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Abstractl] Geographically Weighted Negative Binomial Regression (GWNBR) was proposed related to univariate spatial count data
with overdispersion using MLE via Newton Raphson algorithm. However, the Newton Raphson algorithm has the weakness, it tends
to depend on the initial value. Therefore, it can have false convergence if the initial value is mistaken. In this research, we derive
estimating the mean of dependent variables of multivariate spatial count data with overdispersion, Geographically Weighted
Multivariate Negative Binomial (GWMNB) and compare it to the global method, multivariate negative binomial (MNB). We use MLE
via Nelder Mead and Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithms. We conduct the simulation study and application of
mortality data to find out the characteristics of the methods. They show that GWMNB performs better than global method (MNB) in
estimating the means of dependent variables of the spatial data. The Nelder Mead tends to be more successful in estimating the means
for all locations than BFGS algorithm. Although BFGS is a stable algorithm in MNB related to the initial value, it tends to have false
convergence in GWMNB. The mortality rate of infant is larger than it of toddler and preschool and also maternal. The highest deaths
of infant, toddler, and preschool and also maternal tend to happen in east parts of East Java.

KeywordsO spatial data; over dispersion; GWMNB, MLE; nelder mead; BFGS.

than one dependent variables. Those are Bivariate Negative
I.  INTRODUCTION Binomial Regression (BNBR) using MLE via Newton
Raphson algorithm [8], the comparison of two bivariate
negative binomial regression models which come from the
different distributions derivation [9], the Seemingly

Poisson regression is usually used for modeling count
data. Related to multivariate count data, an early overview

of multivariate regression for count data is described [1], : . : . .
[2]. Some studies have been done related to bivariateSnrelated Negative Binomial (SUNB) using Generalized

Poisson data. Some of them are simulated maximumNomir.‘ear .Leas.t Square (C.;NLS) [10], the multivariate
likelihood estimation of bivariate count data with nedative binomial model using copula and MLE method

unrestricted correlation pattern of unobserved heterogeneity[ll]' and a robust likelihood ap.proach for the overd|s_per§ed
[3], EM algorithm for estimating the parameters of bivariate correlgted _count data anal_yS|s base(_:i on a multivariate
and diagonal inflated bivariate Poisson regression modelghegative binomial model using MLE via iterative Newton
[4], and bivariate generalized Poisson for healthcare data [5]_Raphson method _[12]' . : .
Moreover, the researches about multivariate Poisson have Global regression assumes that the relationships belng
been proposed, a multivariate Poisson regression using thdneasured are stationary over space. The parameter estimates

MLE method via the EM algorithm and Bayesian [6], and are _appl!ed equally over the whole region or _the
multivariate generalized Poisson regression [7]. relationships being measu_red are a_ssumed to _be stationary
Behind the popularity of Poisson regression, it has aovler_ spﬁpe. t‘)l'hereforel, if .there hIS al‘ t\)/alrlatlog |0.f the
weakness regarding equidispersion assumption. It restrictd ©'ationships between locations, the global model is not

the use of the method because many data in real application uitable to .the reality.. One of the spatial ef_fects _is spat!al
are under or overdispersed data. One of the methods fo eterogeneity [13]. This happens when dealing with spatial

overcoming overdispersion is by using a negative binomial data as tr?e process;s generﬁtlng them mlghtf Vﬁry ac;osls
model. There are some studies related to the model for moréPace. This gives effect to the parameters of the mode
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varying or not homogeneous between locations. Those ledcount data by using the geographically weighted multivariate

to the development of the methods to model spatial data.negative binomial method and MLE via BFGS and Nelder

One of them is the method based on spatial heterogeneityMead algorithms. The simulation study using the two

that is Geographically Weighted Regression (GWR) model. algorithms and the application of the methods are discussed
Regarding to the spatial count data with over dispersion, in section Ill. We use mortality data of East Java, Indonesia,

Geographically Weighted Negative Binomial (GWNB) to 2014 as an application.

model univariate count data [14] and the comparison of

zero-inflated Poisson (ZIP) and Geographically Weighted Il.  MATERIALS AND METHODS

Zero-Inflated Poisson (GWZIP) using the MLE method for o ) ) ) S

modeling excess zero univariate count data [15] have beerft Multivariate Negative Binomial Distribution

proposed. On the other side, many data in real applications GWMNB method in this research is built based on the

are multivariate count data. marginal probability function of the multivariate negative
Therefore, in this research, we propose estimating thebinomial distribution

means of multivariate spatial count data with over dispersion

using spatial weights and negative binomial distribution LI

(Geographically Weighted Multivariate Negative Binomial). I.—l'uu” >r(d+y.)

The modelcan be written a, ~I\/NB[ j([ij (q,vi)),r(q V.)] fy;;mo)= - 1= (1)
o+ i+

whereY; is the dependent variabjlesn locationk, 4; is the [I_l Y; !JF(J)(5+/~4+) y

mean of dependent varialjleon locationk with the =

coefficients at equation point 7(u;,v;) is dispersion on  ywhere 5=z i = 1.2,.n andj = 1,2,..m, y., =Zm:yu and

i1

Ta. v
locationi, E[Y,)=4 (u.v)=t¢" bilad) X :(xjo,le,...,xj(p,l)) ,
ﬂ(q,v,)=([3;o(q M) BN e Bios (U y,)) - tj is exposure on
locationi, dependent variable- X;is the independent

lui+ :Zluij ’
j=1

The mean, variance, covariance, and correlatiory o&n

variable of dependent variabjen locationt, and B, (u;,v; ) be written as [20]
is vector coefficient of independent variable for dependent
variablej on locationi, i =1,2,...n, j=1,2,..m. E(yij ) = 4, Var(yij ) =i 2)

GWZIP uses the EM algorithm for estimating the
parameters [15]. GWNB uses the Newton Raphson
algorithm for the estimation [14]. However, the Newton o
Raphson algorithm has a weakness in dealing with false COV(yij 'yij'):T/'Iij/'Iij'!forj £ 3)
convergence due to the improper initial value. Besides that,
if there are issues in obtaining second partial derivative
matrix of likelihood function or the second partial derivative T\/W
of the likelihood function is singular, the Newton Raphson CO”(yij ,yij,) =__ NTUTW
algorithm cannot be implemented regularly. The formation NESR VAN EE 7o
of the stiff information matrix, especially the calculation of

for i=1,2,...n and j,j'=1,2,... m. From the equation(4),

its inverse are computationally expensive.
he correlation is always positive and for smaltount data

On the other hand, when analyzing more than one
dependent variables, things are more complicated, especiall . . .

P g P P j close to the observations that have independent Poisson
distribution and each observation has mean and var;qnce

Jforjzj! (4)

the multivariate count regression models are less developed
Based on those, Focusing onltivariate Poisson data with
overdispersion, geographically weighted multivariate
negative binomial (GWMNB) using MLE via BFGS and . : o .
Nelder Mead algorithm is considered and derived in this gen%g;]?;hmally Weighted  Multivariate  Negative
research. BFGS algorithm needs the first derivative of the
likelihood function for its process. Nelder Mead algorithm is  Based on GWNB [14] and equation (1), the loglikelihood
a free derivative method. The a|gorithms are more robustfunction for GWMNB to estimate the equation coefficients
than the Newton Raphson algorithm [16], [17]. In this paper, and dispersion index on locatidiean be written as follows:
geographically weighted regression is more used as
prediction tools than inference [1&nd also as exploratory R a 4
data [19]. Therefore, we focus on estimating the mean of 5(9*) Z{Zyijln,qj(q,v,)ﬂ (q,v,)lnr (q’v')_A'+B}V\ﬁ ©)
dependent variables then assess it using the Goodness of Fit =
and represent them into the maps rather than modeling and
testing the hypothesis of the parameter estimates. Wherem

The paper is organized as follows. In section Il we = 7t +v -1 +
describe the multivariate negative binomial distribution and A ;In %! (T (1v) y,+)ln(r (v) ,u,+(u,,v,)),
provide estimation the means of dependent variables of

B. Egtimation The Means of Dependent Variables of

i=1
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(v +77(u.v))

B =|n[ I'(T_l(un\ﬁ))

for j=1,2,..m y, =Yy, andg, (u.%) =D 4 (u.v).
= e

]; i,1=123,..0nY¥%=012,..,

T

*=0(u, v ) = (BT (v ), B3 (U ) BT () 7 ()
andw; is the geographical weight. In this research, we use
the Fixed Bisquare Kernel weight, [21]

o V)
1-| -~ | | ; untukd, <b
W = b

0; untuit, >b

(6)

where w; is the weight of the observation on locatiofor
estimating the coefficients and index of dispersion on
location-1, bis the bandwidthand d, is Euclidean distance

between point-andl.
The optimum bandwidth is gotten by cross-validation
using the formula

Ccv (b) = anzm:(y” - S\ltij (b))2

i=1 j=1

(@)

where §.;;(b) is the prediction value of y;; which is
predicted without the observation on locatiorandn is the
number of location. The optimum bandwidth is the
bandwidth with CV minimum. We use the golden section
algorithm to find optimum bandwidth. We consider BFGS
and Nelder Mead algorithms for estimating the means of
dependent variables of MNB and GWMNB.

1) BFGS Algorithm for GWMNB: BFGS is an
optimization algorithm in the family of quasi-Newton
methods. The algorithm needs a gradient of the likelihood
function that we maximize in each iteration. Hessian Matrix
is approximated by iteration of gradient evaluation [16],
[22]. The gradient is obtained by deriving log likelihood

function with respect to the coefficienp,(u.v) and
(i)
_6@(0(u|,v|))
Bium) ~ aBj(ullvl)
(8)

:Zn: e (e () + v )% (wov)
ST () ()
fori, | = 1,2,.nandj = 1,2,..m; m is the number of

dependent variables; is vector with its elements, 1 apdl
independent variables in each locatipnwhile y; and

p, (u,v)aren x 1 vectors. A Derivative of the likelihood

function with respect to the indes{u,,v; ) is given by
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_o/o{u.v))

u =
WY ary,
n y.v) . | o
i(*”(lﬂ(u MPACR)) %Ifl(q ¥)+K +Q]-r2vw
where C = 7(/ui+ (U|*VI)_yi+) and the  summation
(7 () * 4 (1.0))
)f(r_l(q’W)"'k)_l:O for y. < 1[23].

Let R? — R be continuously differentiable. Consider the

following unconstrained optimization problem:

min —Z(B(u|,\/|)),0(u, Vv )OR?,
BFGS method generates a sequelﬁep(u,,v,)} iteratively
[22].
Starting with an initial valu®,and Hessian matrik,, the
algorithm repeats these steps Lmt(lu| RY ) is converged.

1. The directiong, is obtained by solving the equation
Haq, =-U (er (v ))
where U (8, )is gradient function in iteratiori" or
(M(ﬂ(uI R ))
0f30(uvr)
az(e(ul v ))
0B pa (1)
Of(e(ul V) ))
or(u,v)
H, is a Hessian matrix in iteratiaf!
Generat®,,,(u,v) =6, (u.v)+a,q,,r=0,1,2,...
The matrixH, is updated using the formula
+AUFAUI B H,s S H
AUls, S Hs
where s, =a,q, and
AU, = U(erﬂ(u| Vv, )) -U (Br (u.v ))
The matrixH, is positive definitéf AUs, >0. The
condition is guaranteed to hold if step lengthis
chosen by the exact line search
_Z(Or (uI WV ) +a'rqr) = rpjg]—f(()r (uI Y ) +aqr)
or the Wolfe-type inexact line search
~0(0, (u.%)+a,q.)<-£(0, (u.v))+ca,Ua,,

T
U(er (ul 'VI ) +arqr) qr < CZU:qr’
for ¢, ¢, 0 (0,1),¢c,< Co.
As stated in [24], Newton’s method often fails toveerge
because of the poor initial estimate, therefore the
convergence is checked from the Euclidean norm of the

gradient,|AU, ||.

and

U(Or (uv )) =

O =

qu +1

2.
3.

H,., =H

r+1 — 'y



2) Nelder Mead Algorithm for GWMNB: Nelder Mead is

a free derivative algorithm. The algorithm finds the @ that is the structure formed by +1 vertex, 6(1)
coefficients and index of dispersion estimate using

reflection, expansion, contraction and shrinkage process. Let....,e(pﬂ) (uI ,vl) , Wwhere p=np+1,

© is the p dimension parameter space aﬂ@(u,,w)) is

the log likelihood weighted by geographical weight or
y =—€(9*) =-€(9(uI \4)) is the objective function which be

minimized, where 6(y,v)0O® and 0 =0(u,v)=
[:81,o(u|1v|) :81,1(U|1V|) "781,p—1(u| vV|) ---,Bm,o(u| M) .Bm,l(u| V|)
"'ﬁm,p—l(ul 7VI) T(ul ’VI)]

minimum, the algorithm replaces the worst vertex in a

simplex with the new point that has a smaller value of minus
log likelihood using one of the reflection, expansion, or

contraction operation. If those fail to find the new point to

replace the worst point on the simplex, then the shrinkage
operation is carried out. See [17], [25], [26], [27], and [28]

for Nelder Mead algorithm in general. Fig. 1 represents the
workflow of Nelder Mead algorithm for GWMNB in this

Each iteration of the algorithm is started from simplex in

%k

ref

0.0 0 + m(ﬁ;f —ﬁ*)

calculate ¥, O<@ <1

Yes

replace 6: with éZon

research.
Input the initial estimate
~3%k —~%
0, and y; =-((0;)
fori= 1,2,...,2+1
v
- order y, (ascend)and
the corresponding 0, y Tl construct )
e.g. correspondin i = ~ .l | ol
> g {/i - y;,ir[* P gl 9*=(9T+B;+...+9* )/P 0., (l+a’)0 aﬁﬁl
with{0,.0,,....0 # caleulate y, ;>0
I’H2’ >V gl
- remove 0,,+| and Yn
Yes ‘ No ¢
construct construct | ﬁ* ith
n" — .0 o ~ A o+ ok replace wit
eeksfyﬂref_‘_(l_y)ﬁ 0..=0 +m(ﬂf+|—ﬂ ) p 21
caleulate y, .5 7 >1 No calculate y,;; O <@ <1
construct
A 4 =
=~k
No | replace 0
. P
with 0
= Yes
Yes -
No
A
—~3f . —~3
replace ® with @ construct
2+l cks 0 —% —~% % No
b +u(0f ‘91) 59
J=2,.,z+] 0<v<l —¥ o
| ]
No o 3 &
minimum? b 0 end

Fig. 1 The flowchart of Nelder Mead algorithm for GWMNB
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IIl. RESULTS ANDDISCUSSION and (13), and trivariate dependent variables which have a
T T

n thi _ e a4 positive correlation between them.
n this section we assumg =x, —...—xim—xi = For generating the dependent variables, we set some

[1 X, %, X oy |- thenIn gz, (u,v;) = In(t e )for| = coefficients 8, (u,v ), B (u.v)and 7(u,v)as a function

. . of locations to reckon spatial heterogeneity in the data [14].
1,2,..n and] —h12 M. B)f' cr?ns&derln% the spatlglll effec;[] We use the latitude and longitude of East Java as a
we estimate the means of the dependent variables, wher %eograpmcal factor. It consists of 38 locations. Therefore we

Y, ~ MNB[;/IJ (B (u,,v,)) r(u, v,)} i =12, and  use the sample size= 38 in this simulation study. We set

_ _ the coefficients (B(ui,vi)) and index of dispersion
4 (uv) =t exp[z,BJk(ul 'V.)Xikj- t; is exposure variable

on dependent variabjeon locationt. The coordinates of - -
latitude and longitude represent a geographical factor of g (u,v,)=1, ,(3'11(ui,vi)=\/[ui -u] x[v, -]
locations. We use the latitude and longitude of the regencies

(7(u.v)) as follows:

in East Java Indonesia as a geographical reference, where Zn:ui zn:vi

there are 38 regencies. We use Euclid distance to measur@nhereg =12— and v = -2

the distance between regencies/towns. The optimum n n

bandwidth is the bandwidth that has a minimum CV. _ - -
Aa(uv) =29 (4 ) 15 -[(v ~v) /9" + 0ab,

A. Smulation Sudy (

We conduct the simulation to find out the performance of ) > ﬂzl( ) 0%, '82( )
MNB and GWMNB using MLE method via Nelder Mead B (U:V)=0.5, By (u.v;) =-05, By, (u, i):_l and
and BFGS algorithms in estimating the means of dependent 11 2
variables. The simulation is conducted using the R software 7 20{ 10 |V } ot
based on the procedure presented in [19] and [14]. We
generate two independent variables based on equation (12)

0 10 0 30 40 0 0w 2 3 4
BFGS Nelder Mead BFGS Nelder Mead

0 10 n n 40
Nelder Mead

Deviance

_ : ‘ Method
Simlated Data Simulated Data SimlatedData |y GwANNB

—& - M\B

Fig. 2 Goodness of fit of GWMNB and MNB via BFGS and Nelder Mead in estimating the means of dependent variables

70
-190 0
160

=200

40
=220

=230

Deviance

M40

Loglikelihood

-250 100

-260

=270

-280

6 :‘0 ;0 6‘0 8’0 ll;rtl 0 :il JVU 6;3 S‘D 100 0 :'0 4b 6’0
Simulated Data Simulated Data Simulated Data Method
—s— GWMNB

- e - MN\B

Fig. 3 The goodness of fit of estimating the mean of dependent variables using GWMNB and MNB via Nelder Mead algorithm
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- a2 i
(a) y, simulated data Ty
- i

g T
(d) v, simulated data

o e
(h) y; MNB

Fig. 4 The simulated data of dependent variables of multivariate spatial count data with over dispersion and their estimates using MNB and GWMNB methoc

The independent variables;x and xj* are initially BFGS succeeds in estimating the means of dependent
simulated from a uniform (0,1) distribution, then the variable variables while Fig.3 describes the goodness of fit of the
X1 is updated to be spatially dependent by using the equationmethods in estimating the means using Nelder Mead

algorithm for all replications. Based on Table 1, Fig. 2 and

. |u| 2 . |v| 2 Fig. 3, the log-likelihood value of GWMNB tends to be
L= Kal4] + XMl (12) higher and its deviance tends to be smaller than them of
1000 90 MNB method. We use Mean Square Prediction Error
(MSPE) to measure the distance between the means and
andx, is updated based on the equation simulated data.
x¢ =sin(@)x, + co{@)x, (13) TABLE |
whereg is the correlation level. In this research we ¢gset GOODNESS OFFIT (IN AVERAGE) OF 100SIMULATED DATA
0.1. MNB GWMNB
By using those coefficients, index of dispersion and Indicator BFGS | N.Mead | BFGS | N.Mead
independent variables, we generate the dependent varia_b eshe percentage of 100% 100% 40% 100%
based on the procedure in [29] for generating negativethe method success
binomial data, where the distribution of the dependent Bandwidth 1.81 2.23
variables (negative binomial) come from Poisson and €Y 4547.57| 11934.04
gamma distribution. Log likelihood -240.18] -240.18 -227.96  -230.96
- : : : : Deviance 124.52 124.52 102.74 108.41
We use the coefficients and index of dispersion estimat
P MSPE 50.28 50.28 34.4§ 35.1p

of MNB as an initial estimate of GWMNB in estimating the

means of dependent variables. Optimum bandwidth is gotten,gpEg = 1 Z":zm:(y - ~__)2
by using golden section algorithm. We make the replication mgat
of simulation 100 times. MSPE of GWMNB tends to be smaller than it of MNB

The result of the simulation is given in Table 1. Although method (see Table 1, Fig. 2 and Fig. 3). Fig.4 illustrates the
BFGS is a stable algorithm in MNB, it tends to be comparison between the value of dependent variables of
unsuccessful estimating the means in GWMNB. It is only gjmulated data and their means of MNB and GWMNB
40% of 100 simulations, BFGS can be successful in methods using Nelder Mead algorithm. Based on Fig.4, the
estimating the means of multivariate spatial count data with means of GWMNB and simulated data are more similar than
over dispersion. However, the results of BFGS tend to havethe means of MNB and simulated data, as indication
the slight better goodness of fit than them of the Nelder c\wMNB estimates the means better than MNB.

Mead algorithm. On the other hand, the Nelder Mead tends \ NB and GWMNB give the different results @f(u,,v,)
to be successful in estimating the means of dependent v

variables than BFGS algorithm. Nelder Mead is successfuland 7(u,v,) estimates. It is caused by those of spatial data

in estimating the means in all 100 simulations. have the local character, depending on the location where the
By using BFGS and Nelder Mead algorithms, the data are observed. As illustration, the coefficients and index

GWMNB tends to have the better goodness of fit than MNB of dispersion estimate of MNB and GWMNB for location 1

method. Fig. 2 describes the goodness of fit of the methodsand 2 are presented in Table 2.

for 40 replications of simulation where GWMNB using
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TABLE I
COEFFICIENTS ANDINDEX OF DISPERSIONESTIMATE OF MNB AND
GWMNB
Coefficients MNB 1 GWMNB >
Pio 1.059 1.184 1.147
Pu 0.263 0.048 0.13§
P12 1.917 1.854 1.844
Pag 1.891 2.171 2.144
P -0.530 -0.750 -0.811
Pz 0.768 0.819 0.931
Pao 0.238 0.514 0.474
P -0.905 -0.987 -0.805
Pz 0.495 0.310 0.264
T 0.479 0.465 0.434
Loglikelihood -229.178 -211.901
Deviance 126.177 95.112
MSPE 14.533 8.342
B. Application

The mortality rate is one of the health status indicators in
the society. The mortality rate of infant, child and maternal,

the life expectancy, morbidity rate, and nutritional status are
health status indicators in East Java Indonesia [30]. The

accessibility and affordability of health services are the
factors which influenced the mortality rate of infant and
child [31]. The good quality health services can prevent high
mortality rate.

We use the data from the East Java Provincial healt
office [30] as an application. The data consist of 38
regencies/towns in East Java Province, Indonesia. Th
dependent variables are the number of infant deaths (
toddler and preschool deathsy,( and pregnant and
childbirth mother (maternal) death¥;). There are seven

The highest mortality rate of infant, toddler, and preschool
and also maternal tend to happen in the east parts of East
Java (Fig. 5). There are 428 deaths from 2415952 toddlers
and preschool population, or the mortality rate of toddler and
preschool is 0.018%. The mortality rate of infant and
maternal are 0.902% and 0.094% respectively.

The mean value of;, Y,, andY; are less than the variance.
The Pearson correlationn andY,, Y; andYs, andY, andY;
are 0.516, 0.841 and 0.643 respectively. Therefore we use
the multivariate negative binomial model for estimating the
means of dependent variables. We exclude the independent
variable that has a high positive correlation with others for
handling multicollinearity (Table 4). There is a high
correlation, 0.868 betweexy andXs. Therefore we omik,
from data analysis to conquer the multicollinearity of
independent variables. We select the independent variables
by adding one by one of them into the model. The best
combination for each number of independent variables is
presented in Table 5. From that process, the model with two
independent variableX{ andX;) gives the best performance
than others based on AIC indicator. Therefore we use those
independent variables to build MNB and GWMNB.

independent variables, the percentage of villages that always = > 0.7

take care their healthX(), households that have healthy
behavior K,), handling obstetric complicationX4) prenatal
visits to the health worker minimum four times),
childbirth with health workers helpx§), the ratio of mini-
hospitals and the number of population in each regeXgy (
and the percentage of integrated health posts giving servic
actively (X;). Exposure variables in this research are the
population of infant I;), toddler and preschooN§), and
maternal K3). The descriptive statistics of the data is given
in Table 3.

TABLE lll
DESCRIPTIVESTATISTICS OFMORTALITY DATA VARIABLES

Variable Mean Variance | Minimum | Median | Maximum

Y1 137 6375.6 11 131 298
Yo 11 146.8 0 8 7Q
Y3 15 81.7 1 14 39
N; 15226 | 9.70E+07 2066 14837 41581
N, 63578 | 1.70E+09 8206 62586 176241
N 15955| 1.10E+08§ 2154 15488 438p2
X4 96.2 52.7 65.4 10( 100
X 46.3 209.5 20.1 43.8 68,7
X3 92.3 96.4 64.4 94 .4 105.8
X4 88.3 32.5 75.4 88.8 98.p
Xs 92.2 17.8 83.6 91.4 101
Xs 0.3 0 0.1 0.3 0.4
X7 67.9 295.3 34.2 69.7 96.3
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TABLE IV
PEARSON CORRELATION OF MORTALITY DATA VARIABLES
Y1 Y2 Y3 X1 Xz X3 Xq Xs Xe
Y, 0.52
Y3 0.84 0.64
X1 0.15 -0.01 -0.03
X2 -0.04 0.14 0.0§ 0.23
X3 0.0 0.113 0.07 -0.1 0.02
Xa -0.03 0.09 -0.09 0.4Q 0.31| -0.20
Xs 0.0§ 0.04 -0.13 0.39 0.21| -0.18 0.87%
Xs -0.57 -0.29 -0.59 -0.01 0.19 0.21 0.01 -0.07
X7 -0.24 -0.14 -0.23 0.08 0.33 0.21 0.0 0.049 0.25
TABLE V
INDEPENDENT VARIABLES SELECTION
Independent Variables Loglikelihood| AIC
Model 1 :X(Xp) -473.5 964.7
fModel 2 :X(Xq, Xy) -463.9 955.4
Model 3 :X(Xy, X2, X3) -459.7 959.6
Model 4 :X(Xy, X2, X3,X7) -456.5 970.4
Model 5 :X(Xz, Xz, X3, Xs, X7) -454.( 988.1
Model 6 :X(Xz, Xz, X3, Xs, Xg, X7) -453. 1017.4

The results of the analysis using MNB and GWMNB are
given in Table 6 and Fig. 6. By using the BFGS algorithm,
GWMNB fails in cross-validation process to fir(ﬂ(ui WV, ))
and (T(ui,vi)) estimates for estimating the means. Cross-
validation process using golden section with range
bandwidth (0.6503076, 3.150016) give the result optimum
bandwidth 3.150, CV=.- There is not CV resulted using
MLE via the BFGS algorithm. This might be caused by
BFGS is a derivative-based method. The estimation in one
iteration is influenced by the derivative of the previous
iteration, so that if in a certain iteration the condition in
BFGS is not fulfilled then the BFGS fails to get thgu,,v; )
and r(ui,vi)estimate for estimating the means of dependent
variables.
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Fig. 5 The description of the mortality rate of infant (a), toddler and preschool (b) and maternal (c).
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Fig. 6 The mortality data and their estimates using MNB and GWMNB methods

On the other hand, Nelder Mead (free derivative) estimates of GWMNB vary depending on the location

. oo bserved. In Table 7, we present the results of those estimate
algorithm can be used successfully estimating the means of

dependent variables. GWMNB using the Nelder Mead chmtg]:n tv;?]dr&g;dr:ﬁffe Oéngzzt Java province, those are
algorithm gives better goodness of fit than others. It has a 9 9 '
higher log likelihood, smaller deviance, and MSPE. The - | TAE?LEV” c VINE
means of dependent variables from GWMNB tend to be OEFFICIENTS ANDINDEX OF DISPERSIONESTIMATE OF AND
GWMNB FORMORTALITY DATA
more similar to the observations than the means from MN

(Fig. 6). Coefficients MNB GWMNB -

Jombang Madiun
; TAFELEM\QB CWMNE Bic -4.864 -2.384 -4.417
HE GOODNESS OFIT AND ﬂll 0.005 -0.020 -0.001
MNB GWMNB P12 -0.005 -0.006 -0.004
Indicator BFGS |[Nelder Mead| BFGS | Nelder Mead gZO gé(lsg gg;g gé;;

. d 21 =U. =JU. - .
Bandwidth 3.15 1.61 By 0.009 0026 0.03d
cv - 148008.4p Bag 5,201 5267 5,65
Loglikelihood| -463.79 -463.83 -460.92 -443.34 Bz -0.018 -0.015 -0.017
Deviance 259.15 259.09  252.5¢ 217.74 Paz 0.001 -0.005 -0.003
MSPE 1107.02  1093.30 1109.2 1069.36 r 0.136 0.080 0.09¢
Deviance 259.091 217.783
MSPE 1093.303 1069.364

The same results as simulation study are shown by the
results of mortality data analysisp(u;,v)and 7(u,v)
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IV. CONCLUSIONS
. . o (7]

In this research, we derive estimating the means of
dependent variables of multivariate spatial count data with [8]
overdispersion using Geographically Weighted Multivariate [0
Negative Binomial (GWMNB) and multivariate negative
binomial (MNB) methods. We use MLE via two algorithms,
based on derivative (BFGS) and free derivative (Nelder [10]
Mead) algorithms. Based on the goodness of fit, GWMNB [11]
performs better than MNB for estimating the means of
dependent variables in the existence of spatial heterogeneit)flz]
in the data.

The Nelder Mead tends to be successful rather than BFGS
algorithm in estimating the means of dependent variables[13]
count data with overdispersion. BFGS algorithm tends to [14]
have false convergence in estimating the means of them.
GWMNB is complex and very time consuming, especially
for the simulation study. Nelder mead is more robust related (15!
to the initial value, but it is slower than the BFGS algorithm.
Therefore, this research encourages to find out the fast and
robust algorithms for future studies of geographically [16]
weighted multivariate. The Bayesian or modification of [17]
BFGS can be alternative methods for the next studies. The
highest deaths of the infant, toddler, and preschool and alsd18]
maternal tend to happen in east part of East Java province.
The mortality rate of the infant is larger than it of toddler and |1,
preschool and also maternal.
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