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Abstract Geographically Weighted Negative Binomial Regression (GWNBR) was proposed related to univariate spatial count data 
with overdispersion using MLE via Newton Raphson algorithm. However, the Newton Raphson algorithm has the weakness, it tends 
to depend on the initial value. Therefore, it can have false convergence if the initial value is mistaken. In this research, we derive 
estimating the mean of dependent variables of multivariate spatial count data with overdispersion, Geographically Weighted 
Multivariate Negative Binomial (GWMNB) and compare it to the global method, multivariate negative binomial (MNB). We use MLE 
via Nelder Mead and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms. We conduct the simulation study and application of 
mortality data to find out the characteristics of the methods. They show that GWMNB performs better than global method (MNB) in 
estimating the means of dependent variables of the spatial data. The Nelder Mead tends to be more successful in estimating the means 
for all locations than BFGS algorithm. Although BFGS is a stable algorithm in MNB related to the initial value, it tends to have false 
convergence in GWMNB. The mortality rate of infant is larger than it of toddler and preschool and also maternal. The highest deaths 
of infant, toddler, and preschool and also maternal tend to happen in east parts of East Java. 
 
Keywords spatial data; over dispersion; GWMNB, MLE; nelder mead; BFGS. 
 

 

I. INTRODUCTION 

Poisson regression is usually used for modeling count 
data.  Related to multivariate count data, an early overview 
of multivariate regression for count data is described  [1], 
[2]. Some studies have been done related to bivariate 
Poisson data. Some of them are simulated maximum 
likelihood estimation of bivariate count data with 
unrestricted correlation pattern of unobserved heterogeneity 
[3], EM algorithm for estimating the parameters of bivariate 
and diagonal inflated bivariate Poisson regression models 
[4], and bivariate generalized Poisson for healthcare data [5]. 
Moreover, the researches about multivariate Poisson have 
been proposed, a multivariate Poisson regression using the 
MLE method via the EM algorithm and Bayesian [6], and 
multivariate generalized Poisson regression [7]. 

Behind the popularity of Poisson regression, it has a 
weakness regarding equidispersion assumption. It restricts 
the use of the method because many data in real applications 
are under or overdispersed data. One of the methods for 
overcoming overdispersion is by using a negative binomial 
model. There are some studies related to the model for more 

than one dependent variables. Those are Bivariate Negative 
Binomial Regression (BNBR) using MLE via Newton 
Raphson algorithm [8], the comparison of two bivariate 
negative binomial regression models which come from the 
different distributions derivation [9],  the Seemingly 
Unrelated Negative Binomial (SUNB) using Generalized 
Nonlinear Least Square (GNLS) [10], the multivariate 
negative binomial model using copula and MLE method 
[11], and a robust likelihood approach for the overdispersed 
correlated count data analysis based on a multivariate 
negative binomial model using MLE via iterative Newton 
Raphson method [12].  

Global regression assumes that the relationships being 
measured are stationary over space. The parameter estimates 
are applied equally over the whole region or the 
relationships being measured are assumed to be stationary 
over space. Therefore, if there is a variation of the 
relationships between locations, the global model is not 
suitable to the reality. One of the spatial effects is spatial 
heterogeneity [13]. This happens when dealing with spatial 
data as the processes generating them might vary across 
space. This gives effect to the parameters of the model 

979



 
 

varying or not homogeneous between locations.  Those led 
to the development of the methods to model spatial data.  
One of them is the method based on spatial heterogeneity 
that is Geographically Weighted Regression (GWR) model. 

Regarding to the spatial count data with over dispersion, 
Geographically Weighted Negative Binomial (GWNB) to 
model univariate count data [14] and the comparison of 
zero-inflated Poisson (ZIP) and Geographically Weighted 
Zero-Inflated Poisson (GWZIP) using the MLE method  for 
modeling excess zero univariate count data [15] have been 
proposed. On the other side, many data in real applications 
are multivariate count data.  

Therefore, in this research, we propose estimating the 
means of multivariate spatial count data with over dispersion 
using spatial weights and negative binomial distribution 
(Geographically Weighted Multivariate Negative Binomial). 

The model can be written as ( )( ) ( )~MNB , , ,ij ij j i i i iY u v u vµ τ 
 

β  

where Yij is the dependent variable-j on location-i, µij is the 
mean of dependent variable-j on location-i with the 

coefficients at equation point i, ( ),i iu vτ  is dispersion on 

location-i, ( ) ( ) ( ),
, , i iu v

ij ij i i ij

T
ij jE Y u v t eµ= =

x β ( )0 1 ( 1), ,..., ,T
ij ij ij ij px x x −=x

( ) ( ) ( ) ( )( )0 1 ( 1), , , , ,..., , ,T
j i i j i i j i i j p i iu v u v u v u vβ β β −=β   tij is exposure on 

location-i, dependent variable-j, ijx is the independent 

variable of dependent variable-j on location-i, and ( ),j i iu vβ

is vector coefficient of independent variable for dependent 
variable-j on location-i, i =1,2,...,n, j=1,2,..,m. 

GWZIP uses the EM algorithm for estimating the 
parameters [15]. GWNB uses the Newton Raphson 
algorithm for the estimation [14]. However, the Newton 
Raphson algorithm has a weakness in dealing with false 
convergence due to the improper initial value. Besides that, 
if there are issues in obtaining second partial derivative 
matrix of likelihood function or the second partial derivative 
of the likelihood function is singular, the Newton Raphson 
algorithm cannot be implemented regularly. The formation 
of the stiff information matrix, especially the calculation of 
its inverse are computationally expensive.  

On the other hand, when analyzing more than one 
dependent variables, things are more complicated, especially 
the multivariate count regression models are less developed. 
Based on those, Focusing on multivariate Poisson data with 
overdispersion, geographically weighted multivariate 
negative binomial (GWMNB) using MLE via BFGS and 
Nelder Mead algorithm is considered and derived in this 
research.  BFGS algorithm needs the first derivative of the 
likelihood function for its process. Nelder Mead algorithm is 
a free derivative method. The algorithms are more robust 
than the Newton Raphson algorithm [16], [17]. In this paper, 
geographically weighted regression is more used as 
prediction tools than inference [18], and also as exploratory 
data [19]. Therefore, we focus on estimating the mean of 
dependent variables then assess it using the Goodness of Fit 
and represent them into the maps rather than modeling and 
testing the hypothesis of the parameter estimates.  

The paper is organized as follows. In section II we 
describe the multivariate negative binomial distribution and 
provide estimation the means of dependent variables of 

count data by using the geographically weighted multivariate 
negative binomial method and MLE via BFGS and Nelder 
Mead algorithms. The simulation study using the two 
algorithms and the application of the methods are discussed 
in section III. We use mortality data of East Java, Indonesia, 
2014 as an application. 

II. MATERIALS AND METHODS 

A. Multivariate Negative Binomial Distribution 

GWMNB method in this research is built based on the 
marginal probability function of the multivariate negative 
binomial distribution  
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The mean, variance, covariance,  and correlation of Yij can 

be written as [20]  
 

( ) ,  ij ijE y µ= ( ) 2var  +ij ij ijy τµ µ=   (2) 

  

 

 

( )' 'cov , y , for 'ij ij ij ijy j jτµ µ= ≠   (3) 

 
   

( ) '

'

'

corr , y , for '
1 1

ij ij

ij ij

ij ij

y j j
τ µ µ

τµ τµ
= ≠

+ +
  (4) 

 
for i=1,2,…,n and , ' 1, 2, ,j j m= … . From the equation(4), 

the correlation is always positive and for small τ, count data 
yij close to the observations that have independent Poisson 
distribution and each observation has mean and varianceijµ . 

B. Estimation The Means of Dependent Variables of 
Geographically Weighted Multivariate Negative 
Binomial  

Based on GWNB [14] and equation (1), the loglikelihood 
function for GWMNB to estimate the equation coefficients 
and dispersion index on location-l can be written as follows:  

( ) ( ) ( ) ( )1 1

1 1

* ln , , ln ,
n m

ij ij l l l l l l i i il
i j

y u v u v u v A B wµ τ τ− −

= =

  = + − + 
  

θl   (5) 

 
where 

( )( ) ( ) ( )( )1 1

1

ln ! , ln , ,
m

i ij l l i l l i l l
j

A y u v y u v u vτ τ µ− −
+ +

=
= + + + ,
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TT T T

l l l l l l m l l l lu v u v u v u v u vτ= =θ θ β β β

and wil is the geographical weight. In this research, we use 
the Fixed Bisquare Kernel weight, [21]  
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where ilw is the weight of the observation on location-i for 

estimating the coefficients and index of dispersion on 
location- l, b is the bandwidth, and ild  is Euclidean distance 

between point-i and l.  
The optimum bandwidth is gotten by cross-validation 

using the formula   
 

( ) $ ( )( )2

1 1

n m

ij ij
i j

CV b y y b≠
= =

= −   (7) 

 
where y������� is the prediction value of  	�� which is 
predicted without the observation on location-i  and n is the 
number of location. The optimum bandwidth is the 
bandwidth with CV minimum.  We use the golden section 
algorithm to find optimum bandwidth. We consider BFGS 
and Nelder Mead algorithms for estimating the means of 
dependent variables of MNB and GWMNB. 

1) BFGS Algorithm for GWMNB: BFGS is an 
optimization algorithm in the family of quasi-Newton 
methods. The algorithm needs a gradient of the likelihood 
function that we maximize in each iteration. Hessian Matrix 
is approximated by iteration of gradient evaluation [16], 
[22]. The gradient is obtained by deriving log likelihood 
function with respect to the coefficient ( ),j l lu vβ  and

( ),l lu vτ .  
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for i, l = 1,2,...,n and j = 1,2,...,m; m is the number of 
dependent variables, xij is vector with its elements, 1 and p-1 
independent variables in each location-i, while jy and 

( ),j i iu vμ are n x 1 vectors. A Derivative of the likelihood 

function with respect to the index ( ),l lu vτ is given by 
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Let  
� → 
 be continuously differentiable. Consider the 
following unconstrained optimization problem: 

min ( )( ) ( ), , , p
l l l lu v u v R− ∈θ θl ,  

BFGS method generates a sequence ( ){ },r l lu vθ iteratively 

[22]. 
Starting with an initial value θθθθ0 and Hessian matrix H0, the 

algorithm repeats these steps until( ),r l lu vθ is converged.  

1. The direction rq  is obtained by solving the equation 
 ( )( ),r r r l lu v= −H q U θ  
 where ( )rU θ is gradient function in iteration rth or 
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2. Generate ( ) ( )1 , ,r l l r l l r ru v u v α+ = +θ θ q , r = 0, 1, 2,… 

3. The matrix rH is updated using the formula 

 1

T T
r r r r r r

r r T T
r r r r r

+
∆ ∆

= + −
∆
U U H s s H

H H
U s s H s

 

 where  r r rs α= q  and   

 ( )( ) ( )( )1 , , .r r l l r l lu v u v+∆ = −U U θ U θ  

The matrix rH is positive definite if 0T
r rs∆ >U . The 

condition is guaranteed to hold if step length rα  is 

chosen by the exact line search  

( )( ) ( )( )
0

, min ,r l l r r r l l ru v u v
α

α α
>

− + = − +θ q θ ql l  

or the Wolfe-type inexact line search 

( )( ) ( )( ) 1, , ,T
r l l r r r l l r r ru v q u v cα α− + ≤ − +θ θ U ql l  

( )( ) 2, ,
T T

r l l r r r r ru v cα+ ≤U θ q q U q  

for c1 , c2 ∈ (0,1), c1 < c2. 
As stated in [24], Newton’s method often fails to converge 

because of the poor initial estimate, therefore the 
convergence is checked from the Euclidean norm of the 
gradient, r∆U .   
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2) Nelder Mead Algorithm for GWMNB: Nelder Mead is 
a free derivative algorithm. The algorithm finds the 
coefficients and index of dispersion estimate using 
reflection, expansion, contraction and shrinkage process. Let 

ΘΘΘΘ is the p dimension parameter space and ( )( ),l lu vθl  is 

the log likelihood weighted by geographical weight or 

( ) ( )( )* - ,l lu v== − θθ lly is the objective function which be 

minimized, where ( ),l lu v ∈θ Θ  and ( )* ,l lu v= =θ θ

( ) ( ) ( ) ( ) ( )1,0 1,1 1, 1 ,0 ,1[ ,  ,  ... , ... ,  ,  l l l l p l l m l l m l lu v u v u v u v u vβ β β β β−

( ) ( ), 1 ... ,  , ].m p l l l lu v u vβ τ−   

 

Each iteration of the algorithm is started from simplex in 

ΘΘΘΘ, that is the structure formed by p +1 vertex, ( ) ( )1 ,l lu vθ
)

,…, ( ) ( )1
,l lu v+θ

)

p , where 1mp= +p .  If the optimum is 

minimum, the algorithm replaces the worst vertex in a 
simplex with the new point that has a smaller value of minus 
log likelihood using one of the reflection, expansion, or 
contraction operation. If those fail to find the new point to 
replace the worst point on the simplex, then the shrinkage 
operation is carried out.  See [17], [25], [26], [27], and [28]  
for Nelder Mead algorithm in general. Fig. 1 represents the 
workflow of Nelder Mead algorithm for GWMNB in this 
research. 

 
Fig. 1 The flowchart of Nelder Mead algorithm for GWMNB
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III.  RESULTS AND DISCUSSION 

In this section we assume1 2 ...T T T T
i i im i= = = = =x x x x  

1 2 ( 1)1    ... i i i px x x −   , then ( ) ( )( ),ln , ln
T
i j i iu v

ij i i iju v t eµ = x β for i = 

1,2,...,n and j = 1,2, …,m. By considering the spatial effect 
we estimate the means of the dependent variables, where 

( )( ) ( )~ MNB , , ,ij ij j i i i iY u v u vµ τ 
 β , j =1,2,…,m. and 

( ) ( ), exp ,ij i i ij jk i i ik
k

u v t u v xµ β=  
 
 
 , tij  is exposure variable 

on dependent variable-j on location-i. The coordinates of 
latitude and longitude represent a geographical factor of 
locations. We use the latitude and longitude of the regencies 
in East Java Indonesia as a geographical reference, where 
there are 38 regencies. We use Euclid distance to measure 
the distance between regencies/towns. The optimum 
bandwidth is the bandwidth that has a minimum CV. 

A. Simulation Study 

We conduct the simulation to find out the performance of 
MNB and GWMNB using MLE method via Nelder Mead 
and BFGS algorithms in estimating the means of dependent 
variables. The simulation is conducted using the R software 
based on the procedure presented in [19] and [14]. We 
generate two independent variables based on equation (12) 

and (13), and trivariate dependent variables which have a 
positive correlation between them.  

For generating the dependent variables, we set some 
coefficients, ( )11 ,i iu vβ , ( )12 ,i iu vβ and ( ),i iu vτ as a function 

of locations to reckon spatial heterogeneity in the data [14]. 
We use the latitude and longitude of East Java as a 
geographical factor. It consists of 38 locations. Therefore we 
use the sample size n= 38 in this simulation study.  We set 

the coefficients ( )( ),i iu vβ  and index of dispersion  

( )( ),i iu vτ  as follows: 

( )10 , 1,i iu vβ =  ( ) [ ] [ ]2 2

11 , ii i iu v u u v vβ = − × − ,  

where 1

n

i
i

u
u

n
==


  and  1

n

i
i

v
v

n
==


. 

( ) ( ) ( ){ }2 2

12 , 26 / 5 / 5 0,13i i i iu v u u v vβ    = − − − − +    , 

( )20 , 2,i iu vβ = ( )21 0. ,, 5i iu vβ = − ( )22 , 1,i iu vβ =

( )30 , 0.5,i iu vβ = ( )31 0. ,, 5i iu vβ = − ( )32 , 1i iu vβ = −  and  

( ) { }2511, 20 10i i iu v vτ −  =   ; 1.ijt =   

 
Fig. 2  Goodness of fit of  GWMNB and MNB via  BFGS and Nelder Mead in estimating the means of dependent variables 

 
Fig. 3 The goodness of fit of estimating the mean of dependent variables using GWMNB and MNB via Nelder Mead algorithm 
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Fig. 4 The simulated data of dependent variables of multivariate spatial count data with over dispersion and their estimates using MNB and GWMNB methods 

 
The independent variables xi1∗ and xi2∗ are initially 

simulated from a uniform (0,1) distribution, then the variable 
x1 is updated to be spatially dependent by using the equation. 

 
2 2* *

1 1
1 1000 90

i i i i
i

x u x v
x

   
= +      
   

 (12) 

 
and x2 is updated based on the equation  

( ) ( )2 1 2sin cosφ φ φ= +x x x  (13) 

where ϕ is the correlation level. In this research we set ϕ = 
0.1.   

By using those coefficients, index of dispersion and 
independent variables, we generate the dependent variables 
based on the procedure in  [29] for generating negative 
binomial data, where the distribution of the dependent 
variables (negative binomial) come from  Poisson and 
gamma distribution.  

We use the coefficients and index of dispersion estimate 
of MNB as an initial estimate of GWMNB in estimating the 
means of dependent variables. Optimum bandwidth is gotten 
by using golden section algorithm. We make the replication 
of simulation 100 times.  

The result of the simulation is given in Table 1. Although 
BFGS is a stable algorithm in MNB, it tends to be 
unsuccessful estimating the means in GWMNB. It is only 
40% of 100 simulations, BFGS can be successful in 
estimating the means of multivariate spatial count data with 
over dispersion. However, the results of BFGS tend to have 
the slight better goodness of fit than them of the Nelder 
Mead algorithm. On the other hand, the Nelder Mead tends 
to be successful in estimating the means of dependent 
variables than BFGS algorithm. Nelder Mead is successful 
in estimating the means in all 100 simulations.  

By using BFGS and Nelder Mead algorithms, the 
GWMNB tends to have the better goodness of fit than MNB 
method. Fig. 2 describes the goodness of fit of the methods 
for 40 replications of simulation where GWMNB using 

BFGS succeeds in estimating the means of dependent 
variables while Fig.3 describes the goodness of fit of the 
methods in estimating the means using Nelder Mead 
algorithm for all replications. Based on Table 1, Fig. 2 and 
Fig. 3, the log-likelihood value of GWMNB tends to be 
higher and its deviance tends to be smaller than them of 
MNB method. We use Mean Square Prediction Error 
(MSPE) to measure the distance between the means and 
simulated data.  
 

TABLE I 
 GOODNESS OF FIT (IN AVERAGE) OF 100 SIMULATED DATA  

MNB GWMNB 
Indicator BFGS N.Mead BFGS N.Mead 

The percentage of  
the method success  

100% 100% 40% 100% 

Bandwidth 
 

1.81 2.23 
CV 

 
4547.57 11934.04 

Log likelihood -240.18 -240.18 -227.56 -230.96 
Deviance 124.52 124.52 102.74 108.41 
MSPE 50.28 50.28 34.48 35.19 

( )2

1 1

1
MSPE =

n m

ij ij
i j

y
mn

µ
= =

−
)

 

MSPE of GWMNB tends to be smaller than it of MNB 
method (see Table 1, Fig. 2 and Fig. 3). Fig.4 illustrates the 
comparison between the value of dependent variables of 
simulated data and their means of MNB and GWMNB 
methods using Nelder Mead algorithm. Based on Fig.4, the 
means of GWMNB and simulated data are more similar than 
the means of MNB and simulated data, as indication 
GWMNB estimates the means better than MNB. 

MNB and GWMNB give the different results of ( ),i iu vβ

and ( ),i iu vτ estimates. It is caused by those of spatial data 

have the local character, depending on the location where the 
data are observed. As illustration, the coefficients and index 
of dispersion estimate of MNB and GWMNB for location 1 
and 2 are presented in Table 2. 
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TABLE II 
COEFFICIENTS AND INDEX OF DISPERSION ESTIMATE OF MNB AND 

GWMNB 

Coefficients MNB 
GWMNB 

1 2 
 β10  1.059 1.184 1.142 
 β11 0.263 0.048 0.138 
 β12 1.917 1.854 1.846 
 β20  1.891 2.171 2.149 
 β21 -0.530 -0.750 -0.811 
 β22 0.768 0.819 0.931 
 β30  0.238 0.514 0.475 
 β31 -0.905 -0.987 -0.805 
 β32 0.495 0.310 0.266 
  τ 0.479 0.465 0.439 
Loglikelihood -229.178 -211.901 
Deviance 126.177 95.112 
MSPE 14.533 8.342 
 
B. Application 

The mortality rate is one of the health status indicators in 
the society.  The mortality rate of infant, child and maternal, 
the life expectancy, morbidity rate,  and nutritional status are 
health status indicators in East Java Indonesia [30]. The 
accessibility and affordability of health services are the 
factors which influenced the mortality rate of infant and 
child [31]. The good quality health services can prevent high 
mortality rate.  

We use the data from the East Java Provincial health 
office [30] as an application. The data consist of 38 
regencies/towns in East Java Province, Indonesia. The 
dependent variables are the number of infant deaths (Y1), 
toddler and preschool deaths (Y2) and pregnant and 
childbirth mother (maternal) deaths (Y3). There are seven 
independent variables, the percentage of villages that always 
take care their health (X1), households that have healthy 
behavior (X2), handling obstetric complications (X3), prenatal 
visits to the health worker minimum four times (X4), 
childbirth with health workers help (X5), the ratio of mini-
hospitals and the number of population in each regency (X6) 
and the percentage of integrated health posts giving service 
actively (X7).  Exposure variables in this research are the 
population of infant (N1), toddler and preschool (N2), and 
maternal (N3). The descriptive statistics of the data is given 
in Table 3.  

TABLE III 
 DESCRIPTIVE STATISTICS OF MORTALITY DATA VARIABLES  

Variable Mean Variance Minimum Median Maximum 
Y1 137 6375.6 11 131 298 
Y2 11 146.8 0 8 70 
Y3 15 81.7 1 14 39 
N1 15226 9.70E+07 2066 14837 41581 
N2 63578 1.70E+09 8206 62586 176241 
N3 15955 1.10E+08 2154 15488 43822 
X1 96.2 52.7 65.4 100 100 
X2 46.3 209.5 20.1 43.3 68.7 
X3 92.3 96.4 64.6 94.6 105.8 
X4 88.3 32.5 75.4 88.8 98.2 
X5 92.2 17.8 83.6 91.6 101 
X6 0.3 0 0.1 0.3 0.4 
X7 67.9 295.3 34.2 69.7 96.3 
 

The highest mortality rate of infant, toddler, and preschool 
and also maternal tend to happen in the east parts of East 
Java (Fig. 5). There are 428 deaths from 2415952 toddlers 
and preschool population, or the mortality rate of toddler and 
preschool is 0.018%. The mortality rate of infant and 
maternal are 0.902% and 0.094% respectively.  

The mean value of Y1, Y2, and Y3 are less than the variance. 
The Pearson correlation Y1 and Y2, Y1 and Y3, and Y2 and Y3 
are 0.516, 0.841 and 0.643 respectively. Therefore we use 
the multivariate negative binomial model for estimating the 
means of dependent variables. We exclude the independent 
variable that has a high positive correlation with others for 
handling multicollinearity (Table 4). There is a high 
correlation, 0.868 between X4 and X5. Therefore we omit X4 
from data analysis to conquer the multicollinearity of 
independent variables. We select the independent variables 
by adding one by one of them into the model. The best 
combination for each number of independent variables is 
presented in Table 5.  From that process, the model with two 
independent variables (X1 and X2) gives the best performance 
than others based on AIC indicator. Therefore we use those 
independent variables to build MNB and GWMNB. 

 
TABLE IV 

PEARSON CORRELATION OF MORTALITY DATA VARIABLES 
  Y1 Y2 Y3 X1 X2 X3 X4 X5 X6 
Y2 0.52                 
Y3 0.84 0.64               
X1 0.15 -0.01 -0.03             
X2 -0.04 0.14 0.05 0.23           
X3 0.06 0.11 0.07 -0.16 0.02         
X4 -0.03 0.07 -0.07 0.40 0.31 -0.20       
X5 0.05 0.02 -0.11 0.39 0.21 -0.18 0.87*     
X6 -0.57 -0.27 -0.57 -0.01 0.19 0.21 0.01 -0.07   
X7 -0.24 -0.16 -0.23 0.08 0.33 0.21 0.00 0.07 0.25 

*: |r| ≥ 0.7  

TABLE V 
INDEPENDENT VARIABLES SELECTION 

Independent Variables Loglikelihood AIC 

Model 1 : X(X2) -473.5 964.7 

Model 2 : X(X1, X2) -463.8 955.8 

Model 3 : X(X1, X2, X3) -459.2 959.6 

Model 4 : X(X1, X2, X3,X7) -456.5 970.9 

Model 5 : X(X1, X2, X3, X5, X7) -454.0 988.1 

Model 6 : X(X1, X2, X3, X5, X6, X7) -453.0 1017.4 

The results of the analysis using MNB and GWMNB are 
given in Table 6 and Fig. 6.  By using the BFGS algorithm, 
GWMNB fails in cross-validation process to find ( )( ),i iu vβ  
and ( )( ),i iu vτ estimates for estimating the means. Cross-
validation process using golden section with range 
bandwidth (0.6503076, 3.150016) give the result optimum 
bandwidth 3.150, CV= -.  There is not CV resulted using 
MLE via the BFGS algorithm. This might be caused by 
BFGS is a derivative-based method. The estimation in one 
iteration is influenced by the derivative of the previous 
iteration, so that if in a certain iteration the condition in 
BFGS is not fulfilled then the BFGS fails to get the ( ),i iu vβ

and ( ),i iu vτ estimate for estimating the means of dependent 
variables. 
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(a) (b)  (c) 

Fig. 5 The description of the mortality rate of infant (a), toddler and preschool (b) and maternal (c). 

 

Fig. 6 The mortality data and their estimates using MNB and GWMNB methods 

 

On the other hand, Nelder Mead (free derivative) 
algorithm can be used successfully estimating the means of 
dependent variables. GWMNB using the Nelder Mead 
algorithm gives better goodness of fit than others. It has a 
higher log likelihood, smaller deviance, and MSPE. The 
means of dependent variables from GWMNB tend to be 
more similar to the observations than the means from MNB 
(Fig. 6).  

TABLE VI 
 THE GOODNESS OF FIT MNB AND GWMNB 

  MNB GWMNB 
Indicator BFGS Nelder Mead BFGS Nelder Mead 

Bandwidth 
 

3.15 1.61 

CV 
 

- 148008.40 

Loglikelihood -463.79 -463.83 -460.92 -443.36 

Deviance 259.15 259.09 252.56 217.78 

MSPE 1107.02 1093.30 1109.28 1069.36 

 

The same results as simulation study are shown by the 
results of mortality data analysis, ( ),i iu vβ and ( ),i iu vτ  

estimates of GWMNB vary depending on the location 
observed. In Table 7, we present the results of those estimate 
for the two regencies of East Java province, those are 
Jombang and Madiun regencies.  

TABLE VII 
COEFFICIENTS AND INDEX OF DISPERSION ESTIMATE OF MNB AND 

GWMNB FOR MORTALITY DATA  

Coefficients MNB 
GWMNB 

Jombang Madiun 
β10 -4.864 -2.384 -4.417 
β11 0.005 -0.020 -0.001 
β12 -0.005 -0.006 -0.003 
β20 -7.166 -8.273 -8.119 
β21 -0.019 -0.020 -0.021 
β22 0.009 0.026 0.030 
β30 -5.201 -5.267 -5.653 
β31 -0.018 -0.015 -0.012 
β32 0.001 -0.005 -0.003 
τ 0.136 0.080 0.090 

Deviance 259.091 217.783 
MSPE 1093.303 1069.364 
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IV.  CONCLUSIONS 

In this research, we derive estimating the means of 
dependent variables of multivariate spatial count data with 
overdispersion using Geographically Weighted Multivariate 
Negative Binomial (GWMNB) and multivariate negative 
binomial (MNB) methods. We use MLE via two algorithms, 
based on derivative (BFGS) and free derivative (Nelder 
Mead) algorithms. Based on the goodness of fit, GWMNB 
performs better than MNB for estimating the means of 
dependent variables in the existence of spatial heterogeneity 
in the data.  

The Nelder Mead tends to be successful rather than BFGS 
algorithm in estimating the means of dependent variables 
count data with overdispersion. BFGS algorithm tends to 
have false convergence in estimating the means of them. 
GWMNB is complex and very time consuming, especially 
for the simulation study. Nelder mead is more robust related 
to the initial value, but it is slower than the BFGS algorithm. 
Therefore, this research encourages to find out the fast and 
robust algorithms for future studies of geographically 
weighted multivariate. The Bayesian or modification of 
BFGS can be alternative methods for the next studies.  The 
highest deaths of the infant, toddler, and preschool and also 
maternal tend to happen in east part of East Java province. 
The mortality rate of the infant is larger than it of toddler and 
preschool and also maternal. 
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