Editorial Team

Journal Manager
Dr. Eli Djulejic, Open Access Macedonian Journal of Medical Sciences, Belgrade, Serbia

Editor-in-Chief
Prof. Dr. Mirko Zhivko Spiroski, Scientific Foundation SPIROSKI, Rajko Zhinzifov No 48, 1000 Skopje, Republic of Macedonia

Section Editors (Deputy Editors-in-Chief)
Dimitrov Borislav D, MD. Academic Unit of Primary Care and Population Sciences Faculty of Medicine University of Southampton South Academic Block (Level C) Southampton General Hospital Southampton SO166YD England, UK
Mukaetova-Ladinska Elizabeta, MD, PhD, MRCPsych. Old Age Psychiatry, Newcastle University, United Kingdom
Branislav Filipović, MD, PhD. University of Belgrade, Faculty of Medicine, Institute of Anatomy
Stoleski Sasho, MD, PhD. Institute for Occupational Health of Republic of Macedonia - Skopje, WHO Collaborating Center, GA2LEN Collaborating Center, II Makedonska brigada 43, 1000 Skopje, Republic of Macedonia
Hristomanova-Mitkovska Slavica, MD, MSc. Institute for Human Genetics of the Faculty of Medicine in Göttingen, Germany
Bogoeva Ksenija, MD, PhD. PHO Prof Bogoev, Skopje, Republic of Macedonia
Stojanovski, Sinisa, MD, PhD.

Layout Editor and Electronic Publishing
MSc, Eng Ivo Spiroski, ID Design 2012, Skopje, Republic of Macedonia

Copyeditor
Sinjore, India

Evidence Based Medicine
Prof. Dr. Katarina Stavric, Children Hospital Skopje, Macedonia, Vodnjanska 17, University "Ss Cyril and Methodius", Skopje, Republic of Macedonia

Editorial Board
DDS, MS, PhD, Associate Professor Nikola Angelov, Director of the Pre-Doctoral Periodontics Clinic, Loma Linda University School of Dentistry, Department of Periodontics. Loma Linda, CA, 92350, United States
Assist. Prof. Dr. Ramush Bejiqi, University Clinical Centre of Kosovo, Paediatric Clinic, Albania
Prof. Semra ÂŒavaljuga, Department of Epidemiology and Biostatistics, Faculty of Medicine, Sarajevo, Bosnia and Herzegovina
MD Pei-Yi Chu, Diagnostic and research pathologist, Department of Surgical Pathology, Changhua Christian Hospital, Taiwan. Address: 135 Nan-Shiao Street, Changhua 500-06,, Taiwan, Province of China
MD, PhD Ivo Donkov, Staff Urologist, Lincoln County Hospital, United Kingdom
MD, PhD Andrew J. Dwork, Departments of Pathology and Cell Biology and Psychiatry, College of Physicians and Surgeons of Columbia University; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, Unit 62, 722 West 168th Street, New York, NY 10032, United States

Adriana Galan, Department of Health Programmes and Health Promotion, Institute of Public Health, Bucharest, Romania

Prof. Tania Santos Giani, Estacio de Sa University, in Health Sciences, Brazil

PhD Iva Ivanovska, Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, NRB room 239, Boston, MA 02115, United States

MD, PhD Jerzy Jabłecki, Associate Professor, Division of General Surgery St. Jadwiga of Silesia Hospital, Trzebnica; Head, Subdepartment of Hand Surgery an Replantation St Jadwiga of Silesia Hospital, Trzebnica; Professor, Department of Public Health, State Higher Professional Medical School, Opole, Poland. 55-100 Trzebnica, ul. Prusicka 53, Poland

MD Mehrdad Jalalian Hosseini, Khorasan-e Razavi Blood Center, Mashhad, Iran, Islamic Republic of

PhD Radka Kaneva, Department of Medical Chemistry and Biochemistry, Medical University - Sofia, Bulgaria

Prof. Dr. Kostandina Leonida Korneti-Pekevska, Ss Cyril and Methodius University of Skopje, Faculty of Medicine, Skopje, Republic of Macedonia

MD, PhD Branko Malenica, Department of Immunology, Clinical Hospital Center Zagreb, Zagreb University School of Medicine, Zagreb, Croatia

Prof. Dr. Elida Mitevska, Institute of Histology and Embrroyology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia

MD, PhD Marija Mostarica-Stojković, Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia

PhD Vesna Nikolova-Krstevski, Harvard Institutes of Medicine, HIM-201, 4 Blackfan Circle, Boston, MA, 02134, United States

Prof. Dr. Nikola Panovski, Institute of Microbiology and Parasitology, Faculty of Medicine, Skopje, Republic of Macedonia

MD, BIDMC Iva Petkovska, Beth Israel Deaconess Medical CenterRadiology W CC - 3 330 Brookline Ave. Boston, MA 02215, United States

Prof. Dr. Gordana Petrushovska, Institute of Pathologyy, Medical Faculty, University of â€œSs. Cyril and Methodiusâ€œ â€“ Skopje, Republic of Macedonia

Prof. Enver Roshi, Dean of Faculty of Public Health, Medical University of Tirane, Chief of Epidemiological Observatory, National Institute of Public Health. Address: Rruga e Dibres, Str. 371, Tirana, Albania

MD, PhD Gorazd B. Rosoklija, Professor at Columbia University and member of the Macedonian Academy of Sciences and Arts, United States

Prof. Dr. Aleksandar Sikole, University Clinic for Nephrology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia

MD, FESC Gianfranco Sinagra, Department of Cardiology, â€œOspedali Riunitiâ€ and University of Trieste, Ospedale Cattinara â€“ Strada di Fiume, 447, 34149 â€“ Trieste, Italy

MD, PhD Rumen Stefanov, Information Centre for Rare Diseases and Orphan Drugs (ICRDO), Bulgaria; Department of Social Medicine, Medical University of Plovdiv, Bulgaria

Prof. Dr. Vesna Velijk Stefanovska, Department of Epidemiology and Biostatistics with Medical Informatics, Medical Faculty, UKIM, Skopje, Republic of Macedonia

MD, MBA Milenko Tanasijevic, Director, Clinical Laboratories Division and Clinical Program Development, Pathology Department, Brigham and Women's Hospital, Dana Farber Cancer Institute, Associate Professor of Pathology, Harvard Medical School, United States
MD, FRCPC Kiril Trpkov, Associate Professor, University of Calgary, Department of Pathology and Laboratory Medicine, Calgary Laboratory Services. 7007 14 st, Calgary SW, Canada

MD, PhD Igor Tulevski, Department of Cardiology, Academic Medical Center, Amsterdam, 1100 DD, T 020 707 2930; F 020 707 2931, Netherlands

Past Members of Editorial Team

Prof. Dr Doncho Donev, Institute of Social Medicine, Medical Faculty, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia

Prof. Dr Olivera Stojceva Taneva, University Clinic of Nephrology, Republic of Macedonia

Prof. Dr Petar Miloshevsiki, from 2008-2014, Institute of Preclinical and Clinical Pharmacology with Toxicology, Faculty of Medicine, Skopje, Republic of Macedonia

Prof. Dr Sonja Topuzovska, Institute of Medical and Experimental Biochemistry, Faculty of Medicine, Skopje, Republic of Macedonia

Prof. Dr. Aleksandar Dimovski, Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University "Ss Kiril and Metodij", Skopje, Republic of Macedonia

PhD Mirko Trajkovski, ETH Zurich, Wolfgang-Pauli-Str. 16/HPT D57, 8093 Zurich-CH, Switzerland

PhD Zoran Zdravkovski, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
Table of Content

- **The Active Surveillance of Staphylococcus aureus using Polymerase Chain Reaction-based Identification Method among Hospitalized-patient of Haji Adam Malik General Hospital, Medan, Indonesia**
 Sri Amelia, Dian D. Wahyuni, Rina Yunita, Muhammad F. Rozi (Author) 622-625

- **Naturally Acquired Lactic Acid Bacteria from Fermented Cassava Improves Nutrient and Anti-dysbiosis Activity of Soy Tempeh**
 Rio Kusuma, Jaka Widada, Emy Huriyati, Madarina Julia (Author) 1148-1155

- **The Impact of Multidrug-Resistant Organisms Infection on Outcomes in Burn Injury Patients at Sanglah General Hospital, Bali**

- **Effect of Addition of Jelly and Storage Time on the Number of Lactic Acid Bacteria in Yoghurt Processed Products**
 Retno Martini Widhyaisih, Jusuf Kristianto, Lutfi Rahmawati Lubis, Mega Mirawati, Atik Khodikoh, Rahmi Susanti, Gurid PE Mulyo (Author) 1302-1305

- **Setting a Protocol for Identification and Detecting the Prevalence of Candida auris in Tertiary Egyptian Hospitals Using the CDC Steps**
 Sahar Mohammed Khairat, Mervat Gaber Anany, Maryam Mostafa Ashmawy, Amira Farouk Ahmed Hussein (Author) 397-402

- **In Vitro Activity of Plazomicin among Carbapenem-resistant Enterobacteriaceae**
 Sara Essam, Nada N Nawar, Mohamed ElBashaar, May Soliman, May Abdelfattah (Author) 1203-1207

- **The The Significance of Differences in Melanocortin 3 Levels and their Relationship with Pulmonary Tuberculosis and Body Mass Index**
 Andi Tenriola, Najdah Hidayah, Subair Subair, Muhammad Nasrnum Massi, Ird Handayani, Rosdiana Natzir, Irawaty Djararuddin, Handayani Halik (Author) 583-588

- **Characterization and Phylodiversity of Implicated Enteric Bacteria Strains in Retailed Tomato (Lycopersicon esculentum Mill.) Fruits in Southwest Nigeria**
 Yemisi Dorcas Obafemi, Paul Akinniyi Akinduti, Adesola Adetutu Ajayi, Patrick Omorogbe Isibor, Theophilus Aanuoluwa Adagunodo PhD (Author) 188-195

- **Agreement Test of Histopathology in the Diagnosis of Extrapulmonary Tuberculosis with Gold Standard Polymerase Chain Reaction Technique: A Step to Overcome False Diagnosis**
 Ali Essa Shaker, Mohammed Abdulmahdi Al Kurtas, Haider Zalzala (Author) 579-582
• **Intestinal Parasitic Infections in Relation to COVID-19 in Baghdad City**
 Israa Abd Al-Khaliq, Ibrahim Mahdi, Abdullaateef Nasser (Author) 532-534

• **Screening of Antimicrobial and Adhesive Activity of Lactobacilli Isolated from the National Food Products from Different Districts of the Karaganda Region (Kazakhstan)**
 Zhanerke Amirkhanova, Saule Akhmetova, Samat Kozhakhmetov, Almagul Kushugulova, Rakhat Bodeeva, Zauresh Issina, Marat TUSBayev (Author) 827-832

• **The Effect of Acute and Chronic Infection-Induced by AvrA Protein of Salmonella typhimurium on Radical Oxygen Species, Phosphatase and Tensin Homolog, and Cellular Homolog Expression During the Development of Colon Cancer**
 Satuman Satuman, Desi Sandra Sari, Eva Rachmi, Eddy Herman Tanggo, Hari Basuki Notobroto, Ketut Sudiana, Sofia Mubarika, Fedik Abdul Rantam, Soemarno Soemarno, Eddy Bagus Warsito (Author) 343-351

• **Comparative Evaluation of SARS-CoV-2 Rapid Immunochromatographic Test Assays with Chemiluminescent Immunoassay for the Diagnosis of COVID-19**
 Ghada Ismail, Rania Abdel Halim, Marwa Salah Mostafa, Dalia H Abdelhamid, Hossam Abdelghaffar, Nashwa Naguib Omar, Noha Alaa Eldin Fahim (Author) 802-810

• **Linking Gut Microbiota, Metabolic Syndrome and Metabolic Health among a Sample of Obese Egyptian Females**
 Nayera E. Hassan, Sahar A. El-Masry, Ayat Nageeb, Mohamed S. El Hussieny, Aya Khalil, Manal Aly, Mohamed Selim, Khadija Alian, Enas Abdel Rasheed, Mai Magdy Abdel Wahed, Darine Amine (Author) 1123-1131

• **In vitro Antifungal Activity of Extracts of Moringa oleifera on Phytopathogenic Fungi Affecting Carica papaya**
 Margaret Oniha, Angela Eni, Olayemi Akinnola, Emmanuel Adedayo Omonigbehin, Eze Frank Ahuekwe, John Folashade Olorunshola (Author) 1081-1085

• **Antibacterial kinetics and phylogenetic analysis of Aloe vera plants**
 Paul Akinduti, Yemisi D. Obafemi, Patrick O. Isibor, Rapheal Ishola, Frank E. Ahuekwe, O. A. Ayodele, O. S. Odudeye, Olubukola Oziegbe, O. M. Onagbesan (Author) 946-954

• **Effect of Thymoquinone on Th1 and Th2 Balance in Rats Infected with Mycobacterium tuberculosis**
 Ery Olivianto, Agustina Tri Endharti, H.M.S. Chandra Kusuma, Sanarto Santoso, Kusworini Handono (Author) 688-692

• **Galactomannan and 1, 3-β-D-Glucan Assay in Bronchoalveolar Lavage Fluid for the Diagnosis of Invasive Pulmonary Aspergillosis in Malignant and Non-malignant Patients**
 Hadir Ahmed El-Mahallawy, Rana El-Gendi, Doaa Mohammad Ghaith, Iman Kamal Behiry, Soheir Fathy Helal (Author) 362-366
• **The First Record of Zoonotic Genes of Cutaneous Leishmaniasis among Human, Dogs, and Sandflies by Nested Polymerase Chain Reaction and Phylogenetic Analyses**
 Rasha Alsaad, May Hameed (Author)
 610-621

• **The Effectiveness of Chitosan and Snail Seromucous as Anti Tuberculosis Drugs**
 Agnes Sri Harti, Yusup Sutanto, Rahajeng Putriningrum, Tresia Umarianti, Erlina Windyastuti, Mellia Silvy Irdayanti (Author)
 510-514

• **Prevalence of Soil-transmitted Helminths Infection in Students of Klungkung, Bali, after Mass Treatment with Albendazole**
 Putu Indah Budiapsari, I. Kadek Swastika, Sri Masyeni (Author)
 433-439

• **Investigation of Antibiotic Release from Bone Allograft in an Experiment on Rabbits**
 Berik Tuleubayev, Alexandr Rudenko (Author)
 833-837

• **The Influence of Antibiotics Usage on Extended-spectrum β-lactamase-producing Enterobacter Colonization among Intensive Care Unit Patients**
 Wayan Suranadi, Dwi Fatmawati, Christopher Ryalino, I Gusti Agung Gede Utara Hartawan, Ferdi Yanto (Author)
 52-56
The Effect of Acute and Chronic Infection-Induced by AvrA Protein of *Salmonella typhimurium* on Radical Oxygen Species, Phosphatase and Tensin Homolog, and Cellular Homolog Expression During the Development of Colon Cancer

Satuman Satuman1,2, Desi Sandra Sari3, Eva Rachmi4, Eddy Herman Tanggo5, Hari Basuki Notobroto5, Ketut Sudiana5, Sofia Mubarika6, Fedik Abdul Rantam8,10, Soemarno Soemarno11, Eddy Bagus Warsito12

1Doctoral Student of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; 2Laboratory of Human Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; 3Department of Periodontal, Faculty of Dentistry, Universitas Jember, Jember Regency, Indonesia; 4Laboratory of Anatomy, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia; 5Department of Oncology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; 6Department of Biostatistics and Population Studies Statistic, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia; 7Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; 8Department of Anatomy and Histology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 9Department of Pathology Anatomy, Universitas Brawijaya, Surabaya, Indonesia; 10Department of Virology, Microbiology, and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia; 11Department of Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; 12Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

Correspondence: Dr. Eddy Bagus Warsito, Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. E-mail: eddy-b-w@fk.unair.ac.id

Aim: The study aimed to analyze the effect of AvrA effector protein of *Salmonella typhimurium* in inducing colon cancer through increased of radical oxygen species (ROS), phosphatase and tensin homolog (PTEN), and avian myelocytomatosis virus oncogene cellular homolog (c-Myc) expression, in mice model of colorectal cancer.

Methods: This study used Balb/c mice which were divided into four types of groups: Negative control, exposed to azoxymethane (AOM), treatment with AOM, and AvrA (AOM+AvrA), and treatment with AOM and *S. typhimurium* (AOM + *S. typhimurium*). Each type consists of a 1-week treatment group and a 12-weeks treatment group, with a final number of eight groups. *S. typhimurium*-specific protein (AvrA) was isolated and then injected to AOM + AvrA groups (40 μg/50 μl), intraperitoneally. *S. typhimurium* was administered orally to AOM + *S. typhimurium* groups. ROS production in peripheral blood mononuclear cells was measured by flow cytometry. PTEN and c-Myc expression in colon tissue were detected through immunohistochemistry.

Results: The study showed that ROS production was higher in the 12-week AOM + *S. typhimurium* treatment group compared with other 12-week treatment groups (p < 0.05). AOM + AvrA and AOM + *S. typhimurium* groups demonstrated a decrease of PTEN expression and an increase of c-Myc expression in colon tissue, compared to AOM groups, both in 1-week and 12-weeks treatment (p < 0.05).

Conclusion: AvrA effector protein from *S. typhimurium* increased ROS production and c-Myc expression while suppressed PTEN expression as markers of colorectal cancer, both in acute and chronic infections.
gamma interferon (IFN) by several cells. T CD4+ cells play an important role in controlling Salmonella infections, together with CD8+ and γδ cells [5].

The increased immune system activity stimulates cytokine synthesis [6], which, in turn, triggers both chronic inflammation and radical oxygen species (ROS) production. Uncontrollable inflammation and ROS in host cells ultimately damage the tissue occupied by Salmonella during the infection [7]. Salmonella or its effector proteins induce inflammation and ROS by activating the JAK-STAT, JNK, and Wnt pathways in stem cells. Activated pathways cause uncontrolled cell cycles which lead to increased risk of malignancy. Cancer stem cells will stick (homing) on enterocytes because of chemoattractants produced by the inflammation process. Effector proteins of Salmonella activate Toll-Like receptor-4 therefore it blocks phosphatase and tensin homolog (PTEN) and stimulates MyD88. The activation of both proteins, followed by phosphorylation of NF-κB, leads to nuclear translocation of NFκB subunits to stimulate protein synthesis. Some of the synthesized proteins are proteins involved in the proliferation (cellular homolog [c-Myc], and cyclinD1), apoptosis (FasL, BAX, and Caspase), and angiogenesis (VEGF and c-IAP2) [8]. The study explored the effect of AvrA’s effector on ROS production in peripheral blood mononuclear cell (PBMC) as inflammation indicator, and PTEN and c-Myc expression in colon tissue as colon cancer markers. AvrA protein used for this study was isolated from Salmonella typhimurium as the best-studied serovar of Salmonellosis.

Materials and Methods

Ethics statement

This study was approved by the Research Ethics Commission of the Faculty of Medicine, Universitas Brawijaya, Indonesia, as stated in the Code of Ethics for Research, number 154/EC/KEPK-53/05/2019. All efforts were made to minimize suffering.

S. typhimurium culture

S. typhimurium was obtained from American Type Culture Collection with Catalog Number 2354 Lot Number #58105535. Bacteria isolates were propagated on MacConkey medium and then incubated at 37°C temperature for 18–24 h. The culture from the MacConkey medium was transferred to a biphasic medium consisting of BHI liquid medium and TCG agar slant medium. The culture was incubated at 37°C temperature for 24 h.

Isolation of S. typhimurium bacterial protein

After S. typhimurium had been cultured, centrifugation was carried out to separate bacteria from the media. The media were removed and the cell resuspended with phosphate buffer saline (PBS). This step was repeated 3 times. The last precipitate was resuspended with TRIZol reagent to isolate bacterial proteins. The AvrA protein was identified as the presence of 34 kDa protein, detected by mouse anti-AvrA polyclonal antibody (Abcam, USA), through Western blotting.

The bands corresponding to the proteins were excised from the gels and transferred to a cellophane membrane. The gel solution was electro-eluted with Horizontal Electrophoresis Apparatus for 25 min. The results were dialyzed with a sterile PBS for 2 × 24 h. The concentration of the isolated protein was calculated with nanodrop.

Animal groups

The experiment was performed using male Balb/c mice (Pusvetma, Indonesia) that were 3 weeks old and had ± 50 g body weight. The animal randomly assigned to four treatment groups: The negative control group which was not exposed, the positive control group which was only exposed to azoxymethane (AOM), the group exposed to AOM + AvrA, and the group exposed to AOM and S. typhimurium (AOM + S. typhimurium). Each group was divided into subgroups: H 1-week and a 12 weeks duration of treatment. The 1-week duration treatment depicted acute inflammatory mice model while the 12-week duration treatment depicted chronic inflammatory mice model [4].

Salmonella or AvrA-infected colorectal cancer mouse model

A series of treatments were given regularly every week. Thus, the number of treatment series was proportional to the duration of the treatment, whether 1 week or 12 weeks. Mice have fasted for 4 h. Afterward, the mice were given 7.5 mg/mouse streptomycin (100 μl sterile solution) and continued with water and food supply ad libitum. Exposures were conducted 20-h after streptomycin treatment, with preceded 4 h fasting. AvrA protein exposure was given to AOM + AvrA group, intraperitoneal (40 μg/50 ml). S. typhimurium was given orally to AOM + S. typhi group, as 100 μl suspension of 1 × 10^4 CFU in Hank’s balanced salt solution. Both the negative control group and the AOM group were treated with sterile Hank’s balanced salt solution, orally. AOM (TCI, Tokyo) was given through oral gavage to all groups (10 mg/ml), except for the negative control group.

Measurement of colon cancer antigen (CCA)

Before the main experiment, we explored the effects of AOM, S. typhimurium, and AvrA on
colon carcinogenesis, using four groups of mice given the same type of exposures with the main experiment. Blood samples were collected on the 14th day of treatments. Mouse CCA was detected using Sandwich-enzyme-linked immunosorbent assay (ELISA) kit (Elisa Genie, UK). The serum was added to CCAs-antibody coated wells. Then biotinylated detection antibody specific for Mouse CCA and Avidin-Horseradish Peroxidase conjugate was added to each well successively and incubated. The substrate solution was added to each well. The enzyme-substrate reaction was terminated by adding Stop Solution and the color turns yellow. The optical density was measured spectrophotometrically at 450 nm.

Measurement of PBMC intracellular ROS

Intracellular ROS production was measured in PBMC. The cells were washed twice with PBS before being shaken slowly. The final precipitate was added with 100 μL PBS and 1 μM carboxy-H2DCFDA (TRC, Canada). The cells were incubated in dark conditions for 60 min at room temperature. ROS testing was analyzed with flow cytometry (FACS Calibur, BD) on the FL1 channel [9].

PTEN-1 and c-Myc expression in colon tissue

The expression of PTEN and c-Myc was observed in the colon tissue slides by immunohistochemical staining. Each protein expression was detected using mouse anti-PTEN monoclonal antibody or mouse anti-c-Myc monoclonal antibody (IGEIA, Indonesia) in fetal bovine serum (1:100). Their expression appeared as brown precipitates in the colonic crypt regions [10], [11]. The expression was analyzed using ImmunoRatio® software. The results were presented as the percentage of positively-stained areas out of the total nuclear area.

Data analysis

The statistical analysis was performed with SPSS 23. Kruskal–Wallis (non-normal distribution) or one-way ANOVA (normal distribution) tests were applied to compare variables within the same duration. A comparison of each treatment group between different duration was using Mann–Whitney test (non-normal distribution) or independent t-test (normal distribution). Further comparisons between all groups were utilizing Kruskal–Wallis or one-way ANOVA continued with post hoc multiple comparisons LSD. p < 0.05 was accepted as statistically significant.

Results

CCA level in plasma

CCA concentration in plasma was detected higher in AOM exposure than in negative controls. Exposure to AvrA and S. typhimurium increases CCA higher than the AOM group. The highest plasma CCA levels detected in AOM + S. typhimurium group, despite not significantly different than the AOM + AvrA group (Figure 1).

ROS production in the PBMC of colorectal cancer model mouse

Compared with the negative control group, AOM treatment in the AOM group induced a significant increase in ROS production after a week, but there was no difference at 12 weeks of treatment duration (Figure 2). Neither the AOM + AvrA nor AOM + S. typhimurium group experienced a significant change in ROS production compared to the AOM group at 1-week treatment. After 12 weeks of treatment, ROS production was induced higher in the AOM + AvrA group compared to the AOM group, and the highest in the AOM + S. typhimurium group (Figure 3). ROS production in the AOM + S. typhimurium group almost doubled at 12 weeks compared to 1-week treatment (Table 1).

Table 1: Percentage of ROS production in PBMC of 1-week and 12 weeks treatment groups

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Weeks</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Negative control</td>
<td>13.22 ± 8.52</td>
<td>4.86 ± 2.30</td>
</tr>
<tr>
<td>AOM</td>
<td>23.32 ± 1.87</td>
<td>3.51 ± 0.61</td>
</tr>
<tr>
<td>AOM+AvrA</td>
<td>21.19 ± 8.30</td>
<td>24.76 ± 4.71</td>
</tr>
<tr>
<td>AOM+S. typhimurium</td>
<td>23.12 ± 2.86</td>
<td>45.78 ± 2.93</td>
</tr>
<tr>
<td>p</td>
<td>0.003**</td>
<td>0.031**</td>
</tr>
</tbody>
</table>

Data were represented as Mean ± SEM. *Kruskal–Wallis test, **Independent t-test, ***Mann–Whitney test. Salmonella typhimurium: S. typhimurium, ROS: Radical oxygen species, AOM: Azoxymethane, PBMC: Peripheral blood mononuclear cell.
PTEN expression in the colon tissue of colorectal cancer model mouse

AOM significantly increases PTEN expression in both 1-week and 12 weeks of treatment. The administration of AvrA or Salmonella typhimurium attenuated PTEN expression compared to the AOM group in both treatment durations (Figure 4). The reduction of PTEN expression in the AOM + S. typhimurium group was lower than in the AOM + AvrA group. Compared to 1-week treatment, a longer duration of 12 weeks elevated PTEN expression on AOM + AvrA and AOM + S.typhi groups (Table 2). Nevertheless, the expression of PTEN in these two groups was still lower than the AOM group for the same treatment duration (Figure 5).

Table 2: PTEN expression of the colon tissue of colorectal cancer model mouse treated with AvrA

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Weeks 1</th>
<th>Weeks 12</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control</td>
<td>22.98 ± 8.57</td>
<td>26.75 ± 7.73</td>
<td>0.487**</td>
</tr>
<tr>
<td>AOM</td>
<td>85.52 ± 5.43</td>
<td>74.62 ± 8.78</td>
<td>0.046**</td>
</tr>
<tr>
<td>AOM + AvrA</td>
<td>52.42 ± 7.59</td>
<td>62.48 ± 4.03</td>
<td>0.031**</td>
</tr>
<tr>
<td>AOM + S. typhimurium</td>
<td>38.88 ± 2.54</td>
<td>49.53 ± 3.98</td>
<td>0.001**</td>
</tr>
<tr>
<td>p</td>
<td>0.000*</td>
<td>0.000*</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

Data were represented as Mean ± SEM. *One-way ANOVA test. **Independent t-test. Salmonella typhimurium: S. typhimurium, PTEN: Phosphatase and tensin homolog, AOM: Azoxymethane.

c-Myc expression in the colon tissue of colorectal cancer model mouse

AOM exposure increased c-Myc expression in AOM groups compared to negative controls at 1-week and 12 weeks of treatment (Table 3). c-Myc expression in the AOM + AvrA and AOM + S. typhimurium groups had increased compared to the AOM group in both treatment durations. After 1-week treatment, AvrA administration increased c-Myc expression higher than the S. typhimurium administration. But at 12 weeks' duration, the rise in c-Myc expression in both groups

Table 3: The expression of c-Myc of the colon of male mice treated AvrA S. typhimurium for 1 and 12 weeks

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Weeks 1</th>
<th>Weeks 12</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>35.12 ± 3.31</td>
<td>19.05 ± 4.41</td>
<td>0.000**</td>
</tr>
<tr>
<td>AOM</td>
<td>51.21 ± 11.41</td>
<td>50.59 ± 6.37</td>
<td>0.918**</td>
</tr>
<tr>
<td>AOM + AvrA</td>
<td>83.25 ± 4.08</td>
<td>75.67 ± 13.53</td>
<td>0.265**</td>
</tr>
<tr>
<td>AOM + S. typhimurium</td>
<td>70.35 ± 9.61</td>
<td>75.96 ± 6.32</td>
<td>0.307**</td>
</tr>
<tr>
<td>p</td>
<td>0.000*</td>
<td>0.000*</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

Data were represented as Mean ± SEM. *p < 0.05 versus control. **One-way ANOVA test. Independent t-test. Salmonella typhimurium: S. typhimurium, c-Myc: Cellular homolog, AOM: Azoxymethane.
was not significantly different. In the three treatment groups, the comparison of c-Myc expression between 1-week and 12 weeks duration showed no significant difference (Figure 7).

Discussion

Recently, growing evidence shows a correlation between Salmonella infection with the development of colon cancer [12], [13]. Inflammation is agreed on as a linking mechanism between Salmonella infection and colon cancer. However, further research identified Salmonella effector proteins which directly influence biological processes of the host [14], [15]. This study explored the effect of the Salmonella effector protein, AvrA, in inducing colon cancer in chronic and acute inflammation, using AOM-induced colorectal cancer models.

AOM is commonly used to induce colon cancer model [16]. In our study, exposure to AOM for 1 week increased ROS production in peripheral blood monocyte cells (PBMC). AOM undergoes metabolic activation into DNA-reactive products, which can alkylate macromolecules in the colon, and eventually induce DNA damage and micronucleus formation [17]. This event activates a cyclic GMP-AMP synthase – interferon gene stimulator response, which triggers transcription of inflammatory genes [18]. Immune response stimulates the production of chemokines and ROS. The immune response in the form of ROS production can be found in various peripheral mononuclear leukocytes, for example, activated monocytes [19], NK cells [20], T lymphocytes [21], and B lymphocytes [22].

The result showed that chronic exposure to AOM orally did not increase ROS production in PBMC compared with negative control, which might be attributed to adaptation of intracellular antioxidants and metabolic reprogramming [23]. Interestingly, the addition of AvrA to AOM exposure kept ROS production almost double the acute treatment. These results indicate that S. typhimurium and AOM increases ROS production almost double the acute treatment. Meanwhile, the combination of S. typhimurium and AOM increases ROS production high in both acute and chronic treatment. These results indicate that S. typhimurium could stimulate acute and chronic inflammation and AvrA was one of S. typhimurium components that trigger inflammation.

The role of AvrA in the process of infection and inflammation might be associated with the development of colon cancer in the mouse model. In this study, AvrA exposure provided an additional inflammatory burden, which was demonstrated by higher ROS production,
especially in chronic exposure. ROS produced by inflammatory cells is converted to secondary products O_2^- and NO_2^-, as oxidizing and nitrating agents that easily damage DNA and thus accelerate mutagenesis [24]. AvrA also activates STAT3 pathways which are promoting inflammation-associated colonic tumorigenesis [25]. Inflammation activates many pathways including the NF-kB pathway that synergize with Wnt signal activation which maintains stemness and activates cancer stem cells [26], [27].

The results suggested that AOM alone as well as in combination with AvrA or S. typhimurium, facilitated colorectal carcinogenesis, as observed in elevation of plasma CCA concentration after 2 weeks of the treatments. Compared to AOM exposure, AvrA exposure induced a higher concentration of CCA which supported the hypothesis that AvrA triggers colorectal carcinogenesis. However, AvrA's contribution to this process might act as the main effector protein of S. typhimurium which facilitates colorectal carcinogenesis. This notion was evidenced by the concentration of CCA in the AvrA and S. typhimurium treatments that were not significantly different.

PTEN (deleted on chromosome 10) is a negative regulator of cell growth and survival signaling pathways [28]. In this study, acute and chronic administration of AOM induced PTEN expression. AOM given by oral gavage might cause DNA damage, which, in turn, triggers increased PTEN expression as part of DNA-damage repair mechanism. In the nucleus, PTEN promotes the stability and transcriptional activity of the tumor suppressor p53 by directly associating with p53. PTEN is also found to collaborate with E2F to induce the expression of Rad51 and thus enhance DNA repair [29], [30]. PTEN also induces expression of multiple pro-apoptotic members of the Bcl2 family, stimulating expression of death receptor ligands, or by enhancing levels of various cyclin-dependent kinase inhibitors [28].

This study demonstrated that S. typhimurium and AvrA administration suppressed PTEN expression.
The mechanism of decreased PTEN expression in colorectal carcinogenesis can occur epigenetically, genetically, post-translational modification, or mislocalization. Genetic mutations and a decrease in the number of PTEN gene copies are less common [31], [32].

S. typhimurium exposure caused significant suppression of PTEN compared to AvrA, which showed that AvrA had a partial role in suppressing PTEN. This result may be explained by *S. typhimurium* as a whole organism that triggers more severe inflammation [33], and the presence of other proteins, such as typhoid toxin-cytolethal distending toxin, which also affects DNA damage and carcinogenesis [34].

The results of this study suggest possible mechanism of AvrA in apoptosis and cell cycle arrest, which is in addition to its acetyltransferase activity which deactivates p53 [35], AvrA might also inhibit those events through PTEN suppression. Depression of PTEN expression will increase the activation of the phosphoinositide 3-kinase/protein phosphatase 2A pathway which then activates β-catenin [36]. Besides, AvrA activates Wnt/β-catenin pathway in intestinal stem cells through β-catenin phosphorylation (increasing activation) and deubiquitination (decreasing degradation) [37], thereby supporting the effect of Salmonella on colorectal carcinogenesis.

c-Myc gene is a proto-oncogene which produces transcription factor. c-Myc protein can activate or suppress various target genes involved in cellular function, including cell cycle, survival, protein synthesis, and cell adhesion [38]. Overexpression of c-Myc was observed in 70–80% of colorectal cancers and was associated with low survival of CRC patients [39]. Increased c-Myc expression facilitates cancer characteristics development including uncontrolled proliferation, resistance to cell death, genomic instability, immune escape, angiogenesis, and metastasis [40].

The previous studies showed that exposure to AvrA-expressed Salmonella did not increase total c-Myc [41]. In contrast, our study demonstrated that exposure to isolates of AvrA protein increased c-Myc expression due to AvrA and *S. typhimurium* [33]. Meanwhile, in chronic exposure, increased c-Myc expression due to AvrA and *S. typhimurium* was comparable. This result indicates that AvrA plays a major role in increasing c-Myc expression in ST-induced colorectal carcinogenesis. The elevation of c-Myc might be related to AvrA’s ability to intensify β-catenin activation [37], [42].

Elevation of c-Myc expression in solid cancer occurs through various mechanisms such as gene amplification and chromosomal mutation [39], which may be related to oxidative stress and damage [43], [44]. Inflammation is another mechanism that can activate the c-Myc expression, through some inflammatory cytokine (Interleukin [IL]-6 and tumor necrosis factor-α) stimulation [45]. In turn, c-Myc may stimulate the pro-inflammatory signaling pathway and cytokines, including IL-6, IL-8, IL-1β, CCL2, and CCL20. These events provide a suitable niche for the transformation of stem cell phenotype into tumor progenitor [46]. c-Myc also contributes to maintaining self-renewal and chemoresistance properties of colon cancer stem cells [47].

Conclusion

AvrA protein effector played an important role in the inflammation – carcinogenesis sequence of colorectal. In acute and chronic Salmonella infection, AvrA had a partial role in suppressing PTEN expression and act as the main effector in regulating c-Myc overexpression, leading to colorectal carcinogenesis. Therefore, AvrA may be a new target for the prevention and treatment of Salmonella-associated colorectal cancer.

Acknowledgment

This research was supported by the Directorate General of Higher Education Ministry of Research Technology and Higher Education, Republic Indonesia through Doctoral Scholarship Program. The authors would like to express gratitude to the Faculty of Medicine Universitas Brawijaya and Faculty of Medicine Universitas Airlangga for the research support.

References

4. Lu R, Bosland M, Xia Y, Zhang YG, Kato I, Sun J. Presence of *Salmonella* AvrA in colorectal tumor and its precursor lesions in mouse intestine and...
PMid:28903406

PMid:10770276

PMid:28942248

PMid:20014951

PMid:24906621

PMid:24200851

PMid:20155455

PMid:15070766

PMid:15107766

PMid:21182782

PMid:19502780

PMid:23092307

PMid:28860276

PMid:27143992

PMid:29503744

PMid:30867238

PMid:31279085

PMid:10807397

PMid:27237322

PMid:31097693

PMid:25683168

PMid:30036596

PMid:31717544

https://oamjms.eu/index.php/mjms/index

PMid:17760501

Author Queries???

AQ3: Kindly cite figures 6 in the text part.