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Abstract

A function φ : V (G) → {1, 2, . . . , k} of a simple graph G is said to be a non-inclusive distance
vertex irregular k-labeling of G if the sums of labels of vertices in the open neighborhood of every
vertex are distinct and is said to be an inclusive distance vertex irregular k-labeling of G if the
sums of labels of vertices in the closed neighborhood of each vertex are different. The minimum
k for which G has a non-inclusive (resp. an inclusive) distance vertex irregular k-labeling is called
a non-inclusive (resp. an inclusive) distance irregularity strength and is denoted by dis(G) (resp.
by d̂is(G)). In this paper, the non-inclusive and inclusive distance irregularity strength for the join
product graphs are investigated.
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1. Introduction

All graphs considered here are assumed to be simple, finite and undirected. Let G be a graph
with vertex-set V (G) = V and edge-set E(G) = E. For a vertex v ∈ V , the degree of v, denoted
by degG(v), is the number of vertices adjacent to v. The open and closed neighborhood of v is
defined as NG(v) = {u : uv ∈ E} and NG[v] = {v} ∪ NG(v), respectively. The maximum
degree of vertices in G is denoted by ∆(G). By graph labeling we mean any mapping that carries
some sets of graph elements to a set of non-negative integers, called labels. There are many types
of graph labelings that have been developed. A survey of recent results on graph labelings is
provided by Gallian [8].

Let k be a positive integer and let a graph G be given. A function φ : V → {1, 2, . . . , k} is said
to be a non-inclusive distance vertex irregular k-labeling of G if the weights are distinct for every
pair of two distinct vertices, where the weight of a vertex v is defined as the sum of labels of vertices
in the open neighborhood of v inG. The non-inclusive distance irregularity strength ofG, denoted
by dis(G), is the minimum integer k for which G has a non-inclusive distance vertex irregular k-
labeling. Furthermore, the labeling φ is called an inclusive distance vertex irregular k-labeling of
G if for each two vertices u and v, there is wtφ(u) =

∑
x∈NG[u] φ(x) 6=

∑
y∈NG[v] φ(y) = wtφ(v).

The least integer k for which G has an inclusive distance vertex irregular k-labeling is called the
inclusive distance irregularity strength, d̂is(G). We will say that dis(G) = ∞ and d̂is(G) = ∞
whenever such a non-inclusive and an inclusive distance vertex irregular labeling does not exist,
respectively.

The notion of non-inclusive distance vertex irregular labelings was intoduced in 2017 by Slamin
[13]. Meanwhile, Bača et al. [3] developed inclusive distance vertex irregular labelings one year
later as a variation of the non-inclusive irregularity strength of graphs. These graph invariants are
then generalized by Bong et al. [5] to non-inclusive and inclusive d-distance irregularity strength
of graphs where d is an integer arbitrarily taken from 1 up to diameter of the graph. Thus, a
non-inclusive 1-distance vertex irregular labeling is called a non-inclusive distance vertex irregular
labeling. Similarly, we call an inclusive 1-distance vertex irregular labeling as an inclusive distance
vertex irregular labeling.

A number of research results on non-inclusive and inclusive d-distance irregularity strengths
have been found as seen in [3, 4, 11, 13, 14, 15, 16, 17] when d = 1 and in [5, 18] when d > 1.
In the literature, it was investigated the total version of this concept, see [19, 20]. Furthermore,
related topics on the subjects can also be found in, for example, [1, 6, 9], and for some new results,
see [2, 10, 12].

The following lemmas give the necessary and sufficient condition for a graph G to have finite
dis(G) and d̂is(G).

Lemma 1.1. [7] Let G be a graph. Then dis(G) <∞ if and only if NG(u) 6= NG(v) for every two
vertices u, v ∈ V .

Lemma 1.2. [3] Let G be a graph. Then d̂is(G) <∞ if and only if NG[u] 6= NG[v] for every two
vertices u, v ∈ V .

In the present paper, we deal with a so-called product of graphs namely a join product. The
join product of two graphs G and H , denoted by G ⊕ H , is a graph obtained from G and H by
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joining an edge from each vertex of G to each vertex of H . We represent the vertex-set of G⊕H
with V (G⊕H) = V (G) ∪ V (H) and the edge-set with E(G⊕H) = E(G) ∪E(H) ∪ {uv : u ∈
V (G), v ∈ V (H)}. We here consider the following problems.

Problem 1. Given two graphs G and H with dis(G) and dis(H), respectively, what is the value of
dis(G⊕H) going to be?

Problem 2. Similarly, if two graphs G and H with d̂is(G) and d̂is(H), respectively, are given,
what is the value of d̂is(G⊕H) going to be?

Using Lemma 1.1, it is easy to show that dis(G ⊕ H) = ∞ if and only if either dis(G) or
dis(H) is infinite. Also, it is not hard to show, by Lemma 1.2, that d̂is(G⊕H) =∞ if and only if
one of the following statements holds:

(i) either d̂is(G) or d̂is(H) is infinite; or
(ii) both ∆(G) = |V (G)| − 1 and ∆(H) = |V (H)| − 1.

Thus, in the rest of the paper, we will only deal with the case when dis(G⊕H) <∞ and d̂is(G⊕
H) <∞.

We need to define some notations related to the non-inclusive distance irregularity strength of
graphs as follows. Let G and H be graphs with dis(G) <∞ and dis(H) <∞. Let φG and φH be
a non-inclusive distance vertex irregular dis(G)-labeling of G and a non-inclusive distance vertex
irregular dis(H)-labeling of H , respectively. For a vertex v ∈ V (G) and a non-negative integer α,
we define an α-weight of v under a labeling φG of a graph G as

wtαφG(v) = wtφG(v) + α degG(v).

We denote by vαmax a vertex of G in such away that wtαφG(vαmax) = max
{
wtαφG(v) : v ∈ V (G)

}
.

Analogously, we write vαmin to mean a vertex of G for which wtαφG(vαmin) = min
{
wtαφG(v) : v ∈

V (G)
}

. For a special α = 0, we will use wtφG(v), wtφG(vmax) and wtφG(vmin) instead of wt0φG(v),
wt0φG(v0

max) and wt0φG(v0
min), respectively. Further, we also consider positive integers βG and γG,H

such that
βG = max

{
1,max

{⌊
wtφG (ui)−wtφG (uj)

degG(uj)−degG(ui)

⌋
+ 1 : ui, uj ∈ V (G)

}}
(1)

and

γG,H = max

{
βG,

⌊
wtφG (u

βG
max)−wtφH (vmin)+

∑
v∈V (H) φH(v)−

∑
u∈V (G) φG(u)

|V (G)|−∆(G)

⌋
+ 1

}
, (2)

respectively.
With respect to the inclusive distance irregularity strength, we shall also define some notations

as follows. Given two graphs G and H with d̂is(G) < ∞ and d̂is(H) < ∞, let φ̂G and φ̂H be an
inclusive distance vertex irregular d̂is(G)-labeling of G and an inclusive distance vertex irregular
d̂is(H)-labeling of H , respectively. Let α̂ be a non-negative integer. We define an α̂-weight of a
vertex v of G under a labeling φG of a graph G as

wtα̂
φ̂G

(v) = wtφ̂G(v) + (degG(v) + 1)α̂.
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Then we denote by vα̂max a vertex of G in such away that wtα̂
φ̂G

(vα̂max) = max
{
wtα̂

φ̂G
(v) : v ∈

V (G)
}

. Similarly, we also write vα̂min to stand for a vertex of G in which wtα̂
φ̂G

(vα̂min) =

min
{
wtα̂

φ̂G
(v) : v ∈ V (G)

}
. In particular, when α̂ = 0, we will use, respectively, wtφ̂G(v),

wtφ̂G(vmax) and wtφ̂G(vmin) instead of wt0
φ̂G

(v), wt0
φ̂G

(v0
max) and wt0

φ̂G
(v0

min). Moreover, we also

define positive integers β̂G and γ̂G,H such that

β̂G = max
{

1,max
{⌊

wt
φ̂G

(ui)−wtφ̂G (uj)

degG(uj)−degG(ui)

⌋
+ 1 : ui, uj ∈ V (G)

}}
(3)

and

γ̂G,H = max

{
β̂G,

⌊
wt
φ̂G

(u
β̂G
max)−wt

φ̂H
(vmin)+

∑
v∈V (H) φ̂H(v)−

∑
u∈V (G) φ̂G(u)

|V (G)|−(∆(G)+1)

⌋
+ 1

}
, (4)

respectively.
Let x and y be two given integers. Then we define

x

y
=

{
x
y
, if y 6= 0,

0, otherwise.

2. dis(G ⊕ H) and d̂is(G ⊕ H)

In this section, we give the construction of the non-inclusive and inclusive distance vertex
irregular labeling for the join product graphs. Our basic idea is to construct a new non-inclusive
distance vertex irregular labeling for the join product graphs G ⊕ H from the described non-
inclusive distance vertex irregular labeling of G and H . Similar ideas are then used to construct
the inclusive distance vertex irregular labeling of the join product graphs G⊕H .

Our first result below provides the lower bound of the non-inclusive distance irregularity strength
for the join product of two graphs in terms of dis(G) and dis(H).

Lemma 2.1. Let G and H be graphs such that dis(G⊕H) <∞. Then

dis(G⊕H) ≥ max{dis(G), dis(H)}.

Proof. We first show that there is no non-inclusive distance vertex irregular k-labeling of a graph
G⊕H such that k < dis(G). Suppose to the contrary that such labeling φ exists, that is, a labeling
φ : V (G ⊕ H) → {1, 2, . . . , k} is a non-inclusive distance vertex irregular k-labeling of G ⊕ H .
Since each vertex of G is adjacent to all the vertices of H and since all the vertices of G have
distinct weights then if we subtract from all these weights the sum of labels of all vertices of H ,
it gives us a restriction of the labeling φ on the graph G which is a non-inclusive distance vertex
irregular k′-labeling of G for some k′ ≤ k. But this gives a contradiction as k′ ≤ k < dis(G).

Next we prove that there is no non-inclusive distance vertex irregular k-labeling φ of a graph
G ⊕ H such that k < dis(H). Using similar arguments with the previous case we can obtain
a restriction of the labeling φ on the graph H which is a non-inclusive distance vertex irregular
k′′-labeling of H with k′′ ≤ k, giving a contradiction as k′′ ≤ k < dis(H).
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The following lemma gives the sufficient condition for α-weights of all vertices in a graph to
be different.

Lemma 2.2. Let G be a graph with dis(G) < ∞ and let φ be a non-inclusive distance vertex
irregular dis(G)-labeling of G. Let βG be an integer defined in (1). Then for any integer α ≥ βG
and every two distinct vertices u, v ∈ V (G), wtαφ(u) 6= wtαφ(v). Moreover, if degG(u) < degG(v)
then wtαφ(u) < wtαφ(v).

Proof. For some α′ and some u′, v′ ∈ V (G), u′ 6= v′, if wtα′

φ (u′) = wtφ(u′) + α′ degG(u′) =

wtφ(v′) + α′ degG(v′) = wtα
′

φ (v′) then

α′ =
wtφ(u′)− wtφ(v′)

degG(v′)− degG(u′)
.

However, on the other hand, as α′ ≥ βG, we have

α′ ≥ max

{⌊
wtφ(u)− wtφ(v)

degG(v)− degG(u)

⌋
+ 1 : u, v ∈ V (G)

}
≥
⌊
wtφ(u′)− wtφ(v′)

degG(v′)− degG(u′)

⌋
+ 1 >

wtφ(u′)− wtφ(v′)

degG(v′)− degG(u′)
,

which gives us a contradiction. This proves the first part of the statement.
Next we prove the second part of the statement. Here we use the similar technique as the first

part. Thus we suppose to the contrary that for some α′ and some u′, v′ ∈ V (G), u′ 6= v′, with
degG(u′) < degG(v′), there is wtα′

φ (u′) = wtφ(u′) + α′ degG(u′) > wtφ(v′) + α′ degG(v′) =

wtα
′

φ (v′). Then wtφ(u′) > wtφ(v′) and

α′ <
wtφ(u′)− wtφ(v′)

degG(v′)− degG(u′)
.

However, on the other hand, as α′ ≥ βG, we obtain

α′ ≥
⌊
wtφG(u′)− wtφG(v′)

degG(v′)− degG(u′)

⌋
+ 1 >

wtφG(u′)− wtφG(v′)

degG(v′)− degG(u′)
,

again a contradiction.

Notice that the property in Lemma 2.2 implies that for any integer α ≥ βG, wtφ(vαmax) =
wtφ(vβGmax). Next, as γG,H ≥ βG, the following property is satisfied according to Lemma 2.2.

Corollary 2.1. Let G and H be graphs such that dis(G ⊕ H) < ∞, and let φG and φH be a
non-inclusive distance vertex irregular dis(G)-labeling of G and a non-inclusive distance vertex
irregular dis(H)-labeling of H , respectively. Let βG and γG,H be integers defined in (1) and (2),
respectively. Then for any two distinct vertices u, v ∈ V (G), wtγG,HφG

(u) 6= wt
γG,H
φG

(v).

The value of the non-inclusive distance irregularity strength forG⊕H is given in the following
theorem.
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Theorem 2.1. Let G and H be graphs such that dis(G ⊕ H) < ∞, and let φG and φH be a
non-inclusive distance vertex irregular dis(G)-labeling of G and a non-inclusive distance vertex
irregular dis(H)-labeling of H , respectively. If either

(i)
∑

u∈V (G) φG(u)−
∑

v∈V (H) φH(v) < wtφG(umin)− wtφH (vmax) or
(ii)

∑
u∈V (G) φG(u)−

∑
v∈V (H) φH(v) > wtφG(umax)− wtφH (vmin),

then
dis(G⊕H) = max{dis(G), dis(H)}.

Otherwise,

dis(G⊕H) ≤ min{max{dis(G), dis(H) + γH,G},max{dis(H), dis(G) + γG,H}}.

Proof. We distinguish our proof into two cases.
Case 1.

∑
u∈V (G) φG(u)−

∑
v∈V (H) φH(v) < wtφG(umin)−wtφH (vmax) or

∑
u∈V (G) φG(u)−∑

v∈V (H) φH(v) > wtφG(umax)− wtφH (vmin).
Put k = max{dis(G), dis(H)}. Due to Lemma 2.1 it is enough to show that there exists a

non-inclusive distance vertex irregular k-labeling of G⊕H . Let ϕ be a labeling on the vertices of
G⊕H defined as follows.

ϕ(v) = φG(v) if v ∈ V (G),

ϕ(v) = φH(v) if v ∈ V (H).

Obviously the largest label appearing on the vertices under the labeling ϕ is k and the weights of
the vertices are given by

wtϕ(v) = wtφG(v) +
∑

u∈V (H)

φH(u) if v ∈ V (G),

wtϕ(v) = wtφH (v) +
∑

u∈V (G)

φG(u) if v ∈ V (H).

We show that the vertex weights are distinct for every two vertices u, v ∈ V (G ⊕ H). If
both u and v are in V (G) (resp. V (H)) then wtϕ(u) 6= wtϕ(v) as wtφG(u) 6= wtφG(v) (resp.
wtφH (u) 6= wtφH (v)).

We now suppose that u ∈ V (G) and v ∈ V (H). The condition (i) implies that wtϕ(vmax) <
wtϕ(umin) which means that wtϕ(u) 6= wtϕ(v). Similarly, the restriction (ii) implies that
wtϕ(umax) < wtϕ(vmin) meaning that wtϕ(u) 6= wtϕ(v).

Case 2. wtφG(umin) − wtφH (vmax) ≤
∑

u∈V (G) φG(u) −
∑

v∈V (H) φH(v) ≤ wtφG(umax) −
wtφH (vmin).

Put k = min{k1, k2}where k1 = max{dis(G), dis(H)+γH,G} and k2 = max{dis(H), dis(G)+
γG,H}. We define a vertex k1-labeling ϕ1 of G⊕H as follows.

ϕ1(v) = φG(v) if v ∈ V (G),

ϕ1(v) = φH(v) + γH,G if v ∈ V (H).

6
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Clearly the labels used on the labeling ϕ1 are at most k1. For the vertex weights we have

wtϕ1(v) = wtφG(v) +
∑

u∈V (H)

φH(u) + |V (H)|γH,G if v ∈ V (G),

wtϕ1(v) = wtφH (v) +
∑

u∈V (G)

φG(u) + γH,G degH(v) if v ∈ V (H).

We show that for every two distinct vertices u and v of G ⊕H , wtϕ1(u) 6= wtϕ1(v). If u, v ∈
V (G), clearly, wtϕ1(u) 6= wtϕ1(v) as wtφG(u) 6= wtφG(v). Assume u, v ∈ V (H). Applying βH
and γH,G to Corollary 2.1, we can obtain that wtφH (u)+γH,G degH(u) 6= wtφH (v)+γH,G degH(v)
meaning that wtϕ1(u) 6= wtϕ1(v). We now consider u ∈ V (G) and v ∈ V (H). It suffices for us to
show that wtϕ1(umin) > wtϕ1(vmax). As γH,G ≥ βH , by Lemma 2.2, wtφH (v

γH,G
max ) = wtφH (vβHmax).

Using these informations together with the facts that

γH,G ≥
⌊
wtφH (v

βH
max)−wtφG (umin)+

∑
u∈V (G) φG(u)−

∑
v∈V (H) φH(v)

|V (H)|−∆(H)

⌋
+ 1

and y
(⌊

x
y

⌋
+ 1
)
> x, we get

wtϕ1(umin)−wtϕ1(vmax) =

wtφG(umin) +
∑

v∈V (H)

φH(v) + |V (H)|γH,G


−

wtφH (vγH,Gmax ) +
∑

u∈V (G)

φG(u) + γH,G∆(H)


=wtφG(umin)− wtφH (vβHmax) +

∑
v∈V (H)

φH(v)−
∑

u∈V (G)

φG(u) + (|V (H)| −∆(H))γH,G

≥wtφG(umin)− wtφH (vβHmax) +
∑

v∈V (H)

φH(v)−
∑

u∈V (G)

φG(u)

+ (|V (H)| −∆(H))

(⌊
wtφH (v

βH
max)−wtφG (umin)+

∑
u∈V (G) φG(u)−

∑
v∈V (H) φH(v)

|V (H)|−∆(H)

⌋
+ 1

)
>wtφG(umin)− wtφH (vβHmax) +

∑
v∈V (H)

φH(v)−
∑

u∈V (G)

φG(u)

+

wtφH (vβHmax)− wtφG(umin) +
∑

u∈V (G)

φG(u)−
∑

v∈V (H)

φH(v)

 = 0,

or equivalently wtϕ1(umin) > wtϕ1(vmax). Thus ϕ1 is a non-inclusive distance vertex irregular
k1-labeling of G⊕H and hence dis(G⊕H) ≤ k1.

Analogously, we define another vertex k2-labeling ϕ2 of G⊕H as follows.

ϕ2(v) = φH(v) if v ∈ V (H),

7
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ϕ2(v) = φG(v) + γG,H if v ∈ V (G).

Using similar arguments with the previous one we can obtain that ϕ2 is a non-inclusive distance
vertex irregular k2-labeling of G⊕H and hence dis(G⊕H) ≤ k2. Taking the minimum from both
k1 and k2, it brings us to the desired result.

The following results related to the inclusive distance irregularity strength are presented. The
proofs are omitted since ideas similar with Lemmas 2.1 and 2.2, Corollary 2.1 and Theorem 2.1,
respectively, are used as arguments.

Lemma 2.3. Let G and H be graphs such that d̂is(G⊕H) <∞. Then

d̂is(G⊕H) ≥ max
{

d̂is(G), d̂is(H)
}
.

Lemma 2.4. LetG be a graph with d̂is(G) <∞ and let φ̂ be an inclusive distance vertex irregular
d̂is(G)-labeling of G. Let β̂G be an integer defined in (3). Then for any integer α̂ ≥ β̂G and every
two distinct vertices u, v ∈ V (G), wtα̂

φ̂
(u) 6= wtα̂

φ̂
(v). Moreover, if degG(u) < degG(v) then

wtα̂
φ̂
(u) < wtα̂

φ̂
(v).

Corollary 2.2. Let G and H be graphs such that d̂is(G ⊕ H) < ∞, and let φ̂G and φ̂H be an
inclusive distance vertex irregular d̂is(G)-labeling of G and an inclusive distance vertex irregular
d̂is(H)-labeling ofH , respectively. Let β̂G and γ̂G,H be integers defined in (3) and (4), respectively.
Then for any two distinct vertices u, v ∈ V (G), wtγ̂G,H

φ̂G
(u) 6= wt

γ̂G,H

φ̂G
(v).

Theorem 2.2. Let G and H be graphs such that d̂is(G ⊕ H) < ∞, and let φ̂G and φ̂H be an
inclusive distance vertex irregular d̂is(G)-labeling of G and an inclusive distance vertex irregular
d̂is(H)-labeling of H , respectively. If either

(i)
∑

u∈V (G) φ̂G(u)−
∑

v∈V (H) φ̂H(v) < wtφ̂G(umin)− wtφ̂H (vmax) or

(ii)
∑

u∈V (G) φ̂G(u)−
∑

v∈V (H) φ̂H(v) > wtφ̂G(umax)− wtφ̂H (vmin),

then
d̂is(G⊕H) = max

{
d̂is(G), d̂is(H)

}
.

Otherwise,

d̂is(G⊕H) ≤ min
{

max
{

d̂is(G), d̂is(H) + γ̂H,G

}
,max

{
d̂is(H), d̂is(G) + γ̂G,H

}}
.

If we takeH ∼= K1 then from Theorem 2.2 we obtain the inclusive distance irregularity strength
for the graph G⊕K1 which was proved by Bača et al. [3].

Corollary 2.3. [3] Let G be a graph such that d̂is(G⊕K1) <∞. Then d̂is(G⊕K1) = d̂is(G).
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3. dis(G ⊕ K1)

In [4], Bong et al. showed that the non-inclusive distance irregularity strength of G ⊕K1 and
G is equal as stated in the following theorem.

Theorem 3.1. [4] Let G be a connected graph with dis(G) <∞. Then dis(G⊕K1) = dis(G).

However, the above assertion is not true as we can easily see a counter example namely the com-
plete graph Kn

∼= Kn−1 ⊕ K1 of Slamin [13] which showed that dis(Kn) = dis(Kn−1 ⊕ K1) =
n 6= n− 1 = dis(Kn−1).

In this section, we provide a correction for Theorem 3.1. We prove that dis(G ⊕ K1) can be
either dis(G) or dis(G) + 1. We will need the following lemma in order to prove our theorem.

Lemma 3.1. Let G be a graph with dis(G) < ∞. If
∑

u∈V (G) φG(u) = wtφG(umax) + 1 for
every non-inclusive distance vertex irregular dis(G)-labeling φG of G then ∆(G) = |V (G)| − 1.
Moreover, if G is not a complete graph then G ∼= G∗ ⊕ Km for some graph G∗ with ∆(G∗) <
|V (G∗)| − 1 and m = dis(G).

Proof. Let
∑

u∈V (G) φG(u) = wtφG(umax) + 1 for each non-inclusive distance vertex irregular
dis(G)-labeling φG of G. On contrary, assume that ∆(G) < |V (G)| − 1. Then wtφG(umax) <∑

u∈V (G) φG(u)−1 or
∑

u∈V (G) φG(u) > wtφG(umax)+1, a contradiction. Thus ∆(G) = |V (G)|−
1. Let G � Kn. Then we may write G ∼= G∗⊕Km for some graph G∗ with ∆(G∗) < |V (G∗)|− 1
and some positive integer m. For each x, y ∈ V (G)\V (G∗), φG(x) 6= φG(y). Clearly umax ∈
V (G)\V (G∗) and φG(umax) = 1.

Next we show that m = dis(G). By Lemma 2.1, m ≤ dis(G). Now assume that m < dis(G).
Then a labeling φ′G on the vertices of G defined as

φ′G(u) = φG(u) if u ∈ V (G)\{umax},
φ′G(u) = p if u = umax,

where p ∈ {1, 2, . . . , dis(G)}\{φG(u) : u ∈ V (G)\V (G∗)}, is a non-inclusive distance ver-
tex irregular dis(G)-labeling of G. Next let u′max ∈ V (G) (possibly u′max = umax) such that
wtφ′G(u′max) = max{wtφ′G(u) : u ∈ V (G)}. In fact, we have φ′G(u′max) > 1 and∑

u∈V (G)

φ′G(u) = wtφ′G(u′max) + φ′G(u′max) > wtφG(u′max) + 1,

yielding a contradiction. Hence m = dis(G).

Now we are ready to prove the main result of this section. Note that for each graph G with
dis(G) <∞ and non-inclusive distance vertex irregular labeling φG, it holds that∑

u∈V (G)

φG(u) ≥ wtφG(umax) + 1. (5)

9
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Theorem 3.2. Let G be a graph with dis(G) < ∞. If there exists a non-inclusive distance vertex
irregular dis(G)-labeling φG ofG such that

∑
u∈V (G) φG(u) > wtφG(umax)+1 then dis(G⊕K1) =

dis(G). Otherwise dis(G⊕K1) = dis(G) + 1.

Proof. The first case follows from Theorem 2.1. Now we consider the second case, i.e., for
every non-inclusive distance vertex irregular dis(G)-labeling φG of G there is

∑
u∈V (G) φG(u) ≤

wtφG(umax)+1. Combining this inequality with (5), we have that
∑

u∈V (G) φG(u) = wtφG(umax)+

1 for each non-inclusive distance vertex irregular dis(G)-labeling φG of G.
Evidently dis(G ⊕K1) = dis(G) + 1 if G ∼= Kn. Suppose that G � Kn. From Lemma 3.1,

∆(G) = |V (G)| − 1 and G ∼= G∗ ⊕ Km for some graph G∗ with ∆(G∗) < |V (G∗)| − 1 and
m = dis(G).

Now let H ∼= G⊕K1
∼= G∗ ⊕Km+1. By Lemma 2.1, dis(H) ≥ m+ 1 = dis(G) + 1. On the

other hand, the labeling ϕ defined below is a non-inclusive distance vertex irregular (dis(G) + 1)-
labeling of H ,

ϕ(u) = φG(u) + dis(G) + 1− q if u ∈ V (G∗),

ϕ(u) = φG(u) if u ∈ V (Km),

ϕ(u) = dis(G) + 1 if u ∈ V (K1),

where q = max{φG(u) : u ∈ V (G∗)}.

4. Inclusive distance irregularity strength of complete multipartite graphs

In this part, we deal with the inclusive distance vertex irregular labeling of complete multipar-
tite graphs. Let us denote the complete multipartite graphs with

∑r
i=1 pi partite sets, r ≥ 2, pi ≥ 1,

by G ∼= Kn1, n1, . . . , n1︸ ︷︷ ︸
p1 times

,n2, n2, . . . , n2︸ ︷︷ ︸
p2 times

,...,nr, nr, . . . , nr︸ ︷︷ ︸
pr times

where 1 ≤ n1 < n2 < · · · < nr.

We begin with the following observation which is easy to prove.

Observation 4.1. Let n ≥ 1. Then d̂is(nK1) = n.

The next lemma presents the upper bound for the inclusive distance irregularity strength of
complete multipartite graphs with same size of partite sets.

Lemma 4.1. Let G ∼= Kn, n, . . . , n︸ ︷︷ ︸
p times

where n, p ≥ 2. Then d̂is(G) ≤ n+ 2(p− 1).

Proof. By labeling n vertices in the i-th partite ofGwith 2(i−1)+1, 2(i−1)+2, . . . , 2(i−1)+n,
it is not difficult to see that the vertex weights are all distinct.

Complete multipartite graphs with infinite inclusive distance irregularity strength are given in
the following result.

Observation 4.2. LetG ∼= Kn1, n1, . . . , n1︸ ︷︷ ︸
p1 times

,n2, n2, . . . , n2︸ ︷︷ ︸
p2 times

,...,nr, nr, . . . , nr︸ ︷︷ ︸
pr times

where r ≥ 2, p1, p2, . . . ,

pr ≥ 1 and 1 ≤ n1 < n2 < · · · < nr. If n1 = 1 and p1 ≥ 2 then d̂is(G) =∞.

10
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In the following, an algorithm for determining the upper bound for the inclusive distance irregu-
larity strength of complete multipartite graphs for other cases is provided. Note that
Kn1, n1, . . . , n1︸ ︷︷ ︸

p1 times

,n2, n2, . . . , n2︸ ︷︷ ︸
p2 times

,...,nr, nr, . . . , nr︸ ︷︷ ︸
pr times

∼= Kn1, n1, . . . , n1︸ ︷︷ ︸
p1 times

⊕ Kn2, n2, . . . , n2︸ ︷︷ ︸
p2 times

⊕ . . .

⊕Knr, nr, . . . , nr︸ ︷︷ ︸
pr times

.

Algorithm 1 Calculating an upper bound for the inclusive distance irregularity strength of
complete multipartite graphs
Input: r, p1, p2, . . . , pr, n1, n2, . . . , nr: positive integers where r ≥ 2, p1, p2, . . . , pr ≥ 1 and

1 ≤ n1 < n2 < · · · < nr, (n1, p1) 6= (1, s), s ≥ 2;
Output: k, i.e. an upper bound for d̂is(Kn1, n1, . . . , n1︸ ︷︷ ︸

p1 times

,n2, n2, . . . , n2︸ ︷︷ ︸
p2 times

,...,nr, nr, . . . , nr︸ ︷︷ ︸
pr times

);

G← Kn1, n1, . . . , n1︸ ︷︷ ︸
p1 times

;

if p1 = 1 then
G← n1K1;
Construct an inclusive distance vertex irregular d̂is(G)-labeling of G by using Observation
4.1;

else
Construct an inclusive distance vertex irregular d̂is(G)-labeling of G by using Lemma 4.1;

end if
for i← 2 to r do

H ← Kni, ni, . . . , ni︸ ︷︷ ︸
pi times

;

if pi = 1 then
H ← niK1;
Construct an inclusive distance vertex irregular d̂is(H)-labeling of H by using Obser-
vation 4.1;

else
Construct an inclusive distance vertex irregular d̂is(H)-labeling of H by using Lemma
4.1;

end if
Construct an inclusive distance vertex irregular d̂is(G ⊕ H)-labeling of G ⊕ H by using
Theorem 2.2;
G← G⊕H;
d̂is(G)← d̂is(G⊕H);

end for
k ← d̂is(G⊕H);
return k;

From Algorithm 1 we immediately get the following.

Theorem 4.1. Let G ∼= Kn1, n1, . . . , n1︸ ︷︷ ︸
p1 times

,n2, n2, . . . , n2︸ ︷︷ ︸
p2 times

,...,nr, nr, . . . , nr︸ ︷︷ ︸
pr times

where r ≥ 2, p1, p2, . . . ,

11
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pr ≥ 1 and 1 ≤ n1 < n2 < · · · < nr, (n1, p1) 6= (1, s), s ≥ 2. Then d̂is(G) ≤ k where k is an
integer which is the output of Algorithm 1.

Observe that in our construction of the inclusive distance vertex irregular labeling for the com-
plete multipartite graphs in Algorithm 1, vertices with smaller degree receive smaller weights.
From this observation, we then conjecture that the upper bound in Theorem 4.1 is tight.

Conjecture 1. Let G ∼= Kn1, n1, . . . , n1︸ ︷︷ ︸
p1 times

,n2, n2, . . . , n2︸ ︷︷ ︸
p2 times

,...,nr, nr, . . . , nr︸ ︷︷ ︸
pr times

where r ≥ 2, p1, p2, . . . ,

pr ≥ 1 and 1 ≤ n1 < n2 < · · · < nr, (n1, p1) 6= (1, s), s ≥ 2. Then d̂is(G) = k where k is an
integer which is the output of Algorithm 1.

The following result supports Conjecture 1.

Corollary 4.1. Let r ≥ 2 and 1 ≤ n1 < n2 < · · · < nr. Then d̂is(Kn1,n2,...,nr) = nr.

Proof. The upper bound follows from Theorem 4.1 and the lower bound is obtained from Lemma
2.3.
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