

Symmetry, Volume 13, Issue 11 (November 2021) - 257 articles

Cover Story (view full-size image): Individuals with chronic low back pain (LBP) report impaired somatosensory function and balance. The aim of this study was to compare gait parameters, as well as combined limb motions for the kinematic similarity index (KSI), between subjects with and without LBP. The overall index during gait was significantly different between groups, especially at the midstance and swing phases. Although the gait parameters did not provide significant differences, the KSI measurements detected sensitive gait deviations. These results indicated that the LBP subjects may have modified their walking patterns during these specific phases. The KSI is warranted to investigate for early detection of gait deviations. View this paper

Symmetry ${ }^{\text {〕 }}$

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER
Switzerland	Chemistry $\left\llcorner_{\text {Chemistry (miscellaneous) }}\right.$	Multidisciplinary Digital Publishing Institute (MDPI)
Universities and research institutions in Switzerland	Computer Science $\left\llcorner^{\text {Computer Science (miscellaneous) }}\right.$	
	Mathematics \llcorner Mathematics (miscellaneous)	
	Physics and Astronomy \llcorner Physics and Astronomy (miscellaneous)	

Cited documents		- Uncited documents			へ				
5 k							Symmetry		\leftarrow Show this widget in your own website
$2.5 k$0							$\bigcirc 2$	Chemistry (miscellaneous) best quartile	Just copy the code below and paste within your html code:
							```SJR2021```		<a href="https://www.scimas
2009	2011	2013	2015	2017	2019	2021			



## Editorial Board

- Editorial Board
- Computer and Engineering Science and Symmetry/Asymmetry Section
- Mathematics and Symmetry/Asymmetry Section
- Physics and Symmetry/Asymmetry Section
- Chemistry and Symmetry/Asymmetry Section
- Biology and Symmetry/Asymmetry Section


## Editors (12)

Prof. Dr. Sergei D. Odintsov Website SciProfiles
Editor-in-Chief
ICREA, P. Lluis Companyas 23, 08010 Barcelona and Institute of Space Sciences (IEEC-CSIC), C. Can Magrans s/n, 08193 Barcelona, Spain
Interests: cosmology; dark energy and inflation; quantum gravity; modified gravity and beyond general relativity;

quantum fields at external fields
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. John H. Graham Website SciProfiles
Section Editor-in-Chief
Department of Biology, Berry College, Mount Berry, GA 30149, USA
Interests: fluctuating asymmetry; developmental instability; evolutionary genetics; hybrid zones; community ecology


Special Issues, Collections and Topics in MDPI journals

## Prof. Dr. Juan Luis García Guirao Website

Section Editor-in-Chief
Department of Applied Mathematics and Statistics, Universidad Polit'ecnica de Cartagena, Cartagena, Spain Interests: dynamical systems; fractional differential equations; modern dynamics applied to different problems Special Issues, Collections and Topics in MDPI journals

## Prof. Dr. György Keglevich Website SciProfiles

Section Editor-in-Chief
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
Interests: organophosphorus chemistry; green chemistry; microwave chemistry; catalysts; ionic liquids


Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Alexander Shelupanov Website
Section Editor-in-Chief
Department of Complex Information Security of Computer Systems, University of Control Systems and Radioelectronics, Lenin Ave, 40, Tomskaya oblast', 634050 Tomsk, Russia
Interests: theory and practice of complex information security systems; information security, mathematical modeling of difficult systems; algorithms of processing of big data
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Stefano Profumo Website SciProfiles
Section Editor-in-Chief
Department of Physics, University of California, Berkeley, CA, USA
Interests: astro-particle physics; particle dark matter searches and model building; high energy astrophysics; theoretical high energy physics; particle physics beyond the standard model; models for the generation of the
 matter-antimatter asymmetry in the universe; phenomenology of supersymmetric and extra-dimensional models Special Issues, Collections and Topics in MDPI journals

Dr. Raúl Baños Navarro Website SciProfiles
Associate Section Editor-in-Chief
Department of Engineering, Electrical Engineering section, University of Almería, E-04120 Almería, Spain
Interests: power systems; renewable energy; engineering economics; network optimization; multi-objective optimization; ICT in education
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Alberto Ruiz Jimeno Website
Associate Section Editor-in-Chief
Instituto de Fisica de Cantabria (IFCA, CSIC- Universidad de Cantabria), Santander, Spain
Interests: Higgs properties; particle dark matter searches; future accelerator physics and detectors Special Issues, Collections and Topics in MDPI journals


## Dr. László Hegedüs Website SciProfiles

Associate Section Editor-in-Chief
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
Interests: catalysis; chemical technology; organic chemistry


## Dr. Calogero Vetro Website SciProfiles

Associate Section Editor-in-Chief
Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, I-90123 Palermo, Italy
Interests: difference equations; flow invariance; nonlinear regularity theory; ordinary; differential equations;
 partial differential equations; reduction methods; symmetry operators; weak symmetries
Special Issues, Collections and Topics in MDPI journals

## Dr. Markus Meringer Website SciProfiles

Associate Section Editor-in-Chief
German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Interests: graph theory; discrete mathematics; mathematical chemistry; chemoinformatics; origin of life; astrobiology


## Prof. Dr. Mariano Torrisi Website

Associate Section Editor-in-Chief
Dipartimento di Matematica e Informatica, University of Catania, 95128 Catania, Italy
Interests: group methods for nonlinear differential equations (both ODEs and PDEs); reduction techniques for the search of exact solutions of PDEs; applications of the group methods to reaction diffusion models, such as
 nonlinear governing equations modeling population dynamics and biomathematical problems; nonlinear diffusion and propagation of heat
Special Issues, Collections and Topics in MDPI journals

## Open Access <br> Article

Linear and Nonlinear Electrostatic Excitations and Their Stability in a Nonextensive Anisotropic Magnetoplasma
Symmetry 2021, 13(11), 2232; https://doi.org/10.3390/sym13112232-22 Nov 2021

\section*{Open Access | Article |
| :--- |}

Periodicity on Neutral-Type Inertial Neural Networks Incorporating Multiple Delays
Symmetry 2021, 13(11), 2231; https://doi.org/10.3390/sym13112231-22 Nov 2021

## Open Access Article

Analytically Solvable Models and Physically Realizable Solutions to Some Problems in Nonlinear Wave Dynamics of Cylindrical Shells

Symmetry 2021, 13(11), 2227; https://doi.org/10.3390/sym13112227-21 Nov 2021

## Open Access Article

The Injectivity Theorem on a Non-Compact Kähler Manifold
Symmetry 2021, 13(11), 2222; https://doi.org/10.3390/sym13112222-20 Nov 2021

## Open Access Article

All Graphs with a Failed Zero Forcing Number of Two
Symmetry 2021, 13(11), 2221; https://doi.org/10.3390/sym13112221-20 Nov 2021

## Open Access Article

Online Activation and Deactivation of a Petri Net Supervisor
Symmetry 2021, 13(11), 2218; https://doi.org/10.3390/sym13112218-20 Nov 2021

## Open Access Article

Stability Analysis of a Diffusive Three-Species Ecological System with Time Delays
Symmetry 2021, 13(11), 2217; https://doi.org/10.3390/sym13112217-19 Nov 2021

## Open Access Article

Application of Asymptotic Homotopy Perturbation Method to Fractional Order Partial Differential Equation

Symmetry 2021, 13(11), 2215; https://doi.org/10.3390/sym13112215-19 Nov 2021

## Open Access Article

Separate Fractional $(p, q)$-Integrodifference Equations via Nonlocal Fractional $(p, q)$-Integral Boundary Conditions

Symmetry 2021, 13(11), 2212; https://doi.org/10.3390/sym13112212-19 Nov 2021

## Open Access Article

Some Hermite-Hadamard-Type Fractional Integral Inequalities Involving TwiceDifferentiable Mappings
Symmetry 2021, 13(11), 2209; https://doi.org/10.3390/sym13112209-19 Nov 2021

## Completeness of $\boldsymbol{b}$-Metric Spaces and Best Proximity Points of Nonself QuasiContractions

Symmetry 2021, 13(11), 2206; https://doi.org/10.3390/sym13112206-19 Nov 2021

## Open Access Article

Integrable Nonlocal PT-Symmetric Modified Korteweg-de Vries Equations Associated with so( $3, \mathbb{R}$ )

Symmetry 2021, 13(11), 2205; https://doi.org/10.3390/sym13112205-19 Nov 2021

## Open Access Article

Extended Graph of the Fuzzy Topographic Topological Mapping Model
Symmetry 2021, 13(11), 2203; https://doi.org/10.3390/sym13112203-18 Nov 2021

## Open Access Article

On Ulam Stability of Functional Equations in 2-Normed Spaces-A Survey
Symmetry 2021, 13(11), 2200; https://doi.org/10.3390/sym13112200-18 Nov 2021

## Open Access <br> Feature Paper Article

Robust and Nonrobust Linking of Two Groups for the Rasch Model with Balanced and Unbalanced Random DIF: A Comparative Simulation Study and the Simultaneous Assessment of Standard Errors and Linking Errors with Resampling Techniques
Symmetry 2021, 13(11), 2198; https://doi.org/10.3390/sym13112198-18 Nov 2021

Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains
Symmetry 2021, 13(11), 2197; https://doi.org/10.3390/sym13112197-17 Nov 2021

## Open Access Article

Arithmetic Operations and Expected Values of Regular Interval Type-2 Fuzzy Variables
Symmetry 2021, 13(11), 2196; https://doi.org/10.3390/sym13112196-17 Nov 2021

## Open Access Article

Effects of Energy Dissipation and Deformation Function on the Entanglement, Photon Statistics and Quantum Fisher Information of Three-Level Atom in Photon-Added Coherent States for Morse Potential

Symmetry 2021, 13(11), 2188; https://doi.org/10.3390/sym13112188-16 Nov 2021

## Open Access Article

Slant Helices of ( $k, m$ )-Type According to the ED-Frame in Minkowski 4-Space
Symmetry 2021, 13(11), 2185; https://doi.org/10.3390/sym13112185-16 Nov 2021

On Conditions for $L^{2}$-Dissipativity of an Explicit Finite-Difference Scheme for Linearized 2D and 3D Barotropic Gas Dynamics System of Equations with Regularizations

Symmetry 2021, 13(11), 2184; https://doi.org/10.3390/sym13112184-16 Nov 2021

## Open Access Article

## Non-Separable Linear Canonical Wavelet Transform

Symmetry 2021, 13(11), 2182; https://doi.org/10.3390/sym13112182-15 Nov 2021

## Open Access Article

Semi-Hyers-Ulam-Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform
Symmetry 2021, 13(11), 2181; https://doi.org/10.3390/sym13112181-15 Nov 2021

## Open Access Article

New Oscillation Results of Even-Order Emden-Fowler Neutral Differential Equations
Symmetry 2021, 13(11), 2177; https://doi.org/10.3390/sym13112177-15 Nov 2021

## Open Access Article

Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem

Symmetry 2021, 13(11), 2174; https://doi.org/10.3390/sym13112174-12 Nov 2021

## Open Access $\quad$ Article

Asymptotic Results for Multinomial Models
Symmetry 2021, 13(11), 2173; https://doi.org/10.3390/sym13112173-12 Nov 2021

## Open Access Article

Optimal Number of Pursuers in Differential Games on the 1-Skeleton of an Orthoplex
Symmetry 2021, 13(11), 2170; https://doi.org/10.3390/sym13112170-12 Nov 2021

## Open Access Article

Adder Box Used in the Heavy Trucks Transmission Noise Reduction
Symmetry 2021, 13(11), 2165; https://doi.org/10.3390/sym13112165-11 Nov 2021

## Open Access Article

三

## Slash Truncation Positive Normal Distribution and Its Estimation Based on the EM

 AlgorithmSymmetry 2021, 13(11), 2164; https://doi.org/10.3390/sym13112164-11 Nov 2021

\section*{Open Access | Article |
| :--- |}

Multi-Objective UAV Trajectory Planning in Uncertain Environment

[^0]On Unconditionally Stable New Modified Fractional Group Iterative Scheme for the Solution of 2D Time－Fractional Telegraph Model

Symmetry 2021，13（11），2078；https：／／doi．org／10．3390／sym13112078－03 Nov 2021

## Open Access Article

Distance Fibonacci Polynomials by Graph Methods
Symmetry 2021，13（11），2075；https：／／doi．org／10．3390／sym13112075－03 Nov 2021

## Open Access Article

三
Functional Inequalities for Metric－Preserving Functions with Respect to Intrinsic Metrics of Hyperbolic Type
Symmetry 2021，13（11），2072；https：／／doi．org／10．3390／sym13112072－02 Nov 2021

## Open Access Article

Another Antimagic Conjecture
Symmetry 2021，13（11），2071；https：／／doi．org／10．3390／sym13112071－02 Nov 2021

## Open Access Article

On the Johnson－Tzitzeica Theorem，Graph Theory，and Yang－Baxter Equations
Symmetry 2021，13（11），2070；https：／／doi．org／10．3390／sym13112070－02 Nov 2021

## Open Access Article

三 是
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro－ Differential Equations

Symmetry 2021，13（11），2068；https：／／doi．org／10．3390／sym13112068－02 Nov 2021

## Open Access Article

On Nonlinear Forced Impulsive Differential Equations under Canonical and Non－Canonical Conditions
Symmetry 2021，13（11），2066；https：／／doi．org／10．3390／sym13112066－02 Nov 2021

## Open Access Article

An Alternate Generalized Odd Generalized Exponential Family with Applications to Premium Data

Symmetry 2021，13（11），2064；https：／／doi．org／10．3390／sym13112064－01 Nov 2021

## Open Access Article

Weighted Sobolev－Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups

Symmetry 2021，13（11），2061；https：／／doi．org／10．3390／sym13112061－01 Nov 2021

## Article

# Another Antimagic Conjecture 

Rinovia Simanjuntak ${ }^{1, *(\mathbb{D}}$, Tamaro Nadeak ${ }^{2}{ }^{(\mathbb{D}}$, Fuad Yasin ${ }^{3}{ }^{(\mathbb{D}}$, Kristiana Wijaya ${ }^{4}$ © ${ }^{(\mathbb{D}}$, Nurdin Hinding ${ }^{5}{ }^{(D)}$ and Kiki Ariyanti Sugeng ${ }^{6}$ (D)

1 Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
2 Master's Program in Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia; ctnadeak@gmail.com
3 Master's Program in Computational Sciences, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia; yasin.fuad@gmail.com
4 Graph, Combinatorics, and Algebra Research Group, Department of Mathematics, FMIPA, Universitas Jember, Jember 68121, Indonesia; kristiana.fmipa@unej.ac.id
5 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin, Makassar 90245, Indonesia; nurdin1701@unhas.ac.id
6 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; kiki@sci.ui.ac.id

* Correspondence: rino@math.itb.ac.id

Citation: Simanjuntak, R.; Nadeak, T.; Yasin, F.; Wijaya, K.; Hinding, N.; Sugeng, K.A. Another Antimagic
Conjecture. Symmetry 2021, 13, 2071.
https:/ /doi.org/10.3390/sym1311 2071

Academic Editor: Alice Miller

Received: 29 September 2021
Accepted: 19 October 2021
Published: 2 November 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).


#### Abstract

An antimagic labeling of a graph $G$ is a bijection $f: E(G) \rightarrow\{1, \ldots,|E(G)|\}$ such that the weights $w(x)=\sum_{y \sim x} f(y)$ distinguish all vertices. A well-known conjecture of Hartsfield and Ringel (1990) is that every connected graph other than $K_{2}$ admits an antimagic labeling. For a set of distances $D$, a $D$-antimagic labeling of a graph $G$ is a bijection $f: V(G) \rightarrow\{1, \ldots,|V(G)|\}$ such that the weight $\omega(x)=\sum_{y \in N_{D}(x)} f(y)$ is distinct for each vertex $x$, where $N_{D}(x)=\{y \in V(G) \mid d(x, y) \in D\}$ is the $D$-neigbourhood set of a vertex $x$. If $N_{D}(x)=r$, for every vertex $x$ in $G$, a graph $G$ is said to be $(D, r)$-regular. In this paper, we conjecture that a graph admits a $D$-antimagic labeling if and only if it does not contain two vertices having the same $D$-neighborhood set. We also provide evidence that the conjecture is true. We present computational results that, for $D=\{1\}$, all graphs of order up to 8 concur with the conjecture. We prove that the set of $(D, r)$-regular $D$-antimagic graphs is closed under union. We provide examples of disjoint union of symmetric $(D, r)$-regular that are $D$-antimagic and examples of disjoint union of non-symmetric non- $(D, r)$-regular graphs that are $D$-antimagic. Furthermore, lastly, we show that it is possible to obtain a $D$-antimagic graph from a previously known distance antimagic graph.


Keywords: antimagic labeling; $D$-antimagic labeling

## 1. Introduction

Let $G=G(V, E)$ be a finite, simple, and undirected graph with $v$ vertices and $e$ edges. The notion of antimagic labeling of a graph $G$ was introduced in Hartsfield and Ringel's book Pearls in Graph Theory [1] as a bijection $f: E(G) \rightarrow\{1, \ldots, e\}$ such that the weights $\left(w(x)=\sum_{x y \in E(G)} f(x y)\right)$ distinguish all vertices. Hartsfield and Ringel [1] also conjectured that every connected graph other than $K_{2}$ admits antimagic labeling in this seminal work.

As of today, the antimagic conjecture is still open; however, much evidence has been presented by many authors. By using a probabilistic method, Alon et al. [2] proved the conjecture for graphs with minimum degree at least $C \log |V|$, for some constant $C$. Eccles [3] improved this result, by proving the conjecture for graphs with average degree at least some constant $d_{0}$. Hefetz, Saluz, and Tran [4] utilized Combinatorial Nullstellensatz to prove that if a graph on $p^{k}$ vertices, where $p$ is an odd prime and $k$ is a positive integer, admits a $C_{p}$-factor, then it is antimagic. A series of articles by Cranston, Liang, and Zhu [5], Bérczi, Bernáth, and Vizer [6], and Chang et al. [7] showed that for $k \geq 2$, every $k$-regular
graph is antimagic. For trees, Kaplan, Lev, and Roddity [8] proved that a tree with at most one vertex of degree 2 is antimagic. On the other hand, Liang, Wong, and Zhu [9] proved that a tree with many vertices of degree 2 is antimagic. The latest result on antimagic trees is by Lozano, Mora, Seara, and Tey [10] who proved that caterpillars are antimagic.

In 2017, Arumugam et al. [11] and Bensmail et al. [12] independently introduced a weaker notion of antimagic labeling, called the local antimagic labeling, where only adjacent vertices must be distinguished. Both sets of authors conjectured that any connected graph other than $K_{2}$ admits a local antimagic labeling. This conjecture has been completely settled by Haslegrave [13] using probabilistic method.

Another type of antimagic labeling was introduced by Kamatchi and Arumugam in 2013 [14]. A bijection $f: V(G) \rightarrow\{1,2, \ldots, v\}$ is called a distance antimagic labeling of graph $G$ if for two distinct vertices $x$ and $y, w(x) \neq \omega(y)$, where $\omega_{f}(x)=\sum_{y \in N(x)} f(y)$, for $N(x)$ the open neighborhood of $x$, i.e., the set of all vertices adjacent to $x$. A graph admitting a distance antimagic labeling is called a distance antimagic graph. In the same paper, Kamatchi and Arumugam conjectured that a graph $G$ is distance antimagic if and only if $G$ does not have two vertices with the same open neighbourhood.

Some families of graphs have been shown to be distance antimagic, among others, the path $P_{n}$, the cycle $C_{n}(n \neq 4)$, the wheel $W_{n}(n \neq 4)$ [14], and the hypercube $Q_{n}$ $(n \geq 3)$ [15]. In 2016, Llado and Miller [16] utilized Combinatorial Nullstellensatz to prove that a tree with $l$ leaves and $2 l$ vertices is distance antimagic.

In 2011, O'Neal and Slater [17] introduced the $D$-magic labeling as follows. Let $D \subseteq\{0,1, \ldots, \operatorname{diam}(G)\}$ be a set of distances in $G$. The graph $G$ is said to be $D$ magic if there exists a bijection $f: V \rightarrow\{1,2, \ldots, v\}$ and a magic constant $k$ such that for any vertex $x, \omega_{f}(x)=\sum_{y \in N_{D}(x)} f(y)=k$, where $N_{D}(x)=\{y \mid d(x, y)=d, d \in D\}$ is the $D$-neighborhood set of $x$.

When we consider the $D$-neighborhood set of a vertex, the regularity of a graph is defined as follows. A graph $G$ is said to be $(D, r)$-regular if $\left|N_{D}(x)\right|=r$ for every vertex $x \in G$. Clearly, an regular graph is $(\{1\}, r)$-regular.

Inspired by the notion of $D$-magic labeling, the idea of distance antimagic labeling was generalized by considering a set of distances $D \subseteq\{0,1, \ldots, \operatorname{diam}(G)\}$ and the $D$ neighborhood set of a vertex.

Definition 1. A D-antimagic labeling of a graph $G$ is a bijection $f: V(G) \rightarrow\{1, \ldots, v\}$ such that the weight $\omega_{f}(x)=\sum_{y \in N_{D}(x)} f(y)$ is distinct for each vertex $x$.

It is clear that if a graph contains two vertices having the same $D$-neighborhood set, then the graph does not admit a $D$-antimagic labeling. Here we boldly conjecture that the converse of the previous statement is also true, and thus we propose the following.

Conjecture 1. A graph admits a D-antimagic labeling if and only if it does not contain two vertices having the same D-neighborhood set.

If $x$ and $y$ are two distinct vertices with the same $D$-neighborhood set, the two vertices are called $D$-twins of each other, denoted by $x \sim_{D} y$. It is clear that $\sim_{D}$ is an equivalence relation, and thus Conjecture 1 can be rewritten as: "A graph admits a $D$-antimagic labeling if and only if its vertex set partition defined by $\sim_{D}$ contains only singletons".

An automorphism of a graph $G$ is a permutation of $V(G)$ preserving adjacency. A graph $G$ is said to be vertex-transitive if, for any two vertices $x$ and $y$, there exists an automorphism of $G$ that maps $x$ to $y$ and it is said to be edge-transitive if, for any two edges $x y$ and $u v$, there is an automorphism of $G$ that maps $x y$ to $u v$. If $G$ is both vertex-transitive and edge-transitive, $G$ is symmetric. Recall that a cycle, a complete graph, and a hypercube are symmetric. A path on at least four vertices and a wheel on at least five vertices are neither vertex-transitive nor edge-transitive.

In the rest of the paper, we shall provide several pieces of evidence that Conjecture 1 is true. First, in Section 2, we provide computational results where all graphs of order
up to 8 concur with Conjecture 1, for the case of $D=\{1\}$. Second, in Section 3, we show that the set of $(D, r)$-regular $D$-antimagic graphs is closed under union. For particular $D$, we provide examples of symmetric ( $D, r$ )-regular graphs that are $D$-antimagic, so the disjoint union of those graphs is also $D$-antimagic. Examples of disjoint union of non- $(D, r)$ regular graphs that are neither vertex-transitive nor edge-transitive but admit $D$-antimagic labelings are also presented in this section. Lastly, in Section 4, we show that it is possible to obtain a $D$-antimagic graph from a previously known distance antimagic graph. We realize that Conjecture 1, if true, will be laborious to prove, and thus in the following sections, we propose several open problems that hopefully are more feasible to solve.

## 2. Computational Result

We build an exhaustive algorithm to search for all distance antimagic graphs of order $v$. We split the algorithm into three functions: Algorithm 1 checks whether an input graph $G$ contains $\{1\}$-twins by seeking two identical rows in the adjacency matrix of $G$. Algorithm 2 decides whether labeling is distance antimagic, and Algorithm 3 searches for distance antimagic graphs. We implemented this algorithm in C++, and the source code can be found in [18].

Let $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}, A$ be the adjacency matrix of $G$, and the labeling matrix $L(G)$ be a $v \times v$ matrix whose $(i, i)$ entry is $\lambda\left(x_{i}\right)$, the label of vertex $x_{i}$.

```
Algorithm 1 Check If G Contains \(\{1\}\)-Twins
 function ISTWINS(\(G\))
 for \(i \leftarrow 1\) to \(v\) do
 for \(j \leftarrow 1\) to \(v\) do
 \(v_{i}=A_{i, 1 \ldots v} \quad \triangleright v_{i}\) is the \(i\) th row vector of \(A\)
 if \(i \neq j\) and \(v_{i} \neq v_{j}\) then
 return false \(\quad \triangleright\) return false if two identical row vectors are found
 end if
 end for
 end for
 return true
 end function
```

```
Algorithm 2 Evaluate Distance Anti Magic
 function EVALDISTANCEANTIMAGIC \((L(G))\)
 for \(i \leftarrow 1\) to \(v\) do
 \(w_{i}=0 \quad \triangleright\) initialize weight \(w_{i}\)
 for \(j \leftarrow 1\) to \(v\) do \(\quad \triangleright\) calculate weight \(w_{i}\)
 \(w_{i} \leftarrow w_{i}+\lambda\left(x_{j}\right)\left(A_{i, j}\right)\)
 end for
 end for
 if \(\operatorname{ISUNIQUE}(w)\) then \(\quad \triangleright\) check if \(w_{i} \neq w_{j}\) for all \(i, j\)
 return 0
 else
 return 1
 end if
 end function
```

```
Algorithm 3 Search Distance Anti Magic
 function SEARCHDISTANCEANTIMAGIC}(G,P)\trianglerightP\mathrm{ is the set of permutation on v
 elements
 c}\leftarrow
 i\leftarrow1
 if ISTWINS(G) then
 while }c\not=0\mathrm{ or }\lambda\mathrm{ and }i\leq|P|\mathrm{ do
 \lambda= Pi
 L(\beta)=L(G,\lambda)
 c}\leftarrow\mathrm{ EVALDISTANCEANTIMAGIC (L(}\beta)
 i\leftarrowi+1
 end while
 end if
 end function
```

We run the algorithm to search for all distance antimagic (non-isomorphic) graphs of order up to 8 generated by nauty [19], with results as depicted in Table 1.

Table 1. Distance antimagic graphs of order $v, 1 \leq v \leq 8$.

$\boldsymbol{v}$	\# Non-Isomorphic   Graphs	\# Graphs Not Containing   $\{\mathbf{1}\}$-Twins	\# \{1\}-Antimagic   Graphs
1	1	1	1
2	2	1	1
3	4	2	2
4	11	5	5
5	34	16	16
6	156	78	78
7	1044	588	588
8	12346	8047	8047

Thus, we obtain the following result, which supports Conjecture 1.
Theorem 1. A graph of order $v, 1 \leq v s . \leq 8$, admits a $\{1\}$-antimagic labeling if and only if it does not contain two vertices having the same $\{1\}$-neighborhood set.

## 3. Closedness of Union of $D$-Antimagic Graphs

Theorem 2. Let $D$ be an arbitrary set of distances and $G, H$ be two $D$-antimagic graphs. If $H$ is $(D, r)$-regular and $\left|N_{D}(x)\right| \leq r$, for every $x \in V(G)$, then $G \cup H$ is also D-antimagic.

Proof. Let $g$ and $h$ be $D$-antimagic labelings of $G$ and $H$. Define a new labeling $l$ for $G \bigcup H$ as $l(x)=h(x)+v$, when $x \in H$, and $l(x)=g(x)$, when $x \in G$.

We shall show that $l$ is $D$-antimagic. Let $x$ and $y$ be two distinct vertices in $G \cup H$. If both $x, y \in V(G)$, then $w_{l}(x)=w_{g}(x) \neq w_{g}(y)=w_{l}(y)$. If both $x, y \in V(H)$, then

$$
\begin{aligned}
w_{l}(x) & =\sum_{u \in N_{D}(x)}(h(u)+v) \\
& =\sum_{u \in N_{D}(x)} h(u)+\left|N_{D}(x)\right| v \\
& =w_{h}(x)+r v \\
& \neq w_{h}(y)+r v \\
& =w_{l}(y)
\end{aligned}
$$

The last case is if, without loss of generality, $x \in V(G)$ and $y \in V(H)$. Since $w_{l}(x)=w_{g}(x) \leq v s . \max _{x \in V(G)}\left|N_{D}(x)\right|$ and $w_{l}(y) \geq(v+1)+(v+2)+\ldots+(v+r)>v r$, then $w_{l}(x) \leq v s . \max _{x \in V(G)}\left|N_{D}(x)\right| \leq v r<w_{l}(y)$.

Let $\mathscr{G}_{\mathscr{A}}(D)$ be the set of all $D$ - antimagic graphs and $\mathscr{G}(D, r)$ be the set of all $(D, r)$ regular graphs. A direct consequence of Theorem 2 is

Corollary 1. $\mathscr{G}_{\mathscr{A}}(D) \cap \mathscr{G}(D, r)$ is closed under union.
Corollary 1 is a generalization of a result in [15], where it was proved that if $G$ is a regular distance antimagic graph, then $2 G$ is also distance antimagic.

Direct application of Corollary 1 to known graphs in $\mathscr{G}_{\mathscr{A}}(D) \bigcap \mathscr{G}(D, r)$ results in the following.

Corollary 2. 1. For $n_{i} \neq 4, i=1, \ldots, k$, the disjoint union of cycles $\bigcup_{i=1}^{k} C_{n_{i}}$ is $\{1\}$-antimagic.
2. For $n_{i} \geq 3, i=1, \ldots, k$, the disjoint union of cycles $\bigcup_{i=1}^{k} C_{n_{i}}$ is $\{0,1\}$-antimagic.
3. For $n_{i} \geq 1, i=1, \ldots, k$, the disjoint union of complete graphs $\bigcup_{i=1}^{k} K_{n_{i}}$ is $\{1\}$-antimagic.
4. For $n_{i} \geq 3, i=1, \ldots, k$, the disjoint union of hypercubes $\bigcup_{i=1}^{k} Q_{n_{i}}$ is $\{1\}$-antimagic.
5. For $n_{i} \equiv 0 \bmod 4, i=1, \ldots, k$, the disjoint union of hypercubes $\bigcup_{i=1}^{k} 2 Q_{n_{i}}$ is $\{0,1\}$-antimagic.

Proof. Due to facts that:

1. For $n \neq 4$, the cycle $C_{n}$ is $\{1\}$-antimagic [14].
2. For $n \geq 3$, the cycle $C_{n}$ is $\{0,1\}$-antimagic [20].
3. For $n \geq 1$, the complete graph $K_{n}$ is trivially $\{1\}$-antimagic.
4. For $n \geq 3$, the hypercube $Q_{n}$ is $\{1\}$-antimagic [15].
5. For $n \equiv 0 \bmod 4$, the disjoint union of two hypercubes $2 Q_{n}$ is $\{0,1\}$-antimagic [21].

Although closedness under union is still unknown for the set of non-regular graphs, in the following theorems, we shall provide some families of disjoint union of non-regular graphs admitting $D$-antimagic labelings for $D=\{1\}$. We start by showing that particular cases of disjoint union of paths are distance antimagic.

Theorem 3. For any positive integers $m, n>3$, the disjoint union of two paths $P_{m} \cup P_{n}$ is distance antimagic.

Proof. Let $V\left(P_{m}\right)=\left\{v_{i}^{(1)}: 1 \leq i \leq m\right\}$ and $V\left(P_{n}\right)=\left\{v_{j}^{(2)}: 1 \leq j \leq n\right\}$. We shall consider three cases which depend on the parity of $m$ and $n$.

Case 1. Without loss of generality, when $m$ odd and $n$ even. Define a labeling $g: V\left(P_{m} \cup P_{n}\right) \rightarrow\{1,2, \ldots, m+n\}$, where $g\left(v_{i}^{(1)}\right)=m+n$, for $i=1, g\left(v_{i}^{(1)}\right)=n+i-1$, for $2 \leq i \leq m$, and $g\left(v_{j}^{(2)}\right)=j$, for $1 \leq j \leq n$.

Under this labeling, the weights are:

$$
\omega_{g}\left(v_{i}^{(1)}\right)= \begin{cases}n+1, & \text { if } i=1 \\ m+2 n+2, & \text { if } i=2, \\ 2 n+2 i-2, & \text { if } 3 \leq i \leq m-1 \\ n+m-2, & \text { if } i=m\end{cases}
$$

and

$$
\omega_{g}\left(v_{j}^{(2)}\right)= \begin{cases}2 j, & \text { if } 1 \leq j \leq n-1 \\ n-1, & \text { if } j=n\end{cases}
$$

It is clear that every vertex in $P_{n}$ has a distinct weight less than any weight in $P_{m}$. On the other hand, in $P_{m}$, the only even weights are $2 n+2 i-2,3 \leq i \leq m-1$, all of which are different. To conclude, for the odd weights in $P_{m}$, the following inequalities hold

$$
n-1<n+1<n+m-2<m+2 n+2
$$

Case 2. When both $m$ and $n$ are even. Since the case when $m=n$ is considered in Theorem 4, we may assume $m<n$. Define a labeling $g_{1}: V\left(P_{m}\right) \rightarrow\{1,2, \ldots, m\}$, where $g_{1}\left(v_{i}^{(1)}\right)=i$. Under this labeling, $\omega_{g_{1}}\left(v_{i}^{(1)}\right)<2 m-1$, for $1 \leq i \leq m$.

We then define three different labelings for $P_{n}$, depending on the value of $n$.
Sub Case 2.1. When $m=4$ and $n=6$, define a labeling $g_{2}: V\left(P_{n}\right) \rightarrow\{5, \ldots, 10\}$, where

$$
g_{2}\left(v_{1}^{(2)}\right)=5, g_{2}\left(v_{2}^{(2)}\right)=7, g_{2}\left(v_{3}^{(2)}\right)=6, g_{2}\left(v_{4}^{(2)}\right)=9, g_{2}\left(v_{5}^{(2)}\right)=8, g_{2}\left(v_{6}^{(2)}\right)=10
$$

Here the weights are:

$$
\omega_{g_{2}}\left(v_{1}^{(2)}\right)=7, \omega_{g_{2}}\left(v_{2}^{(2)}\right)=11, \omega_{g_{2}}\left(v_{3}^{(2)}\right)=16, \omega_{g_{2}}\left(v_{4}^{(2)}\right)=14, \omega_{g_{2}}\left(v_{5}^{(2)}\right)=19, \omega_{g_{2}}\left(v_{6}^{(2)}\right)=8
$$

all of which are larger the the weights of all vertices in $P_{m}$.
Sub Case 2.2. For $n=m+2, m \geq 6$, define a labeling $g_{2}: V\left(P_{n}\right) \rightarrow\{1, \ldots, n\}$, where

$$
g_{2}\left(v_{j}^{(2)}\right)= \begin{cases}m+j, & \text { if } j=1, m+1, m+2 \\ 2 m, & \text { if } j=2 \\ m+j-1, & \text { if } 3 \leq j \leq m\end{cases}
$$

This labeling results to the following weights of vertices in $P_{n}$.

$$
\omega_{g_{2}}\left(v_{j}^{(2)}\right)= \begin{cases}2 m+3 j-3, & \text { if } j=1,2 \\ 3 m+3, & \text { if } j=3 \\ 2 m+2 j-2, & \text { if } 4 \leq j \leq m-1 \\ 2 m+2 j-1, & \text { if } j=m, m+1 \\ 2 m+1, & \text { if } j=m+2\end{cases}
$$

The even weights are $2 m<2 m+6<2 m+8<\ldots<4 m-4$ and the odd weights $2 m+1<2 m+3<3 m+3<4 m-1<4 m+1$, all of which are larger than the weights of vertices in $P_{m}$.

Sub Case 2.3. When $n>m+2, m \geq 4$, define a labeling $g_{2}: V\left(P_{n}\right) \rightarrow\{1, \ldots, n\}$, where

$$
g_{2}\left(v_{j}^{(2)}\right)= \begin{cases}m+j, & \text { if } j=1 \text { and } n \\ 2 m, & \text { if } j=2 \\ m+j-1, & \text { if } 3 \leq j \leq m \\ m+j+1, & \text { if } m+1 \leq j \leq n-2 \\ 2 m+1, & \text { if } j=n-1\end{cases}
$$

Thus, we obtain the following weights for vertices in $P_{n}$.

$$
\omega_{g_{2}}\left(v_{j}^{(2)}\right)= \begin{cases}2 m+3(j-1), & \text { if } j=1 \text { and } 2, \\ 3 m+3, & \text { if } j=3, \\ 2 m+2 j-2, & \text { if } 4 \leq j \leq m-1, \\ 2 m+2 j, & \text { if } j=m \text { and } m+1, \\ 2 m+2 j+2, & \text { if } m+2 \leq j \leq n-3, \\ 3 m+n-1, & \text { if } j=n-2, \\ 2 m+2 n-1, & \text { if } j=n-1, \\ 2 m+1, & \text { if } j=n .\end{cases}
$$

Here the odd weights are $2 m+1<2 m+3<3 m+3<3 m+n-1<2 m+2 n-1$ and the even weights are $2 m, 2 m+6,2 m+8, \ldots, 4 m-4,4 m, 4 m+2,4 m+6,4 m+8, \ldots$, $2 m+2 n-4$.

Case 3. When both $m$ and $n$ are odd, define a labeling $g: V\left(P_{m} \cup P_{n}\right) \rightarrow\{1, \ldots, m+n\}$, where $g\left(v_{i}^{(1)}\right)=i+1$, for $1 \leq i \leq m$, and

$$
g\left(v_{j}^{(2)}\right)= \begin{cases}1, & \text { if } j=1 \\ m+j, & \text { if } 2 \leq j \leq n\end{cases}
$$

Under the labeling $g$, we obtain the following weights of vertices.

$$
\omega_{g}\left(v_{i}^{(1)}\right)= \begin{cases}3, & \text { if } i=1 \\ 2 i+2, & \text { if } 2 \leq i \leq m-1, \\ m, & \text { if } i=m\end{cases}
$$

and

$$
\omega_{g}\left(v_{j}^{(2)}\right)= \begin{cases}m+2 j, & \text { if } j=1 \text { and } 2, \\ 2 m+2 j, & \text { if } 3 \leq j \leq n-1, \\ m+n-1 & \text { if } j=n\end{cases}
$$

The odd weights are $3<m<m+2<m+4<m+n-1$ and the even weights are $2 i+2$, for $2 \leq i \leq n$, and $2 m+2 j$, for $3 \leq j \leq n-1$. This concludes our proof.

An example of a distance magic labeling for $P_{9} \cup P_{12}$ can be viewed in Figure 1.


Figure 1. A distance antimagic labeling for $P_{9} \cup P_{12}$.
Theorem 4. For $n \neq 3, m P_{n}$ is distance antimagic.
Proof. Let $V\left(m P_{n}\right)=\left\{v_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$, and $E\left(m P_{n}\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq\right.$ $n-1,1 \leq j \leq m\}$. We shall consider three cases:

Case 1. When $n \equiv 0,2(\bmod 4)$, define a labeling $f$ of $m P_{n}$ as follows.

$$
f\left(v_{i}^{j}\right)= \begin{cases}n(j-1)+\frac{i}{2}, & \text { if i even } \\ n(j-1)+\frac{i+n+1}{2}, & \text { if i odd. }\end{cases}
$$

Thus, we obtain the weight of each vertex as follows.

$$
\omega_{f}\left(v_{i}^{j}\right)= \begin{cases}1+n(j-1), & \text { if } i=1, \\ (n+i+1)+2 n(j-1), & \text { if } i=2,4, \ldots, n-2, \\ i+2 n(j-1), & \text { if } i=3,5, \ldots, n-1, \\ n j, & \text { if } i=n .\end{cases}
$$

Case 2. When $n \equiv 1(\bmod 4)$, define a labeling $f$ of $m P_{n}$ as follows.

$$
f\left(v_{i}^{j}\right)= \begin{cases}3-i+n(j-1), & \text { if } i=1,2, \\ n-\frac{i-3}{2}+n(j-1), & \text { if } i=3,5, \ldots, n \\ \frac{n+5-i}{2}+n(j-1), & \text { if } i=4,6, \ldots, n-1\end{cases}
$$

Thus, the weight of each vertex is as follows.

$$
\omega_{f}\left(v_{i}^{j}\right)= \begin{cases}1+n(j-1), & \text { if } i=1, \\ n+2+2 n(j-1), & \text { if } i=2, \\ \frac{1}{2}(n+3)+2 n(j-1), & \text { if } i=3, \\ 2 n-i+3+2 n(j-1), & \text { if } i=4,6, \ldots, n-1, \\ n+5-i+2 n(j-1), & \text { if } i=5,7, \ldots, n-2, \\ 3+n(j-1), & \text { if } i=n .\end{cases}
$$

Case 3. When $n \equiv 3(\bmod 4)$, define a labeling $f$ of $m P_{n}$ as follows.

$$
f\left(v_{i}^{j}\right)= \begin{cases}i+n(j-1), & \text { if } i=1,2, \\ n-\frac{i-3}{2}+n(j-1), & \text { if } i=3,5, \ldots, n \\ \frac{n+5-i}{2}+n(j-1), & \text { if } i=4,6, \ldots, n-1\end{cases}
$$

This leads to the following weights of vertices.

$$
\omega_{f}\left(v_{i}^{j}\right)= \begin{cases}2+n(j-1), & \text { if } i=1, \\ n+1+2 n(j-1), & \text { if } i=2, \\ \frac{1}{2}(n+5)+2 n(j-1), & \text { if } i=3, \\ 2 n-i+3+2 n(j-1), & \text { if } i=4,6, \ldots, n-1, \\ n+5-1+2 n(j-1), & \text { if } i=5,7, \ldots, n-2, \\ 3+n(j-1), & \text { if } i=n .\end{cases}
$$

This concludes the proof since, in all three cases, all the vertex-weights are distinct. An example of a distance antimagic labeling for $4 P_{5}$ is depicted in Figure 2.




Figure 2. A distance antimagic labeling for $4 P_{5}$.
In general, we are still not able to prove that the disjoint union of arbitrary paths is distance antimagic.

Problem 1. Show that $\cup_{i=1}^{k} P_{n_{i}}$, where $n_{i} \neq 3,1 \leq i \leq k$, is distance antimagic.
The next three theorems deal with the distance antimagicness of graphs containing many triangles, i.e., wheels, fans, and friendship graphs. A wheel $W_{n}$ is a graph obtained by joining all vertices of a cycle of order $n$ to another vertex called the center. Let $V\left(W_{n}\right)=$ $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ where $x_{0}$ is the center and $x_{1}, \ldots, x_{n}$ are the vertices of the cycle.

Theorem 5. For $m \geq 1$ and $n \geq 3, m W_{n}$ is distance antimagic.
Proof. Let $V\left(m W_{n}\right)=\left\{x_{i}^{j} \mid i=0,1, \ldots, n, j=1,2, \ldots, m\right\}$. We define different vertex labelings $f$ of $m W_{n}$, depending on the value of $n$.

Case 1. When $n$ is even.

Sub Case 1.1. When $n \equiv 0(\bmod 4)$.

$$
f\left(x_{i}^{j}\right)= \begin{cases}(n+1) j & \text { for } i=0 \\ (n+1)(j-1)+1 & \text { for } \quad i=1 \\ (n+1)(j-1)+(i-1) & \text { for } \quad i=3,5, \ldots, \frac{1}{2} n+1, \\ (n+1)(j-1)(n+2-i) & \text { for } i=\frac{1}{2} n+3, \frac{1}{2} n+5, \ldots, n-1, \\ (n+1)(j-1)+\frac{1}{2} n-1+i & \text { for } \quad i=2,4, \ldots, \frac{1}{2} n \\ (n+1)(j-1)+\frac{1}{2} 3 n+2-i & \text { for } \quad i=\frac{1}{2} n+2, \frac{1}{2} n+4, \ldots, n .\end{cases}
$$

This will lead to the following weights of vertices.

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}\frac{1}{2} n(n+1)(2 j-1) & \text { for } \quad i=0, \\ (n+1)(3 j-2)+n+3 & \text { for } \quad i=1, \\ (n+1)(3 j-2)+3 & \text { for } \quad i=2, \\ (n+1)(3 j-2)+n-2+2 i & \text { for } \quad i=3,5, \ldots, \frac{1}{2} n-1, \\ (n+1)(3 j-2)+2 n-1 & \text { for } \quad i=\frac{1}{2} n+1, \\ (n+1)(3 j-2)+3 n+4-2 i & \text { for } \quad i=\frac{1}{2} n+3, \frac{1}{2} n+5, \ldots, n-1, \\ (n+1)(3 j-2)-2+2 i & \text { for } \quad i=4,6, \ldots, \frac{1}{2} n \\ (n+1)(3 j-2)+n-1+\frac{1}{2}(1+i) & \text { for } \quad i=\frac{1}{2} n+2, \\ (n+1)(3 j-2)-2 n+4-2 i & \text { for } \quad i=\frac{1}{2} n+4, \frac{1}{2} n+6, \ldots, n .\end{cases}
$$

Sub Case 1.2. $n \equiv 2(\bmod 4)$.

$$
f\left(x_{i}^{j}\right)= \begin{cases}(n+1) j & \text { for } \quad i=0 \\ (n+1)(j-1)+\frac{1}{2}(i+1) & \text { for } \quad i=1,3, \ldots, n-1 \\ (n+1) j-\frac{1}{2} i & \text { for } \quad i=2,4, \ldots, n\end{cases}
$$

and so we obtain the following vertex-weights.

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}\frac{1}{2} n(n+1)(2 j-1) & \text { for } \quad i=0 \\ (n+1) 3 j-\frac{1}{2}(n+1+i) & \text { for } \quad i=1, \\ (n+1)(3 j-2)+1+i & \text { for } \quad i=2,4, \cdots, n-2 \\ (n+1) 3 j-i & \text { for } \quad i=3,5, \cdots, n-1 \\ (n+1)(3 j-2)+\frac{1}{2}(n+2) & \text { for } \quad i=n\end{cases}
$$

Case 2. When $n$ is odd.
Sub Case 2.1. When $n \equiv 1,5(\bmod 6)$.

$$
f\left(x_{i}^{j}\right)=\left\{\begin{array}{lll}
(n+1) j & \text { for } j \text { odd } \quad i=0 \\
(n+1)(j-1)+i & \text { for } j \text { odd } \quad i=1,2, \ldots, n \\
(n+1) j-n+i & \text { for } j \text { even } \quad i=0,1, \ldots, n
\end{array}\right.
$$

The vertex-weights under this labeling are as follows.
For odd $j$,

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}\frac{1}{2} n(n+1)(2 j-1) & \text { for } \quad i=0 \\ (n+1)(3 j-2)+n+2 & \text { for } \quad i=1 \\ (n+1)(3 j-2)+2 i & \text { for } \quad i=2,3, \cdots, n-1 \\ (n+1)(3 j-2)+n & \text { for } \quad i=n\end{cases}
$$

and for even $j$,

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}\frac{1}{2} n(2 j(n+1)-n+1) & \text { for } \quad i=0, \\ (n+1) 3 j-2 n+2 & \text { for } \quad i=1, \\ (n+1) 3 j-3 n+2 i & \text { for } \quad i=2,3, \cdots, n-1, \\ (n+1) 3 j-2 n & \text { for } \quad i=n .\end{cases}
$$

Sub Case 2.2. For $n \equiv 3(\bmod 6)$.

$$
f\left(x_{i}^{j}\right)= \begin{cases}(n+1) j & \text { for } \quad i=0, \\ (n+1)(j-1)+i & \text { for } \quad i=1,2, \ldots, n\end{cases}
$$

Thus, we obtain the following vertex-weights.

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}\frac{1}{2} n(n+1)(2 j-1) & \text { for } \quad i=0 \\ (n+1)(3 j-2)+n+2 & \text { for } \quad i=1 \\ (n+1)(3 j-2)+2 i & \text { for } \quad i=2,3, \cdots, n-1 \\ (n+1)(3 j-2)+n & \text { for } \quad i=n\end{cases}
$$

This concludes the proof since, in all the cases, all the vertex-weights are clearly distinct.
An example of a distance antimagic labeling for $4 W_{7}$ can be seen in Figure 3.


Figure 3. A distance antimagic labeling for $4 W_{7}$.
A fan $F_{n}$ is a graph obtained by joining all vertices of a path of order $n$ to a further vertex called the center. Let $V\left(F_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ where $x_{0}$ is the center and $x_{1}, \ldots, x_{n}$ are the vertices of the path.

Theorem 6. For $m \geq 1$ and $n \geq 1, m F_{n}$ is distance antimagic.
Proof. $V\left(m F_{n}\right)=\left\{x_{i}^{j} \mid i=0,1, \ldots, n, j=1,2, \ldots, m\right\}$. We define a vertex labeling $f$ of $m F_{n}$ as follow:

Case 1. When $n$ is odd,

$$
f\left(x_{i}^{j}\right)=(n+1)(j-1)+1+i, \quad \text { for } \quad i=0,1, \cdots, n,
$$

and thus we obtain the following vertex-weights.

$$
\omega_{f}\left(x_{i}^{j}\right)=\left\{\begin{array}{lll}
n(n+1)(j-1)+\frac{1}{2} n(n+3) & \text { for } \quad i=0 \\
2(n+1)(j-1)+4 & \text { for } \quad i=1, \\
3(n+1)(j-1)+3+2 i & \text { for } \quad i=2,3, \cdots, n-1, \\
2(n+1)(j-1)+n+1 & \text { for } \quad i=n
\end{array}\right.
$$

Case 2. When $n$ is even.

Sub case 2.1. When $j=2,4(\bmod 6)$,

$$
f\left(x_{i}^{j}\right)= \begin{cases}(n+1)(j-1)+\frac{1}{2}(n+2) & \text { for } \quad i=0, \\ (n+1)(j-1)+i & \text { for } \quad i=1,2, \ldots, \frac{n}{2}, \\ (n+1)(j-1)+1+i & \text { for } \quad i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\end{cases}
$$

which leads to the following vertex-weights.

$$
\omega_{f}\left(x_{i}^{j}\right)=\left\{\begin{array}{lll}
n(n+1)(j-1)+\frac{1}{2} n(n+2) & \text { for } \quad i=0, \\
2(n+1)(j-1)+\frac{1}{2} n+3 & \text { for } \quad i=1, \\
3(n+1)(j-1)+\frac{1}{2} n+1+2 i & \text { for } \quad i=2,3, \ldots, \frac{n}{2}-1 \\
3(n+1)(j-1)+\frac{1}{2} n+2+2 i & \text { for } \quad i=\frac{n}{2}, \frac{n}{2}+1, \\
3(n+1)(j-1)+\frac{1}{2} n+3+2 i & \text { for } \quad i=\frac{n}{2}+2, \frac{n}{2}+1, \ldots, n-1, \\
2(n+1)(j-1)+\frac{1}{2}(3 n+2) & \text { for } \quad i=n .
\end{array}\right.
$$

Sub Case 2.2. When $j=0(\bmod 6)$,

$$
f\left(x_{i}^{j}\right)= \begin{cases}(n+1) j-\frac{n}{2}+i & \text { for } \quad i=0,1, \ldots, \frac{n}{2} \\ (n+1)(j-1)-\frac{n}{2}+i & \text { for } \quad i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\end{cases}
$$

and so we obtain the following vertex-weights.

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}n j(n+1)-\frac{1}{2} n^{2} & \text { for } \quad i=0, \\ 2 j(n+1)-n+2 & \text { for } \quad i=1, \\ 3 j(n+1)-\frac{1}{2} 3+2 i & \text { for } \quad i=2,3, \ldots, \frac{n}{2}-1 \\ 3 j(n+1)-\frac{1}{2} 5 n-1+2 i & \text { for } \quad i=\frac{n}{2}, \frac{n}{2}+1, \\ 3 j(n+1)(j-1)-\frac{1}{2} 7 n-2+2 i & \text { for } i=\frac{n}{2}+2, \frac{n}{2}+1, \ldots, n-1, \\ 2 j(n+1)-n-2 & \text { for } \quad i=n .\end{cases}
$$

In all cases, we can see that all the weights are distinct.
Examples of distance antimagic labelings for for $4 F_{6}$ and $4 F_{7}$ are depicted in Figure 4 .


Figure 4. Distance antimagic labelings for $4 F_{6}$ and $4 F_{7}$.
A friendship graph $f_{n}$ is obtained by identifying a vertex from $n$ copies of cycles of order 3. Let $V\left(m f_{n}\right)=\left\{x_{0}^{j}, x_{1}^{j}, \ldots, x_{2 n}^{j}\right\}$ where $x_{0}^{j}, x_{2 i-1}^{j}, x_{2 i}^{j}$ are the vertices in the $j$-th $C_{3}$, for $i=1, \ldots, n$ and $j=1,2, \ldots, m$.

Theorem 7. For $m \geq 1$ and $n \geq 3, m f_{n}$ is distance antimagic.
Proof. We define a vertex labeling $f$ of $m f_{n}$ as follow.

$$
\begin{aligned}
& \text { For } j=1,2, \ldots, m \\
& \qquad f\left(x_{i}^{j}\right)= \begin{cases}(2 n+1) j, & \text { for } \quad i=0, \\
(2 n+1)(j-1)+i, & \text { for } \quad i=1,2, \cdots, 2 n,\end{cases}
\end{aligned}
$$

and so we obtain the following vertex-weights.

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}n(2 n+1)(2 j-1), & \text { for } \quad i=0, \\ (4 n+2) j-2 n+i, & \text { for } \quad i=1,3, \cdots, 2 n-1 \\ (4 n+2) j-2(n+1)+i, & \text { for } \quad i=2,4, \cdots, 2 n\end{cases}
$$

where all the weights are distinct.
An example of a distance antimagic labeling for $4 f_{3}$ can be viewed in Figure 5.





Figure 5. A distance antimagic labeling for $4 f_{3}$.
We conclude this section by considering the disjoint union of unicyclic graphs. A sun $S_{n}$ is a cycle on $n$ vertices with a leaf attached to each vertex on the cycle. Let the vertex set of sun $V\left(S_{n}\right)=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$, where $d\left(x_{i}\right)=3$ and $d\left(y_{i}\right)=1$.

Theorem 8. For $m \geq 1$ and $n \geq 1, m S_{n}$ is distance antimagic.
Proof. Let $V\left(m S_{n}\right)=\left\{x_{i}^{j}, y_{i}^{j} \mid i=1, \ldots, n, j=1,2, \ldots, m\right\}$. We define a vertex labeling $f$ of $m S_{n}$ as follows.

$$
f\left(x_{i}^{j}\right)=(m+j-1) n+i, \text { for } \quad i=1,2, \ldots, n
$$

and

$$
f\left(y_{i}^{j}\right)=(j-1) n+i, \text { for } \quad i=1,2, \ldots, n
$$

Under the labeling $f$, the vertex-weights are

$$
\omega_{f}\left(y_{i}^{j}\right)=f\left(x_{i}^{j}\right)=(m+j-1) n+i, \text { for } \quad i=1,2, \ldots, n
$$

and

$$
\omega_{f}\left(x_{i}^{j}\right)= \begin{cases}2 n(m-1)+3+3 n j, & \text { for } i=1, \\ n(2 m-3)+3(n j+i), & \text { for } \quad i=2,3, \ldots, n-1, \\ n(2 m-1)+3 n j, & \text { for } i=n,\end{cases}
$$

which are all distinct.
An example of a distance antimagic labeling for $3 S_{7}$ is in Figure 6.
With several examples that we have presented, more general questions are in the following.

Problem 2. If $G$ is a non-regular graph containing no $\{1\}$-twins, show that $n G$ is distance antimagic.
Problem 3. If $G_{1}, G_{2}, \ldots G_{n}$ are non-regular graphs containing no $\{1\}$-twins, show that $\bigcup_{i=1}^{n} G_{i}$ is distance antimagic.




Figure 6. A distance antimagic labeling for $3 S_{7}$.

## 4. Distance-D Graph and $\boldsymbol{D}$-(Anti)magic Labeling

For any connected graph $G$, we denote by $G_{k}, 1 \leq k \leq \operatorname{diam}(G)$, the distance- $k$ graph of $G$, as the graph whose vertices are those of $G$ and whose edges are the 2-subsets of vertices at mutual distance $k$ in $G$ [22]. In particular, $G_{1}=G$. On the other hand, the $k$-th power graph of a graph $G, G^{k}$, is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in $G$ is at most $k$ [23]. Clearly, $G^{\operatorname{diam}(G)}=K_{v}$.

We generalize the two aforementioned graphs by defining the distance-D graph of $G, G_{D}$, as the graph with the same vertices as $G$, where two vertices are adjacent when their distance in $G$ is in $D$. Clearly, the distance- $k$ graph $G_{k}=G_{\{k\}}$ and the $k$ th power $G^{k}=G_{\{0,1,2, \ldots, k\}}$. (For examples, see Figures 7 and 8.)

(a)

(b)

Figure 7. (a) A $\{2\}$-magic labeling for $C_{8}$. (b) A distance antimagic labeling for $\left(C_{8}\right)_{\{2\}}$.

(a)

(b)

Figure 8. (a) A $\{0,2\}$-antimagic labeling for a binary tree $T$. (b) A $\{0,1\}$-antimagic labeling for $T_{\{0,2\}}$.
The next theorem shows that when $G$ is $D$-(anti)magic, $G_{D}$ is either $\{1\}$-(anti)magic or $\{0,1\}$-(anti)magic.

Theorem 9. Let $G$ be a $D$-(anti)magic graph.

1. If $D$ does not contain 0 then $G_{D}$ is $\{1\}$-(anti)magic.
2. If $D$ contains 0 then $G_{D}$ is $\{0,1\}$-(anti)magic.

Proof. Suppose that $f$ is an (anti)magic labeling of $G$. From the definition of $G_{D}$, for any $x, N(x)$ in $G_{D}$ is the same with $N_{D}(x)$ in G. If $D$ does not contain 0 , then $\sum_{y \in N(x)} f(x)$ in $G_{D}$ is the same with $\sum_{y \in N_{D}(x)} f(x)$ in $G$. On the other hand, if $D$ contains 0 , then $f(x)+\sum_{y \in N(x)} f(x)$ in $G_{D}$ is the same with $\sum_{y \in N_{D}(x)} f(x)$ in $G$.

However, since it is relatively easier to find a distance (anti)magic labeling for a graph, the converse of Theorem 9 is more interesting for us. Let $\mathscr{G}_{n}$ be the set of graphs of order $n$. Define a function $\mathscr{F}_{D}: \mathscr{G}_{n} \rightarrow \mathscr{G}_{n}$, where $\mathscr{F}_{D}(G)=G_{D}$. It is clear that $\mathscr{F}_{D}$ is neither injective nor surjective. For instance, as depicted in Figure 9, $\left(C_{4}\right)_{\{2\}}$ is $2 P_{2}$, however there is also another graph, in this case $P_{4}$, where $\left(P_{4}\right)_{\{2\}}=2 P_{2}$. Notice that both $C_{4}$ and $P_{4}$ are $\{2\}$-antimagic with the same vertex labeling.

(a)

(b)

(c)

Figure 9. (a) A $\{2\}$-antimagic labeling for $C_{4}$. (b) A distance antimagic labeling for $\left(C_{4}\right)_{\{2\}}$. (c) A $\{2\}$-antimagic labeling for $P_{4}$.

Despite the fact that $\mathscr{F}_{D}$ is not invertible, we can still state the following.

## Theorem 10. Suppose one of the following conditions holds:

1. Let $D$ be a distance set not containing 0 and $G$ be a $\{1\}$-(anti)magic graph.
2. Let $D$ be a distance set containing 0 and $G$ be a $\{0,1\}$-(anti)magic graph.

If there exists a graph $H$ such that $G=H_{D}$, then $H$ is $D$-(anti)magic.
Theorem 10 hints that if we manage to find a distance (anti)magic graph, we might as well find $D$-(anti)magic graphs for suitable sets of $D$ s.

Author Contributions: Conceptualization, R.S.; methodology, R.S.; formal analysis, R.S., T.N., F.Y. and K.W.; writing-original draft preparation, R.S., T.N. and K.W.; writing-review and editing, R.S., T.N., F.Y., K.W., N.H. and K.A.S; supervision, R.S.; funding acquisition, R.S., N.H. and K.A.S. All authors have read and agreed to the published version of the manuscript.
Funding: R.S., N.H. and K.A.S. were funded by Program Penelitian Kolaborasi Indonesia (PPKI) 2021 No. 033/IT1.B07.1/SPP-LPPM/II/2021.

Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Hartsfield, N.; Ringel, G. Pearls in Graph Theory; Academic Press: San Diego, CA, USA, 1990.
2. Alon, N.; Kaplan, G.; Lev, A.; Roditty, Y.; Yuster, R. Dense graphs are antimagic. J. Graph Theory 2004, 47, 297-309. [CrossRef]
3. Eccles, T. Graphs of Large Linear Size Are Antimagic. J. Graph Theory 2016, 81, 236-261. [CrossRef]
4. Hefetz, D.; Saluz, A.; Tran, H. An application of the combinatorial Nullstellensatz to a graph labelling problem. J. Graph Theory 2010, 65, 70-82. [CrossRef]
5. Cranston, D.; Liang, Y.; Zhu, X. Regular Graphs of Odd Degree Are Antimagic. J. Graph Theory 2015, 80, 28-33. [CrossRef]
6. Bérczi, K.; Bernáth, A.; Vizer, M. Regular Graphs are Antimagic. Elec. J. Combinat. 2015, 22. [CrossRef]
7. Chang, F.; Liang, Y.; Pan, Z.; Zhu, X. Antimagic Labeling of Regular Graphs. J. Graph Theory 2016, 82, 339-349. [CrossRef]
8. Kaplan, G.; Lev, A.; Roditty, Y. On zero-sum partitions and anti-magic trees. Discret. Math. 2009, 309, 2010-2014. [CrossRef]
9. Liang, Y.; Wong, T.; Zhu, X. Anti-magic labeling of trees. Discret. Math. 2014, 331, 9-14. [CrossRef]
10. Lozano, A.; Mora, M.; Seara, C.; Tey, J. Caterpillars are Antimagic. Mediterr. J. Math. 2021, 18, 39.
11. Arumugam, S.; Premalatha, K.; Baca, M.; Semanicová-Fenovcíkovxax, A. Local Antimagic Vertex Coloring of a Graph. Graphs Comb. 2017, 33, 275-285. [CrossRef]
12. Bensmail, J.; Senhaji, M.; Lyngsie, K.S. On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture. Discret. Math. Theor. Comput. Sci. 2017, 19. Available online: https://dmtcs.episciences.org/3849/pdf (accessed on 28 September 2021).
13. Haslegrave, J. Proof of a local antimagic conjecture. Discret. Math. Theor. Comput. Sci. 2018, $20, \# 18$.
14. Kamatchi, N.; Arumugam, S. Distance Antimagic Graphs. J. Combinat. Math. Combinat. Comput. 2013, 64, 61-67.
15. Kamatchi, N.; Vijayakumar, G.R.; Ramalakshmi, A.; Nilavarasi, S.; Arumugam, S. Distance Antimagic Labelings of Graphs. Lect. Notes Comp. Sci. 2017, 10398, 113-118.
16. Llado, A.; Miller, M. Approximate results for rainbow labelings. Period. Math. Hung. 2017, 74, 11-21. [CrossRef]
17. O'Neal, A.; Slater, P. An introduction to distance D-magic graphs. J. Indones. Math. Soc. 2011, 89-107.
18. Yasin, F. Available online: https:/ / github.com/fuadyasin/distance-magic-labeling (accessed on 28 September 2021).
19. McKay, B.D.; Piperno, A. Practical Graph Isomorphism, II. J. Symb. Comput. 2013, 60, 94-112. [CrossRef]
20. Dafik; Alfarisi, R.; Prihandini, R.M.; Adawiyah, R.; Agustin, I.H. Inclusive distance antimagic graphs. Aip Conf. Proc. 2018, 020083. [CrossRef]
21. Anuwiksa, P.; Munemasa, A.; Simanjuntak, R. D-Magic and Antimagic Labelings of Hypercubes. submitted.
22. Brouwer, A.E.; Cohen, A.M.; Neumaier, A. Distance-Regular Graphs; Springer: New York, NY, USA, 1989; p. 437.
23. Bondy, A.; Murty, U.S.R. Graph Theory; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 244, p. 82.

[^0]:    Symmetry 2021, 13(11), 2160; https://doi.org/10.3390/sym13112160-11 Nov 2021

