3}, v_{5} v_{6}$ and $v_{8} v_{9}$. It causes F which is one of the graphs $F_{42}, F_{43}, \ldots, F_{49}$ (up to isomorphism) or not minimal, a contradiction.

For case (3), we have $E(F) \supseteq E\left(C_{9}\right) \cup\left\{v_{7} v_{9}\right\}$. There must be a P_{3} in $F-\left\{v_{7}\right\}-E\left(X_{3} \cup X_{9}\right)$ by Theorem 2.1(iii). Considering F does not contain graph in both cases (1) and (2), then there is only one case hold, that is $v_{6} v_{8} \in E(F)$. So, we have $E(F) \supseteq E\left(C_{9}\right) \cup\left\{v_{7} v_{9}, v_{6} v_{8}\right\}$. Next, there must be a P_{3} in $F-\left\{v_{6}, v_{9}\right\}-E\left(X_{2}\right)$ by Theorem 2.1(iii). Since $F-\left\{v_{6}, v_{9}\right\}-E\left(X_{2}\right)=3 K_{2}$ namely 3 independent edges $v_{1} v_{2}, v_{4} v_{5}$ and $v_{7} v_{8}$, then the P_{3} in $F-\left\{v_{6}, v_{9}\right\}-E\left(X_{2}\right)$ is formed by connecting two of the three edges. It implies that F is one of the graphs F_{41}, F_{42}, F_{49}, or not minimal, a contradiction.

Secondly, we observe when F has order greater than 9 . Then, there exists at least one vertex $u \in V(F)$ but $u \notin V\left(C_{9}\right)$ adjacent to a vertex in C_{9}. We assume $u \sim v_{1}$. There must be a P_{3} in both graphs $F-\left\{v_{1}, v_{4}, v_{7}\right\}$ and $F-\left\{v_{1}\right\}-E\left(X_{3}\right)-E\left(X_{6}\right)$, by Theorem 2.1(i) and (iii). We know that $F-\left\{v_{1}, v_{4}, v_{7}\right\}$ and $F-\left\{v_{1}\right\}-E\left(X_{3}\right)-E\left(X_{6}\right)$ are three independent edges $v_{2} v_{3}, v_{5} v_{6}, v_{8} v_{9}$. Then, only one case must hold, that is $v_{2} \sim v_{9}$. Otherwise F is one of the graphs $F_{50}, F_{52}, F_{53}, F_{54}$ or not minimal. Hence, we have $E(F) \supseteq E\left(C_{9}\right) \cup\left\{u v_{1}, v_{2} v_{9}\right\}$. Next, by Theorem 2.1(ii), $F-\left\{v_{4}, v_{7}\right\}-E\left(X_{9}\right)$ must contain a P_{3}. Then, only one case must hold, that is $v_{6} \sim v_{8}$. Otherwise F is the graph F_{51} or not minimal. Therefore, we obtain $E(F) \supseteq E\left(C_{9}\right) \cup\left\{u v_{1}, v_{2} v_{9}, v_{6} v_{8}\right\}$. There must be a P_{3} in $F-\left\{v_{7}\right\}-E\left(X_{3}\right)-E\left(X_{9}\right)$, by Theorem 2.1 (iii). But, this yields that F is not minimal, a contradiction.

For all cases, we obtain the connected graphs with circumference 9 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ are $F_{38}, F_{39}, \ldots, F_{54}$.
Lemma 2.19. The only graphs with circumference 10 or 11 in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$ are C_{10} or C_{11}, respectively.
Proof. We can check easily that $C_{10}, C_{11} \in \mathscr{R}\left(4 K_{2}, P_{3}\right)$. Furthermore, since every graph having circumference 10 or 11 contains C_{10} or C_{11}, respectively, the only C_{10} and C_{11} are in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$.

By Corollary 2.7, Lemma 2.8, 2.10-2.19, we obtain all graphs in $\mathscr{R}\left(4 K_{2}, P_{3}\right)$. Therefore, we have the following theorem.

Theorem 2.20. $\mathscr{R}\left(4 K_{2}, P_{3}\right)=\left\{4 P_{3}, C_{4} \cup 2 P_{3}, C_{5} \cup 2 P_{3}, 2 C_{4}, 2 C_{5}, C_{4} \cup C_{5}, C_{7} \cup P_{3}, C_{8} \cup P_{3}, H_{1} \cup P_{3}, H_{2} \cup P_{3}, H_{3} \cup\right.$ $\left.P_{3}, H_{4} \cup P_{3}, H_{5} \cup P_{3}\right\} \cup\left\{F_{i} \mid i \in[1,54]\right\} \cup\left\{C_{10}, C_{11}\right\}$.

Acknowledgment

This research was supported by Research Grant "Program Penelitian Unggulan Perguruan Tinggi (PUPT)", Ministry of Research, Technology and Higher Education, Indonesia.

References

[1] S.A. Burr, On the Computational Complexity of Ramsey-Type Problems, Vol. 5, Springer-Verlag, 1990, pp. 46-52.
[2] S.A. Burr, P. Erdös, R.J. Faudree, R.H. Schelp, A class of Ramsey-finite graphs, in: Proceeding of the Ninth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton (1978) 171-180.
[3] S.A. Burr, R.J. Faudree, R.H. Schelp, P. Erdös, C.C. Rousseau, Ramsey-minimal graphs for matchings, in: The Theory and Applications of Graphs (Kalamazoo, Mich.), Wiley, New York, 1981 (1980), pp. 159-168.
[4] I. Mengersen, J. Oeckermann, Matching-star Ramsey sets, Discrete Appl. Math. 95 (1999) 417-424.
[5] E.T. Baskoro, L. Yulianti, Ramsey minimal graphs for $2 K_{2}$ versus P_{n}, Adv. Appl. Discrete Math. 8 (2) (2011) 83-90.
[6] D. Tatanto, E.T. Baskoro, On Ramsey $\left(2 K_{2}, 2 P_{n}\right)$ - minimal graphs, AIP Conf. Proc. 1450 (2012) 90. http://dx.doi.org/10.1063/1.4724122.
[7] H. Muhshi, E.T. Baskoro, On Ramsey $\left(3 K_{2}, P_{3}\right)$ - minimal graphs, AIP Conf. Proc. 1450 (2012) 110. http://dx.doi.org/10.1063/1.4724125.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author at: Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10 Bandung 40132, Indonesia.

 E-mail addresses: kristiana.fmipa@unej.ac.id (K. Wijaya), ebaskoro@math.itb.ac.id (E.T. Baskoro), hilda@math.itb.ac.id (H. Assiyatun), djoko@math.itb.ac.id (D. Suprijanto).

