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Abstract

Let F, G, and H be simple graphs. We write F → (G, H ) to mean that any red–blue coloring of all edges of F will contain
either a red copy of G or a blue copy of H. A graph F (without isolated vertices) satisfying F → (G, H ) and for each e ∈ E(F),
(F − e) ↛ (G, H ) is called a Ramsey (G, H )-minimal graph. The set of all Ramsey (G, H )-minimal graphs is denoted by
R(G, H ). In this paper, we derive the necessary and sufficient condition of graphs belonging to R(4K2, H ), for any connected
graph H. Moreover, we give a relation between Ramsey (4K2, P3)- and (3K2, P3)-minimal graphs, and Ramsey (4K2, P3)- and
(2K2, P3)-minimal graphs. Furthermore, we determine all graphs in R(4K2, P3).
c⃝ 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Ramsey minimal graph; Edge coloring; Matching; Path

1. Introduction

Let F be a graph with n vertices and m edges. If v ∈ V (F) and e ∈ E(F), then F − {v} is a graph on n − 1
vertices obtained by deleting the vertex v together with all edges incident with v, and F − e is a graph on m − 1 edges
obtained by deleting the edge e from F. A complete graph, cycle, and path with n vertices are denoted by Kn, Cn,

and Pn, respectively. mK2 will denote a graph consisting of m disjoint copies of a K2.

Let F, G, and H be graphs without isolated vertices. We write F → (G, H ) to mean that any red–blue coloring
of the edges of F will contain either a red copy of G or a blue copy of H. A red–blue coloring of F such that neither
a red G nor a blue H occurs is called a (G, H )-coloring. A graph F will be called a Ramsey (G, H )-minimal if
F → (G, H ) but for each e ∈ E(F), (F − e) ↛ (G, H ). The set of all Ramsey (G, H )-minimal graphs will be
denoted by R(G, H ).
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Fig. 1. Graph in R(2K2, K3).

Fig. 2. All connected graphs with circumference 6 in R(3K2, P3).

The problem of characterizing all graphs F in R(G, H ) for a fixed pair of graphs G and H is very interesting but
it is also a difficult problem, even for small graphs G and H . Burr [1] showed that deciding whether F ↛ (G, H ) is
an N P-complete problem if G and H are fixed 3-connected graphs (or triangles).

Numerous papers discuss the problem of determining the set R(G, H ). In particular, Burr et al. [2] proved
that the set R(mK2, H ) is finite for any graph H. In particular, they proved that R(2K2, 2K2) = {3K2, C5},

R(2K2, K3) = {2K3, K5, G}, where G is the graph in Fig. 1. They also gave the maximal number of edges of graph
F belonging to R(mK2, H ), that is |E(F)| ≤

∑b
i=1ni where n = |V (H )| and b = (m − 1)

((
2m − 1

2

)
+ 1

)
+ 1 for m

a positive integer. Burr et al. [3] gave some characterizations of all graphs in R(t K2, 2K2) for any t ≥ 2. Mengersen
and Oeckermann [4] proved that R(2K2, P3) = {2P3, C4, C5}. In the same paper, they also determined all graphs in
R(2K2, K1,3). Baskoro and Yulianti [5] determined all graphs in R(2K2, Pn) for n = 4, 5. The characterization of
all graphs which belong to R(2K2, 2Pn) for n = 4, 5 was given by Tatanto and Baskoro [6]. Mushi and Baskoro [7]
derived the properties of graphs belonging to the class R(3K2, P3) and determined all graphs in this class. They
proved that R(3K2, P3) = {3P3, C4 ∪ P3, C5 ∪ P3, C7, C8, H1, H2, H3, H4, H5} where H1, H2, H3, H4, and H5 are
the graphs in Fig. 2.

The following lemma about the necessary conditions of graphs in R(3K2, P3) given by Mushi and Baskoro [7].

Lemma 1.1 ([7]). Let F ∈ R(3K2, P3). Then

(i) F − {u, v} ⊇ P3 for every u, v ∈ V (F);
(ii) F − {u} − E(C3) ⊇ P3 for every u ∈ V (F) and C3 ⊆ F;

(iii) F − E(2C3) ⊇ P3 for every 2C3 ⊆ F;

(iv) F − E(F∗
m) ⊇ P3 for every F∗

m ⊆ F where F∗
m is an induced connected subgraph with m vertices (m = 4 or 5);

(v) Every vertex in F is contained in some P3 in F.

In this paper, we derive the necessary and sufficient condition for graphs belonging to R(4K2, H ). We give
a relation between Ramsey (4K2, P3)-minimal graphs and Ramsey (3K2, P3)-minimal graphs as well as Ramsey
(2K2, P3)-minimal graphs. Finally, we give characterizations of all graphs in R(4K2, P3).

2. Main results

2.1. Necessary and sufficient conditions

In this section, we derive the necessary and sufficient conditions for graphs in R(4K2, H ) for any connected graph
H. Let F be a graph in R(4K2, H ). Let X, Y, and Z be induced subgraphs of F by 3, 5, and 7 vertices, respectively.
If there are two different induced subgraphs on 3 vertices of F, then we will use the notation X1 and X2, where
V (X1) ̸= V (X2). Then, we have the following theorem.

R



176 K. Wijaya et al. / AKCE International Journal of Graphs and Combinatorics 15 (2018) 174–186

Theorem 2.1. Let H be a connected graph. F ∈ R(4K2, H ) if and only if the following conditions are satisfied:

(i) For every u, v, w ∈ V (F), F − {u, v, w} ⊇ H ;

(ii) For every u, v ∈ V (F) and X in F, F − {u, v} − E(X ) ⊇ H ;

(iii) For every u ∈ V (F) and X1, X2 in F, F − {u} − E(X1 ∪ X2) ⊇ H ;

(iv) For every X1, X2, X3 in F, F − E(X1 ∪ X2 ∪ X3) ⊇ H ;

(v) For every u ∈ V (F) and Y in F, F − {u} − E(Y ) ⊇ H ;

(vi) For every X and Y in F, F − E(X ∪ Y ) ⊇ H ;

(vii) For every Z in F, F − E(Z ) ⊇ H ;

(viii) For every edge e ∈ E(F), at least one of seven conditions below is satisfied.

(a) There exists u, v, w ∈ V (F) such that (F − e) − {u, v, w} ̸⊇ H ;

(b) There exists u, v ∈ V (F) and X in F such that (F − e) − {u, v} − E(X ) ̸⊇ H ;

(c) There exists u ∈ V (F) and X1, X2 in F such that (F − e) − {u} − E(X1 ∪ X2) ̸⊇ H ;

(d) There exists X1, X2, X3 in F such that (F − e) − E(X1 ∪ X2 ∪ X3) ̸⊇ H ;

(e) There exists u ∈ V (F) and Y in F such that (F − e) − {u} − E(Y ) ̸⊇ H ;

(f) There exists X and Y in F such that (F − e) − E(X ∪ Y ) ̸⊇ H ;

(g) There exists Z in F such that (F − e) − E(Z ) ̸⊇ H.

Proof. Let H be a connected graph. Let F ∈ R(4K2, H ). So, F → (4K2, H ) and for each edge e ∈ E(F), (F −e) ↛
(4K2, H ). We first consider F → (4K2, H ). We will prove that cases (i)–(vii) are satisfied. Suppose to the contrary
that at least one of cases (i)–(vii) is violated. Then, color by red all edges incident to u, v, or w in cases (i)–(iii); all
edges of all X in cases (ii), (iii), and (iv); all edges of Y in cases (v) and (vi); or all edges of Z in case (vii). Next, the
remaining edges are colored by blue. Then, in any case we obtain a (4K2, H )-coloring of F, a contradiction.

We now consider for each edge e ∈ E(F), (F − e) ↛ (4K2, H ). Then, there exists a (4K2, H )-coloring of F − e.
In such a coloring, the subgraph of F − e induced by all red edges does not contain a 4K2 and the subgraph of F − e
induced by all blue edges does not contain an H. Thus, the subgraph of F − e induced by all blue edges is one of
subgraphs: (F − e) − {u, v, w}, (F − e) − {u, v} − E(X ), (F − e) − {u} − E(X1 ∪ X2), (F − e) − E(X1 ∪ X2 ∪ X3),
(F − e) − {u} − E(Y ), (F − e) − E(X ∪ Y ), or (F − e) − E(Z ), for some u, v, w ∈ V (F) and the induced subgraphs
X, X1, X2, X3, Y, Z of F whose order are 3, 3, 3, 3, 5, 7, respectively. Thus, we obtain case (viii).

Conversely, suppose that all cases (i)–(viii) are satisfied. Consider any red–blue coloring of F not containing a red
4K2. Then, we have either all blue edges or the subgraph of F induced by all red edges contains at most 3 independent
edges. Now, remove all red edges. This removal can be done by one of the cases (i)–(vii), namely deleting three
vertices in case (i), deleting two vertices and all edges of the induced subgraph with 3 vertices in case (ii), deleting
one vertex and all edges of two induced subgraphs with 3 vertices in case (iii), deleting all edges of three induced
subgraphs with 3 vertices in case (iv), deleting one vertex and all edges of the induced subgraph with 5 vertices in
case (v), deleting all edges of the induced subgraphs with 3 and 5 vertices in case (vi), or deleting all edges of the
induced subgraph with 7 vertices in case (vii). In all cases, the existence of a blue H occurs. Thus, by cases (i)–(vii),
we obtain F → (4K2, H ).

We now consider case (viii). We define a red–blue coloring φ of all edges of F − e such that φ(x) = blue for
every edge x in one of subgraphs (F − e) − {u, v, w}, (F − e) − {u, v} − E(X ), (F − e) − {u} − E(X1 ∪ X2),
(F −e)− E(X1 ∪ X2 ∪ X3), (F −e)−{u}− E(Y ), (F −e)− E(X )− E(Y ), or (F −e)− E(Z ), for some u, v, w ∈ V (F)
and the induced subgraphs X, X1, X2, X3, Y, Z of F whose order are 3, 3, 3, 3, 5, 7, respectively and φ(x) = red
otherwise. We obtain a (4K2, H )-coloring φ of F − e. Thus, for each edge e ∈ E(F), (F − e) ↛ (4K2, H ). ■

We now give some relations between a graph in R(4K2, P3) and graph in R(t K2, P3) for t = 3 and t = 2 in the
following lemmas.

Lemma 2.2. F → (4K2, P3) if and only if the following conditions are satisfied:

(i) for every v ∈ V (F), F − {v} → (3K2, P3);
(ii) for every C3 ⊂ F, F − E(C3) → (3K2, P3);
(iii) for every induced subgraph on 7 vertices Z of F, F − E(Z ) ⊇ P3.

R
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Proof. Suppose to the contrary that at least one of cases (i)–(iii) is violated. Then, there exists a (3K2, P3)-coloring
φ1 of the edges of either F − {v} in case (i) or F − E(C3) in case (ii). Now, let us define a new coloring φ of the
edges of F such that φ(e) = φ1(e) for e ∈ F − {v} in case (i) or e ∈ F − E(C3) in case (ii), and φ(e) = red for all
edges e incident to v in case (i) or all edges e ∈ E(C3) in case (ii). In both cases, we obtain a (4K2, P3)-coloring of
F, a contradiction. Next, suppose that F − E(Z ) does not contain a P3 for an induced subgraph Z of F on 7 vertices.
Color all edges e ∈ E(Z ) by red and otherwise by blue. We obtain a (4K2, P3)-coloring of F, a contradiction.

Conversely, let all cases (i)–(iii) be satisfied. By applying Lemma 1.1, the cases (i)–(vii) in Theorem 2.1 are
satisfied. We obtain F → (4K2, P3). ■

Corollary 2.3. Let F ∈ R(4K2, P3). For every v ∈ V (F) and C3 in F, then graphs F − {v} and F − E(C3) contain
a Ramsey (3K2, P3)-minimal graph.

Proof. Suppose one of F − {v} or F − E(C3) does not contain G ∈ R(3K2, P3) for some v ∈ V (F) or C3 in
F. Then F − {v} ↛ (3K2, P3) or F − E(C3) ↛ (3K2, P3). By Lemma 2.2, F ↛ (4K2, P3). This contradicts
F ∈ R(4K2, P3). ■

Lemma 2.4. If F → (4K2, P3), then

(i) for every u, v ∈ V (F), F − {u, v} → (2K2, P3);
(ii) for every u ∈ V (F) and C3 in F, F − {u} − E(C3) → (2K2, P3);
(iii) for every 2C3 in F, F − E(2C3) → (2K2, P3).

Proof. Suppose that at least one of cases (i)–(iii) is violated for some u, v ∈ V (F), C3 in F, or 2C3 in F. Then,
there exists a (2K2, P3)-coloring φ1 of all edges of either F − {u, v}, F − {u} − E(C3), or F − E(2C3). We now
define a red–blue coloring φ of F such that φ(e) = φ1(e) for all edges e ∈ F − {u, v}, e ∈ F − {u} − E(C3), or
e ∈ F − E(2C3) and φ(e) = red otherwise. In any case, we obtain a (4K2, P3)-coloring of F, a contradiction. ■

Corollary 2.5. If F ∈ R(4K2, P3), then for every u, v ∈ V (F) and tC3 in F with t = 1, 2, all graphs F − {u, v},

F − {u} − E(C3), and F − E(2C3) contain a Ramsey (2K2, P3)-minimal graph.

Proof. It follows directly from Lemma 2.4. ■

2.2. R(4K2, P3)

In this section, we determine all graphs in R(4K2, P3). These graphs are constructed by applying Theorem 2.1.
These graphs can be connected or disconnected. We first prove that all disconnected graphs in R(mK2, P3) are a
disjoint union of graphs in R(sK2, P3) and R((m − s)K2, P3) for any positive integers s, m ≥ 1 and s < m. We then
give all disconnected graphs in R(4K2, P3).

Theorem 2.6. Let G and H be connected graphs. The graph G ∪ H ∈ R(mK2, P3) if and only if G ∈ R(sK2, P3)
and H ∈ R((m − s)K2, P3) for any integers s, m ≥ 1 and s < m.

Proof. First, we prove that G ∪ H → (mK2, P3) if G ∈ R(sK2, P3) and H ∈ R((m − s)K2, P3) for any integers
s, m ≥ 1 and s < m. Let ϕ1 be a red–blue coloring of G such that G contains at most (s − 1) independent
red edges (form a red (s − 1)K2) and a blue P3. Let ϕ2 be a red–blue coloring of H such that H contains a red
(m − s)K2 and no blue P3. Use such a coloring in G ∪ H. Thus, the red–blue coloring of G ∪ H implies G ∪ H
containing at most (m − 1) independent red edges (form a red (m − 1)K2) and a blue P3. Now, we show that for every
e ∈ E(G ∪ H ), (G ∪ H ) − e ↛ (mK2, P3). Without loss of generality, we need only to consider when e ∈ E(G). So,
G − e ↛ (sK2, P3). Thus, there exists an (sK2, P3)-coloring φ1 of all edges of G − e. We define a red–blue coloring
φ of all edges of (G ∪ H ) − e such that φ(a) = φ1(a) for all edges a ∈ E(G − e) and φ(a) = ϕ2(a) for all edges
a ∈ E(H ). Thus, we obtain an (mK2, P3)-coloring φ of (G ∪ H ) − e.

Conversely, let G ∪ H ∈ R(mK2, P3). Suppose that G ̸∈ R(sK2, P3) for a positive integer s. If G ↛ (sK2, P3),
then there exists an (sK2, P3)-coloring φ2 of all edges of G. Now, let us define a red–blue coloring φ of G ∪ H such
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that φ(e) = φ2(e) for all edges e ∈ E(G) and φ(e) = ϕ2(e) for all edges e ∈ E(H ). Then, φ is an (mK2, P3)-coloring
of G ∪ H. It means that G ∪ H ↛ (mK2, P3), a contradiction. If G → (sK2, P3) but G is not minimal, then there
exists a Ramsey (sK2, P3)-minimal graph G∗

⊆ G. By the first case, we have G∗
∪ H is a Ramsey (mK2, P3)-minimal

graph, a contradiction to the minimality of G ∪ H. ■

Corollary 2.7. The only disconnected graphs in R(4K2, P3) are 4P3, C4 ∪ 2P3, C5 ∪ 2P3, 2C4, 2C5, C4 ∪ C5,

C7 ∪ P3, C8 ∪ P3, H1 ∪ P3, H2 ∪ P3, H3 ∪ P3, H4 ∪ P3, H5 ∪ P3, where Hi for i ∈ [1, 5] is the graph depicted in
Fig. 2.

Proof. We know that R(K2, P3) = {P3} in [2], R(2K2, P3) = {2P3, C4, C5} in [4] and R(3K2, P3) = {3P3, C4 ∪

P3, C5 ∪ P3, C7, C8, H1, H2, H3, H4, H5} in [7]. We then apply Theorem 2.6. ■

Start now, we will investigate all connected graphs in R(4K2, P3). We will prove that all connected graphs in
R(4K2, P3) must contain a cycle. For u, v ∈ V, we will use the notation u ∼ v to denote u adjacent to v. Observe
that if F, G ∈ R(4K2, P3), then by the minimality property F ̸⊆ G and G ̸⊆ F. In the following, we will use this
fact to eliminate graphs not belonging to R(4K2, P3).

Lemma 2.8. R(4K2, P3) contains no tree.

Proof. Suppose to the contrary that R(4K2, P3) contains a tree T . Let L be the longest path in T, then |V (L)| ≤ 11.

Otherwise T ⊇ 4P3, contradict to the minimality of F. Suppose V (L) = {v1, v2, . . . , vℓ}. We consider the vertex v2.

If d(v2) = 2, then v2 is only adjacent to two vertices in V (L), namely v1 and v3. By Corollary 2.3, T − {v3} must
contain a Ramsey minimal graph G ∈ R(3K2, P3). So, G is a acyclic graph. Hence, G = 3P3. Clearly v1, v2, v3 are
not contained in G. It implies that T ⊇ 4P3, a contradiction. If d(v2) ≥ 3, then there exists a vertex u ̸∈ V (L) such
that u ∼ v2. Since L is the longest path in T, d(u) = 1. By Corollary 2.3, T − {v2} ⊇ G for some G ∈ R(3K2, P3).
So, G = 3P3. Clearly v1, v2, u are not contained in G. It implies that T ⊇ 4P3, a contradiction. ■

Since there is no tree in R(4K2, P3), for every connected graph in R(4K2, P3) must contain a cycle. Therefore,
we will construct all connected graphs in R(4K2, P3) based on the circumference. The circumference is the length of
the longest cycle in a graph. In general, the construction graph in R(4K2, P3) is done by applying Theorem 2.1.

Lemma 2.9. Let F be a connected graph in R(mK2, P3). If t is the circumference of F, then 3 ≤ t ≤ 3m − 1.

Proof. Let t be the circumference of F. It implies t ≥ 3. Next, suppose that t ≥ 3m, then F contains C3m . Hence,
F ⊇ m P3. By Theorem 2.6, m P3 ∈ R(mK2, P3). So, F is not minimal, a contradiction. ■

In the following lemmas, we show that the set R(4K2, P3) contains no connected graphs with circumferences 3, 4,
or 5.

Lemma 2.10. R(4K2, P3) contains no connected graph with circumference 3.

Proof. Suppose to the contrary that there exists a connected graph F with circumference 3 such that F ∈ R(4K2, P3).
Let C3 be a cycle in F, where V (C3) = {v1, v2, v3}. By Corollary 2.5, F − {v1, v2} contains a Ramsey minimal
G ∈ R(2K2, P3). Since 2P3 is the only graph in R(2K2, P3) having the circumference less than 3, G = 2P3. Thus,
we obtain E(F) ⊇ E(C3) ∪ E(2P3) and V (C3) ∩ V (2P3) = {v3}. Next, by Corollary 2.3, there must be a P3 in
F − E(C3) containing no vertices of 2P3. Without loss of generality, we assume the vertex v2 is contained in the P3.

We obtain E(F) ⊇ E(C3) ∪ E(3P3) and V (C3) ∩ V (3P3) = {v2, v3}. Next, by Corollary 2.3, F − {v2} must contain
a 3P3. But the 3P3 in F − {v2} implies that F ⊇ 4P3, contradicts to the minimality of F. ■

Lemma 2.11. R(4K2, P3) contains no connected graph with circumference 4.

Proof. Suppose to the contrary that there exists a connected graph F ∈ R(4K2, P3) with circumference 4.
Then, F contains a C4, where V (C4) = {v1, v2, v3, v4}. By Corollary 2.3, F − {v1} contains a Ramsey minimal
G ∈ R(3K2, P3). Since 3P3 and C4 ∪ P3 are the only graphs in R(3K2, P3) having the circumference at most 4,
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Fig. 3. Graphs A1, A2, and A3.

G = 3P3 or G = C4 ∪ P3. We now consider F − {v1} ⊇ 3P3. Then, there is at most a P3 containing no vertices
in V (C4 \ v1). Otherwise F ⊇ C4 ∪ 2P3. Next, by Corollary 2.3, for every i = 2, 3, 4, F − {vi } must contain a
3P3. Otherwise F is not minimal or F has circumference greater than 4. But the 3P3 in F − {vi } forces that F is not
minimal, a contradiction.

We next consider F − {v1} ⊇ C4 ∪ P3. Since F ̸⊇ 2C4, F contains a C4 containing either (i) one vertex in
V (C4 \ v1), say v2 or (ii) all vertices in V (C4 \ v1). Otherwise F has circumference greater than 4. For case (i), by
Corollary 2.3, F − {v2} ⊇ 3P3, otherwise F is not minimal. But the 3P3 in F − {v2} implies that F is not minimal.
For case (ii), there exists a vertex u ∈ V (F \ C4) such that uv2, uv4 ∈ E(F). By Corollary 2.3, F − {v2} can contain
a 3P3 or C4 ∪ P3. But the 3P3 or C4 ∪ P3 in F − {v2} implies that F is not minimal or F has circumference greater
than 4, a contradiction. ■

Lemma 2.12. R(4K2, P3) contains no connected graph with circumference 5.

Proof. Suppose to the contrary that there exists a connected graph F ∈ R(4K2, P3) with circumference 5. Then,
F contains a C5, where V (C5) = {v1, v2, . . . , v5}. By Theorem 2.1(vii), F has order at least 8. By Corollary 2.3,
F − {v1} contains a G ∈ R(3K2, P3). Then, one of the following 3 cases must hold: (i) G = 3P3, (ii) G = C4 ∪ P3,

or (iii) G = C5 ∪ P3.

For case (i), F − {v1} ⊇ 3P3. Consider 3P3 = 2P3 ∪ P3. Since there is a P3 in C5, say v3v4v5, then v2 is contained
in 2P3. By Corollary 2.3, F − {v2} must contain a Ramsey minimal G ∈ R(3K2, P3). By the minimality of F, there
is no G satisfying this condition.

For case (ii), F −{v1} ⊇ C4 ∪ P3. Then, one of the following 3 cases must hold: (a) one vertex in V (C5 \v1), say v2

is contained in a C4, (b) 3 vertices in V (C5 \ v1), say v2, v3, v4 are contained in a C4, or (c) all vertices in V (C5 \ v1)
are contained in a C4. Otherwise F has circumference greater than 5. Next, by Corollary 2.3, F − {v2} must contain
a Ramsey minimal G ∈ R(3K2, P3). By the minimality of F, there is no G satisfying this condition.

For case (iii), F − {v1} ⊇ C5 ∪ P3. Then, one of the following 2 cases must hold: (a) one vertex in V (C5 \ v1), say
v2 is contained in a C5 or (b) all vertices in V (C5 \ v1) are contained in a C5. Otherwise F has circumference greater
than 5. Next, by Corollary 2.3, F − {v2} must contain a Ramsey minimal G ∈ R(3K2, P3). By the minimality of F,

there is no G satisfying this condition. ■

We now construct graphs with circumference 6 in R(4K2, P3). Furthermore, we show that the set R(4K2, P3)
contains no graph with circumference 7. We first consider graphs A1, A2, and A3 as pictured in Fig. 3.

Lemma 2.13. Let F be a connected graph with circumference 6. If F ∈ R(4K2, P3) then F contains A3, where A3

is the graph as depicted in Fig. 3.

Proof. Let F be a connected graph with circumference 6. So, F contains a C6, where V (C6) = {v1, v2, . . . , v6}. If
F ∈ R(4K2, P3), then V (F) ≥ 8, by Theorem 2.1(vii). Now, suppose u, w ∈ V (F \ C6) and assume u adjacent to
v1. By Theorem 2.1(i) and (vii), F − {v1, v3, v5} and F − E(Z ) must contain a P3 where V (Z ) = V (C6) ∪ {u}. Since
we cannot have a cycle of length greater than 6 in F, then one of the following 3 cases must hold: (i) both w ∼ v2 and
w ∼ v4, (ii) both w ∼ v2 and w ∼ v6, or (iii) both w ∼ u and w ∼ v4 (the graphs A1, A2, A3, respectively in Fig. 3).
Therefore, if F ∈ R(4K2, P3), then F must contain either A1, A2, or A3.
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Fig. 4. All connected graphs with circumference 6 in R(4K2, P3).

We now prove that if F ∈ R(4K2, P3), then F contains neither A1 nor A2. Let us consider F ⊇ A1. By
Theorem 2.1(i), F − {v1, v2, v4} must contain a P3. Then, one of the following 3 cases must hold: (i) x1 ∼ v5,

(ii) x1 ∼ v6, or (iii) both x1 ∼ v3 and x1 ∼ x2 (up to isomorphism), where x1, x2 ∈ V (F \ A1). For all cases, by
Theorem 2.1(i), F − {v2, v4, v6} and F − {v1, v3, v4} must contain a P3. But the P3 in both F − {v2, v4, v6} and
F − {v1, v3, v4} forces F containing C4 ∪ 2P3, H4 ∪ P3, or H5 ∪ P3, a contradiction to the minimality of F.

Let us consider F ⊇ A2. By Theorem 2.1(i), F − {v2, v4, v6} must contain a P3. Then one of the following 4
cases must hold: (i) x1 ∼ v1, (ii) x1 ∼ u, (iii) both v3 ∼ x1 and x1 ∼ x2, or (iv) both w ∼ x1 and x1 ∼ x2, where
x1, x2 ∈ V (F \ A1). For cases (i) and (ii), by Corollary 2.3, F −{v1} must contain a Ramsey minimal G ∈ R(3K2, P3).
Every G ∈ R(3K2, P3) yields F which is not minimal, since F contains G ∪ P3 for every G ∈ R(3K2, P3), a
contradiction. For cases (iii) and (iv), by Theorem 2.1(i) F − {v2, v3, v6} and F − {v1, v4, w} must contain a P3. But
the P3 in both F −{v2, v3, v6} and F −{v1, v4, w} yields F containing C4 ∪2P3, H4 ∪ P3, or H5 ∪ P3, a contradiction.

Since F does not contain both A1 and A2, F must contain A3. ■

The next lemma, we prove that graphs F1 and F2 as depicted in Fig. 4 are the only graphs with circumference 6 in
R(4K2, P3).

Lemma 2.14. Let F1 and F2 be graphs as depicted in Fig. 4. Then, F1 and F2 are the only connected graphs with
circumference 6 in R(4K2, P3).

Proof. We first show that F1, F2 ∈ R(4K2, P3). We can easily prove that F1 and F2 satisfy Theorem 2.1(i)–(vii). But
if one edge of F1 or F2 is deleted, then the resulted graph satisfy Theorem 2.1(viii). So, F1, F2 ∈ R(4K2, P3).

Let F ∈ R(4K2, P3) be a connected graph with circumference 6 but F ̸= F1 and F ̸= F2. By Lemma 2.13, F
contains A3. By Theorem 2.1(i), there must be a P3 in F − {v1, v2, v4}. Then, up to isomorphism, F contains a vertex
x ∈ V (F \ A3) adjacent to w ∈ V (F). Next, F − {v1, v4, w} must contain a P3, by Theorem 2.1(i). Therefore, there
must be a vertex y ∈ V (F \ (A3 ∪ x)) such that either (i) y ∼ v2, (ii) y ∼ v3, (iii) y ∼ v5, or (iv) y ∼ v6. From all
cases, we obtain graphs F1 and F2 (up to isomorphism), a contradiction. ■

Lemma 2.15. R(4K2, P3) contains no connected graph with circumference 7.

Proof. Suppose to the contrary that R(4K2, P3) contains a connected graph F with circumference 7. So, F ⊇ C7

where V (C7) = {v1, v2, . . . , v7}. By Theorem 2.1(vii), F has order at least 8. Now, we assume v ∈ V (F) and v

adjacent to v4, then F − E(C7) must contain a P3 by Theorem 2.1(vii). Then, one of the following 2 cases must hold:
(i) v6 ∼ v or (ii) v7 ∼ v. So, we have a graph A or B is contained in F where V (A) = V (B) = V (C7) ∪ {v},

E(A) = E(C7) ∪ {vv4, vv6} and E(B) = E(C7) ∪ {vv4, vv7}.

We first consider F ⊇ A. By Corollary 2.5, F −{v4, v6} must contain a Ramsey minimal graph G ∈ R(2K2, P3) =

{C4, C5, 2P3}. By the minimality of F, there is no G ∈ R(2K2, P3) satisfying this condition.
We next consider F ⊇ B. By Theorem 2.1(i), there must be a P3 in F −{v2, v4, v7}. Then, F must contain an edge

connecting v1 to v6. Thus, we have E(F) ⊇ E(B) ∪ {v1v6}. Furthermore, by Theorem 2.1(ii), F − {v2, v4} − E(X )
must contain a P3 for V (X ) = {v1, v6, v7}. Since F does not contain a cycle of length greater than 7, there must be
a vertex u ∈ V (F \ B) such that one of the following 4 cases must hold: (a) u ∼ v5, (b) u ∼ v6, (c) u ∼ v7, or (d)
u ∼ v (see Fig. 5). We now have F containing a graph B1, B2, B3, or B4.
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Fig. 5. Graphs B1, B2, B3, and B4.

By Theorem 2.1(i), F − {v1, v4, v6} (for F ⊇ B1 or F ⊇ B2) must contain a P3. Since F has circumference 7,
there must be a vertex w ∈ V (F) adjacent to one of 4 vertices: v2, v3, v5, v7. By Theorem 2.1(i), F − {v1, v4, v7} (for
F ⊇ B3 or F ⊇ B4) must contain a P3. Since F has circumference 7, there must be a vertex w ∈ V (F) adjacent to
one of 4 vertices: v2, v3, v5, v6. On both cases, it implies that F contains F1 or F2, a contradiction. Hence, R(4K3, P3)
contains no connected graph with circumference 7. ■

In the following lemmas, we determine all graphs F with circumference 8, 9, 10, and 11 belonging to R(4K2, P3).
These graphs are constructed by applying Theorem 2.1 and we obtain graphs F3, F4, . . . , F37 in Fig. 6 and graphs
F38, F39, . . . , F54 in Fig. 7 as elements of R(4K2, P3) with circumference 8 and 9, respectively. Moreover, we will
show that the only cycle of order 10 and 11 as elements of R(4K2, P3) with circumference 10 and 11, respectively.

Lemma 2.16. Let F be a connected graph with circumference 8 or 9. If F ∈ R(4K2, P3) then |E(F)| ≥ 11.

Proof. Let F be a connected graph with circumference 8 or 9. If F has circumference 8, then F contains a cycle C8.

Let V (C8) = {v1, v2, . . . , v8}. We now assume V (X i ) = {vi , vi+1, vi+2} for i = 1, 2, . . . , 6, V (X7) = {v7, v8, v1},

V (X8) = {v8, v1, v2}, and V (Yi ) = V (C8 \ X i ) for i = 1, 2, . . . , 8.

By Theorem 2.1(i) and (iv), F − {v2, v5, v8} and F − E(X4 ∪ Y4) must contain a P3. Then, up to isomorphism,
there is a new edge in F, namely v4v7. Therefore, we now have E(F) ⊇ E(C8) ∪ {v4v7}. Next, by Theorem 2.1(i),
there must be a P3 in F − {v2, v4, v7} and F − {v1, v4, v7}. Then, one of the following 3 cases must hold (1) v5 ∼ v8,

(2) v6 ∼ v8, or (3) v5 ∼ u. We have |E(F)| = 10. Now, let us consider F when E(F) ⊇ E(C8) ∪ {v4v7, v5v8}. This
graph does not satisfy Theorem 2.1(ii), since F − {v5, v7} − E(X1) does not contain a P3. Next, let us consider F
when E(F) ⊇ E ∪ {v4v7, v6v8}. This graph does not satisfy Theorem 2.1(ii), since F − {v2, v4} − E(X6) does not
contain a P3. Last, let us consider F when E(F) ⊇ E ∪ {v4v7, v5u}. This graph does not satisfy Theorem 2.1(i), since
F − {v2, v5, v7) does not contain a P3. For all cases, we conclude that |E(F)| ≥ 11.

If F has circumference 9, then F contains a cycle C9. Let us consider |E(F)| = 10. Then, there exists at least one
vertex in C9 of degree 3, say v1. But this graph does not satisfy Theorem 2.1(i), since F −{v1, v4, v7} does not contain
a P3. Therefore |E(F)| ≥ 11. ■

Lemma 2.17. Let F3, F4, . . . , F37 be graphs as depicted in Fig. 6. Then, these graphs are the only connected graphs
with circumference 8 in R(4K2, P3).

Proof. Let F ∈ {F3, F4, . . . , F37}. We can easily show that F satisfy Theorem 2.1. So, F ∈ R(4K2, P3).
Next, we prove that the connected graphs with circumference 8 in R(4K2, P3) are F3, F4, . . . , F37. Suppose

that there exists a graph F ∈ R(4K2, P3) with circumference 8 other than F3, F4, . . . , F37. So F ⊇ C8, where
V (C8) = {v1, v2, . . . , v8}. We now assume V (X i ) = {vi , vi+1, vi+2} for i = 1, 2, . . . , 6, V (X7) = {v7, v8, v1},

V (X8) = {v8, v1, v2}, and V (Yi ) = V (C8 \ X i ) for i = 1, 2, . . . , 8. F can have order 8 or greater than 8.
For case F has order 8, by Theorem 2.1(i) and (iv), F − {v2, v5, v8} and F − E(X4 ∪ Y4) must contain a P3. Then,

up to isomorphism, there is a new edge in F, namely v4v7. Therefore, we now have E(F) ⊇ E(C8) ∪ {v4v7}. Next,
by Theorem 2.1(i), there must be a P3 in F − {v2, v4, v7} and F − {v1, v4, v7}. Then, one of the following 2 cases
must hold (1) v5 ∼ v8 or (2) v6 ∼ v8. Now, let us consider F when E(F) ⊇ E(C8) ∪ {v4v7, v5v8}. By Theorem 2.1(ii)
and (v), F − {v5, v7} − E(X1) and F − {v2} − E(Y1) must contain a P3. But the P3 in F − {v5, v7} − E(X1) and
F − {v2} − E(Y1) implies that F is the graph F3 or not minimal, a contradiction. Next, let us consider F when
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Fig. 6. All connected graphs with circumference 8 in R(4K2, P3).

E(F) ⊇ E ∪ {v4v7, v6v8}. By Theorem 2.1(ii) and (vi), F − {v2, v4} − E(X6) and F − E(X6 ∪ Y6) must contain a
P3. Then one of the following 2 cases must hold: (1) v5 ∼ v7 or (2) v5 ∼ v8. For both cases, there must be a P3 in
F −{v2}− E(Y1) and F − E(X1 ∪Y1) by Theorem 2.1(v) and (vi). But the P3 in F −{v2}− E(Y1) and F − E(X1 ∪Y1)
implies that F is one of the graphs F4, F5, F6, F7 (up to isomorphism) or not minimal, a contradiction.

For case F has order greater than 8, there exist at least one vertex u ∈ F but u ̸∈ C8 adjacent to a vertex in
C8. We assume u ∼ v2. By Theorem 2.1(v), F − {v2} − E(Y1) must contain a P3. Then one of the following 8
cases must hold: (1) v1 ∼ v6, (2) v1 ∼ v3, (3) v1 ∼ v7, (4) v1 ∼ v5, (5) v1 ∼ v4, (6) v1 ∼ w, (7) v4 ∼ u,

or (8) v4 ∼ w. Otherwise F is the graph F11 or not minimal. So, F contains one of graphs D1, D2, . . . , D8

where E(D1) = E(C8) ∪ {uv2, v1v6}, E(D2) = E(C8) ∪ {uv2, v1v3}, E(D3) = E(C8) ∪ {uv2, v1v7}, E(D4) =

E(C8) ∪ {uv2, v1v5}, E(D5) = E(C8) ∪ {uv2, v1v4}, E(D6) = E(C8) ∪ {uv2, wv1}, E(D7) = E(C8) ∪ {uv2, uv4}, or
E(D8) = E(C8) ∪ {uv2, wv4}.
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Fig. 7. All connected graphs with circumference 9 in R(4K2, P3).

Fig. 8. Graphs D1a, D1b, D1c, and D1d .

For F contains D1. By Theorem 2.1(i), (ii), (v) and (vi), F −{v1, v3, v6}, F −{v1, v3}− E(X5), F −{v6}− E(Y5),
and F − E(X5 ∪ Y5) must contain a P3. Then one of the following 4 cases must hold: (1) v2 ∼ v8, v3 ∼ v5, (2)
v2 ∼ v8, v3 ∼ v7, (3) v4 ∼ v8, v1 ∼ v5, or (4) v4 ∼ v8, v1 ∼ v7, (graph D1a, D1b, D1c, or D1d , respectively in
Fig. 8). Otherwise F is one of the graphs F8, F9, F10, F12, F13, . . . , F23 (up to isomorphism) or not minimal. Next,
when F contains D1a, D1b, D1c, or D1d , by Theorem 2.1(ii), F − {v3, v6} − E(X8) and F − {v1, v6} − E(X2) must
contain a P3. But this leads to F which is not minimal, a contradiction.

Now, we observe when F contains D2. By Theorem 2.1(i), (v) and (vi), F − {v1, v3, v6}, F − {v6} − E(Y5),
F − {v5} − E(Y4), F − {v7} − E(Y6), and F − E(X1 ∪ Y1) must contain a P3. Then one of the following 3 cases must
hold: (1) both v4 ∼ v8 and v2 ∼ v7, (2) both v4 ∼ v8 and v1 ∼ v5, or (3) both v4 ∼ v8 and v1 ∼ v7 (graph D2a, D2b, or
D2c, respectively in Fig. 9). Otherwise F is one of the graphs F24, F25, F26, F33 (up to isomorphism) or not minimal.
Next, when F contains D2a, D2b, or D2c, there must be a P3 in both F − {v4, v7} − E(X1) and F − {v4, v8} − E(X1)
by Theorem 2.1(ii). But it causes F which is not minimal, a contradiction.

We consider F contains D3. By Theorem 2.1(i), (ii) and (v), all graphs F − {v1, v3, v6}, F − {v2, v4, v7},

F − {v2, v5, v7}, F − {v1, v6} − E(X2), F − {v5} − E(Y4), and F − {v7} − E(Y6) must contain a P3. Then, one
of the following 5 cases must hold: (1) v1 ∼ v3, v4 ∼ v8, (2) v1 ∼ v6, v5 ∼ v7, (3) v3 ∼ v6, v5 ∼ v7, (4) v4 ∼ v6,

v5 ∼ v8, or (5) v4 ∼ v8, v5 ∼ v8. (graph D3a, D3b, D3c, D3d , or D3e, respectively, in Fig. 10). Otherwise F is one of
the graphs F16, F17, F23, F27, F28, F29, F34 (up to isomorphism) or not minimal. Next, when F contains one of graphs
in Fig. 10, by Theorem 2.1(ii) and (iii), there must be a P3 in all graphs F − {v4, v7} − E(X1), F − {v1, v3} − E(X5),
F − {v2, v7} − E(X4), and F − {v2} − E(X4 ∪ X7). But the P3 in these graphs yields F which is not minimal, a
contradiction.
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Fig. 9. Graphs D2a, D2b, and D2c.

Fig. 10. Graphs D3a, D3b, D3c, D3d , and D3e.

Fig. 11. Graphs D4a, D4b, D4c, and D4d .

We observe when F contains D4. By Theorem 2.1(i), (ii), (v) and (vi), all graphs F −{v2, v5, v7}, F −{v2, v5, v8},

F − {v1, v3, v6}, F − {v1, v6} − E(X2), F − {v2, v5} − E(X6), F − {v5, v7} − E(X1), F − {v2, v8} − E(X4),
F − {v7} − E(Y6), F − {v5} − E(Y4), and F − E(X6 ∪ Y6) must contain a P3. Then one of the following 4 cases must
hold: (1) v1 ∼ v3, v4 ∼ v8, (2) v1 ∼ v4, v2 ∼ v8, (3) v1 ∼ v6, v5 ∼ v7, or (4) v3 ∼ v6, v5 ∼ v7 (graph D4a, D4b, D4c,

or D4d , respectively, in Fig. 11). Otherwise F is one of the graphs F15, F18, F22, F30, F31 (up to isomorphism) or not
minimal. Furthermore, when F contains D4a, D4b, D4c, or D4d , by Theorem 2.1(ii), all graphs F −{v2, v7}− E(X2),
F − {v1, v3} − E(X5), and F − {v5, v8} − E(X1) must contain a P3. But the P3 in these graphs lead to F which is not
minimal, a contradiction.

We consider F contains D5. By Theorem 2.1(i), (ii), (v) and (vi), all graphs F − {v2, v4, v7}, F − {v1, v3, v6},

F − {v1, v3} − E(X5), F − {v2, v4} − E(X6), F − {v4, v7} − E(X1), F − {v6} − E(Y5), F − {v7} − E(Y6), and
F − E(X6 ∪ Y6) must contain a P3. But the P3 in these graphs implies F which is one of the graphs F27, F30 (up to
isomorphism) or not minimal, a contradiction.

Now, we observe F containing D6. All graphs F − {v1, v3, v6}, F − {v2, v5, v8}, F − {v1, v3} − E(X5),
F − {v1} − E(X2 ∪ X5) and F − {v6} − E(Y5) must contain a P3 by Theorem 2.1(i)–(iii), and (v). But the new
P3 in these graphs causes F which is the graph F36 or not minimal, a contradiction.

Lastly, we consider F contains D7 or D8. By Theorem 2.1(i), (ii), and (v), all graphs F − {v2, v4, v7},

F − {v2, v4} − E(X6), and F − {v7} − E(Y6) must contain a P3. But the new P3 in these graphs implies that F is one
of the graphs F12, F32, F35, F36, F37 (up to isomorphism), F is not minimal or F has circumference 9, a contradiction.

For all cases, we conclude that the connected graphs with circumference 8 in R(4K2, P3) are F3, F4, . . . , F37. ■
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Lemma 2.18. Let F38, F39, . . . , F54 be graphs as depicted in Fig. 7. Then, these graphs are the only connected graphs
with circumference 9 in R(4K2, P3).

Proof. Let F ∈ {F38, F39, . . . , F54}. We can easily show that F satisfy Theorem 2.1. So, F ∈ R(4K2, P3).
Next, we prove that the connected graphs with circumference 9 in R(4K2, P3) are F38, F39, . . . , F54. Suppose that

F having circumference 9 in R(4K2, P3) but F ̸∈ {F38, F39, . . . , F54}. Since F has circumference 9 then F ⊇ C9.

Let V (C9) = {v1, v2, . . . , v9}. We may assume V (X i ) = {vi , vi+1, vi+2} for i = 1, 2, . . . , 7, V (X8) = {v8, v9, v1},

V (X9) = {v9, v1, v2}. F can have order 9 or greater than 9.
First, we consider F having order 9. By Theorem 2.1(i), F −{v2, v5, v8} must contain a P3. So, one of the following

3 cases must hold: (1) v1 ∼ v7, (2) v1 ∼ v6, or (3) v7 ∼ v9.

For case (1), we have E(F) ⊇ E(C9) ∪ {v1v7}. By Theorem 2.1(iii), there must be a P3 in F − {v1} − E(X3 ∪ X6).
Since F − {v1} − E(X3 ∪ X6) = 3K2, namely three independent edges v2v3, v5v6, and v8v9, then the P3 in
F −{v1}− E(X3 ∪ X6) is formed by connecting two of the three edges. The eligible edge is only v2v9. Otherwise F is
one of the graphs F38, F39, F40, or not minimal. So, we now have E(F) ⊇ E(C9) ∪ {v1v7, v2v9}. By Theorem 2.1(iii)
and (iv), both graphs F − {v7} − E(X3 ∪ X9) and F − E(X3 ∪ X6 ∪ X9) must contain a P3. The P3 in both graphs
is formed by connecting v6 to v8 and v1 to v4. Otherwise F is one of the graphs F41 or F42, or not minimal. Thus, we
obtain E(F) ⊇ E(C9)∪{v1v7, v2v9, v6v8, v1v4}. Next, there must be a P3 in F−{v4}−E(X6∪X9) by Theorem 2.1(iii).
But it implies F which is not minimal, a contradiction.

For case (2), we have E(F) ⊇ E(C9) ∪ {v1v6}. By Theorem 2.1(i) and (iii), both graphs F − {v3, v6, v9} and
F −{v6}− E(X2)− E(X8) must contain a P3. Then, one of the following 7 cases must hold: (a) v1 ∼ v4, (b) v1 ∼ v5,

(c) v1 ∼ v7, (d) v2 ∼ v7, (e) v4 ∼ v7, (f) v4 ∼ v8, or (g) v5 ∼ v7. Otherwise F is the graph F40 or not minimal.
For all cases, there must be a P3 in all graphs F − {v1, v4, v7}, F − {v1, v7} − E(X3), F − {v1, v4} − E(X6) and
F −{v1}− E(X3 ∪ X6) by Theorem 2.1(i)–(iii). Then, the P3 in these graphs is formed by connecting two of the three
independent edges v2v3, v5v6 and v8v9. It causes F which is one of the graphs F42, F43, . . . , F49 (up to isomorphism)
or not minimal, a contradiction.

For case (3), we have E(F) ⊇ E(C9) ∪ {v7v9}. There must be a P3 in F − {v7} − E(X3 ∪ X9) by Theorem 2.1(iii).
Considering F does not contain graph in both cases (1) and (2), then there is only one case hold, that is v6v8 ∈ E(F).
So, we have E(F) ⊇ E(C9)∪{v7v9, v6v8}. Next, there must be a P3 in F −{v6, v9}−E(X2) by Theorem 2.1(iii). Since
F − {v6, v9} − E(X2) = 3K2 namely 3 independent edges v1v2, v4v5 and v7v8, then the P3 in F − {v6, v9} − E(X2)
is formed by connecting two of the three edges. It implies that F is one of the graphs F41, F42, F49, or not minimal, a
contradiction.

Secondly, we observe when F has order greater than 9. Then, there exists at least one vertex u ∈ V (F) but
u ̸∈ V (C9) adjacent to a vertex in C9. We assume u ∼ v1. There must be a P3 in both graphs F − {v1, v4, v7} and
F −{v1}− E(X3)− E(X6), by Theorem 2.1(i) and (iii). We know that F −{v1, v4, v7} and F −{v1}− E(X3)− E(X6)
are three independent edges v2v3, v5v6, v8v9. Then, only one case must hold, that is v2 ∼ v9. Otherwise F is one of
the graphs F50, F52, F53, F54 or not minimal. Hence, we have E(F) ⊇ E(C9) ∪ {uv1, v2v9}. Next, by Theorem 2.1(ii),
F−{v4, v7}−E(X9) must contain a P3. Then, only one case must hold, that is v6 ∼ v8. Otherwise F is the graph F51 or
not minimal. Therefore, we obtain E(F) ⊇ E(C9)∪{uv1, v2v9, v6v8}. There must be a P3 in F−{v7}−E(X3)−E(X9),
by Theorem 2.1(iii). But, this yields that F is not minimal, a contradiction.

For all cases, we obtain the connected graphs with circumference 9 in R(4K2, P3) are F38, F39, . . . , F54. ■

Lemma 2.19. The only graphs with circumference 10 or 11 in R(4K2, P3) are C10 or C11, respectively.

Proof. We can check easily that C10, C11 ∈ R(4K2, P3). Furthermore, since every graph having circumference 10 or
11 contains C10 or C11, respectively, the only C10 and C11 are in R(4K2, P3). ■

By Corollary 2.7, Lemma 2.8, 2.10–2.19, we obtain all graphs in R(4K2, P3). Therefore, we have the following
theorem.

Theorem 2.20. R(4K2, P3) = {4P3, C4 ∪2P3, C5 ∪2P3, 2C4, 2C5, C4 ∪C5, C7 ∪ P3, C8 ∪ P3, H1 ∪ P3, H2 ∪ P3, H3 ∪

P3, H4 ∪ P3, H5 ∪ P3} ∪ {Fi | i ∈ [1, 54]} ∪ {C10, C11}. ■
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