Seminar Nasional Fisika (SNF) 2018

To cite this article: 2019 J. Phys.: Conf. Ser. 1171 011001

View the article online for updates and enhancements.
At the beginning of 2019, we would like to present an international proceeding that contains the selected papers from the National Physics Seminar or Seminar Nasional Fisika (SNF 2018), entitled “Earthing Physics and Learning Physics in Building Global Wisdom” that was organized by the Physics Department of FMIPA Unesa - Surabaya on August 11, 2018.

This seminar is an annual important event to publish research results in physics and learning. We are hoping that the event will become a foothold of thinking in welcoming of global developments. In addition, publications packaged in this seminar is will further strengthening existence and reputation of the physics department as an educational institution that excels in scientific publication at national and international levels.

We hope the international proceeding will be able to encourage students, teachers, lecturers, practitioners, researchers, and higher education community in developing scientific research and publications to support the nation's independence.

We on behalf of the committee of the SNF 2018 would like to thank all parties for their participation in supporting this publication and we would like to invite the participants back to take a part in SNF 2019 which will be held by the Physics Department of FMIPA Unesa for this year.

Happy New Year
Thank you,

Dr. Eko Hariyono
Chairman
SNF 2018
Committee

Seminar Nasional Fisika (SNF) 2018
Universitas Negeri Surabaya, Surabaya, Indonesia
August 11, 2018

Person in charge : Dekan FMIPA Unesa
Prof. Dr. Madlazim, M.Si
Dr. ZA Imam Supardi, M.Si
Chairman : Dr. Eko Hariyono, M.Pd.
Vice Chairman : Utama Alan Deta, M.Pd., M.Si
Secretary : Mukhayyarotin Niswati R.J, M.Pd.
Treasurer : Nurita Apridiana Lestari, M.Pd.

Reviewer Team
1. Prof. Dr. Budi Jatmiko, M.Pd. 6. Drs. Rudy Kustijono, M.S.
2. Prof. Dr. Madlazim, M.Si. 7. Dr. Frida U. Ermawati, M.Sc.
3. Dr. Wasis, M.Si. 8. Dr. Titin Sunarti, M.Si.
4. Dr. Munasir, M.Si. 9. Nadi Suprapto, Ph.D.
5. Tjipto Prastowo, Ph.D.

Editorial Team
1. Dr. Eko Hariyono, M.Pd. 5. Mukhayyarotin Niswati R.J., M.Pd.
3. Endah Rahmawati, M.Si. 7. Setyo Admoko, M.Pd.
4. Nurita Apridiana L, M.Pd.

Event Organizer
1. Woro Setyarsih, S.Pd., M.Si. 3. Drs. Supardiyono, M.Si.
Registration and Secretarial

1. Meta Yantidewi, M.Si.
2. Endah Rahmawati, M.Si.
3. Setyo Admoko, M.Pd.
4. Ilynda Noviati, S.Pd.

Food Services

1. Dra. Hermin Budiningarti, M.Pd.

Publications and Documentation

1. Lydia Rochmawati, M.Si.
2. Abd. Kholiq, S.Pd., M.T.
3. Abu Zainuddin, S.Pd.

Sponsorship

1. Diah Hari Kusumawati, M.Si.
2. Drs. Dwikoranto, M.Pd.
3. Asnawi, M.Si

Logistics

1. Drs. Imam Sucahyo, M.Si.
2. Dzulkiflih, S.Si, M.T.
3. Afria Nur Hidayat
4. H. Chanaki, S.T.

Security

1. Supardi, S.T. (Koordinator)
2. Petugas parkir FMIPA
Table of contents

Volume 1171

2019

- Previous Issue
- Next Issue

Seminar Nasional Fisika (SNF) 2018 11 August 2018, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia

Accepted papers received: 07 January 2019
Published online: 10 March 2019

Open all abstracts

Preface

<table>
<thead>
<tr>
<th>Title</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN ACCESS Seminar Nasional Fisika (SNF) 2018</td>
<td>011001</td>
</tr>
<tr>
<td>OPEN ACCESS Committee</td>
<td>011002</td>
</tr>
<tr>
<td>OPEN ACCESS Sponsorship</td>
<td>011003</td>
</tr>
<tr>
<td>OPEN ACCESS Photographs</td>
<td>011004</td>
</tr>
<tr>
<td>OPEN ACCESS Peer review statement</td>
<td>011005</td>
</tr>
</tbody>
</table>

Papers

Keynote Speaker Papers

<table>
<thead>
<tr>
<th>Title</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN ACCESS Grounding physics and its learning for building global wisdom in the 21st century</td>
<td>012001</td>
</tr>
<tr>
<td>OPEN ACCESS A journey to Earth Science Projects at Physics Department, the State University of Surabaya: progress in recent years</td>
<td>012002</td>
</tr>
<tr>
<td>OPEN ACCESS Demographic sources as a local wisdom: Potency of Indonesian physics education researchers in conducting survey research</td>
<td>013003</td>
</tr>
</tbody>
</table>

Invited Speaker Paper

<table>
<thead>
<tr>
<th>Title</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN ACCESS Effectiveness of literacy learning model to improve skills of scientific literacy learning plan for physics teacher candidates</td>
<td>013004</td>
</tr>
</tbody>
</table>
Parallel Papers

OPEN ACCESS
Improving science process skills learning ability of physics teacher candidates through the implementation of CCDSR learning model
I Umartu, S Sobyta, Waik, B K Prabani and An

OPEN ACCESS
Improving science process skills of junior high school students through the implementation of collaborative creativity learning (CCL) model in physics learning
S Artull, M A Mohd Diani, Suhayrah and B K Prabaw

OPEN ACCESS
The use of gravity anomaly data to estimate the depth of mohorovicic discontinuity in Bali area used power spectral analysis
Ramadna Pradi, Nurita Fatmazi and nur Hafinah Ihraman

OPEN ACCESS
The relationship between students' views and performance of solving physics problems
Jaisu, H Hamidi and S Munsid

OPEN ACCESS
Decay orbital period of the binary system on gravitational waves' detection
P Y D'Silva, A Suryo and F F Zen

OPEN ACCESS
The effect of flipped classroom and project based learning model on student's critical thinking ability
V S Andries, H Pratama and T W Maksum

OPEN ACCESS
Synthesis and characterization of swelling properties superabsorbent Hydrogel Carbamoylhexylcellulose-g-Poly Acrylic Acid/Nitrile Alginates cross-linked by gamma-ray irradiation technique
P A Potho, A S Sulaiman and EBD

OPEN ACCESS
The effect of optimization learning resource based on Planning, Organizing, Actuating, Controlling (POAC) on contextual learning to students' conceptual understanding of motion and force material
T W Miftuverno and E Idris

OPEN ACCESS
The influence of PBL-STEM on students' problem-solving skills in the topic of optical instruments
Ramzi, L Yuliati and B O A Naim

OPEN ACCESS
Van der Waals interaction of ground state energy on ion molecular H2+ T Pranawanto, S H Pratomo, E Suprapto, Z K Kato, Sulisti, S Sheiri and N Karm

OPEN ACCESS
The prototype of infant incubator monitoring system based on the internet of things using NodeMCU ESP8266
Firmanpo, A Wahidah, A D Komadran, M S Mutha, P D Saputra and M A Lestari

OPEN ACCESS
A refractive index in best fibre optics and curved space
M Rafidah Hadi, Andrei Hussian and Ulama Alian Dita

OPEN ACCESS
Development of the Physics Module Containing Quranic Verses To Train The Local Wisdom Character
M Mustang, M. Mckran, A. Yaka and S. Mkaat
+ Open abstract View article PDF

OPEN ACCESS
Developing the interactive multimedia in physics learning
Zainudin, A R Naqork, M A Salam, Mkaat and S Mkaat
+ Open abstract View article PDF

OPEN ACCESS
The effectiveness of implementation cooperative learning model oriented life skills for the 21st century to improve writing science skills in physics concepts
A R Olga and Mansar
+ Open abstract View article PDF

OPEN ACCESS
Developing of physics teaching material based on scientific literacy
S. Hamid, R. Latifah, M. A. Salam and Mkaat
+ Open abstract View article PDF

OPEN ACCESS
3-dimensional external electric field effect (Stark effect) on the ground state energy of Tritium atom
I. Mohd, A. Harun, S. Salim and Z. R. Rabi
+ Open abstract View article PDF

OPEN ACCESS
Intrinsic thin film properties study of hydrogenated silicon using the method of RF-PECVD
Y. Carina, M. Zainun, S. Haris and Z. Deyanto
+ Open abstract View article PDF

OPEN ACCESS
The use of android-based teaching materials in physics learning process at vocational high school
S. Hamid, A. Harun, and Y. Wijaya
+ Open abstract View article PDF

OPEN ACCESS
The effectiveness of scientific approach through the website in physics learning process at vocational high school
E. Wijaya, R Kurniawan and S R. Hamid
+ Open abstract View article PDF

OPEN ACCESS
The effectiveness of android-based physics interactive media to train students' thinking and process skills
R. Kurniawan, E. Wijaya and S. R. Hamid
+ Open abstract View article PDF

OPEN ACCESS
The effectiveness of Problem Based Learning - physics module with authentic assessment for enhancing senior high school students' physics problem solving ability and critical thinking ability
Y H. Suenda, N Y. Sofiani, T P. A. Kurniawan and K. Kanta
+ Open abstract View article PDF

OPEN ACCESS
Identification of High school students' problem-solving skills on rotational dynamics
H. Mulyayatno, Sutopo and A Turqi
+ Open abstract View article PDF
Effect of calcination temperature on characteristics of reduced Graphene Oxide (rGO) made from sludged coconut shell
doi:10.2041

Synthesis of graphene/polyaniline nanocomposite for supercapacitors electrodes
doi:10.2043

Pharmacoekinetics simulation of Metformin in type 2 Diabetes Mellitus
doi:10.2044

Analysis of student's conceptual understanding on work and energy of online hybrid learning
doi:10.2045

Cycle stability of activated carbon/PANI composite as supercapacitor electrode based on natural material
doi:10.2046

Practicality of Performance Assessment Instruments in Measurement Topic 10th Grade Secondary School
doi:10.2047

Synthesis and Characterization of Fe3O4/SiO2 Composite with Wet-Mixing (ex-situ) Process
doi:10.2048

Reinforcing Scientific Skills based on Laboratory for Pre-Service Physics Teacher by Measurement System Understanding
doi:10.2049

Synthesis and characterization of Fe3O4/SiO2 composite with in-situ method: TEOS as SiO2 NPs precursor
doi:10.2050

How the Predict-Observable-Explain (POE) learning strategy remedies students' misconception on Temperature and Heat materials?
doi:10.2051

Analysis of physics teacher competence in post-SM-3T teacher education program
doi:10.2052

The implementation of integrated remediation with conceptual interactive learning on momentum and impulse in junior high school
doi:10.2053
Analysis of physics teacher competence in post-SM-3T teacher education program

To cite this article: Suliyanah et al 2019 J. Phys.: Conf. Ser. 1171 012052

View the article online for updates and enhancements.
Analysis of physics teacher competence in post-SM-3T teacher education program

Suliyanah¹,a, S Admoko¹, B K Prahani¹, Yusrizal², S Astutik³, and R Pangastuti⁴

¹Department of Physics, Faculty of Mathematics and Natural Science Universitas Negeri Surabaya, Indonesia
²Department of Physics, Faculty of Training and Teacher Education, University of Syiah Kuala, Indonesia
³Department of Physics Education, Faculty of Training and Teacher Education, University of Jember, Indonesia
⁴Department of Islamic Primary Teacher Education, Faculty of Tarbiyah and Teacher Education, UIN Sunan Ampel Surabaya, Indonesia

E-mail: sugiyah@unesa.ac.id

Abstract. This study aims to analyze the competence of physics teachers in teacher education programs (i.e. PPG) post-SM-3T. The data of physics teacher competence is measured by using the Physics Teacher Competence Test Instrument (PTCTI). The subjects of this study were students of Teacher Education Program Post-SM-3T in 2018. The data analysis used the qualitative descriptive method. The results of this study indicate that (1) The average of physics teacher competence is 38.89 (Low); (2) The competence of professionalism is the difficulty of physics teachers to interpret problem-solving that requires multi-representation and high-order thinking skills; and (3) The pedagogic competence, especially in designing and implementing physics lesson is still low. The implication of this research is the need to increase the competence of physics teachers through innovative learning that has been declared qualified (valid, practical, and effective).

1. Introduction

Competence becomes the main requirement of teachers to be able to perform tasks professionally to achieve the goals of the curriculum and ideals of the Indonesian nation. According to Law Number 14 the Year 2005 on Teachers and Lecturers, competence is a set of knowledge, skills, and behaviors that must be possessed, experienced, and mastered by teachers or lecturers in performing professional duties. Teachers are the most important factor for learners especially during the learning process [1]. Teachers are the determinants of what is taught in the classroom and how to teach it [2]. The quality of education in schools is determined and accounted for by teachers [3]. The quality of teachers will have a direct impact on student’s competence [4-5]. This is reinforced by opinions [6] that the nature of competence is the mental and physical force to perform the learned tasks or skills through practice and practice. According to Mulyasa, the competence of teachers is a combination of personal, scientific, technological, social, and spiritual capabilities that form the competence of teacher professional standards, which include mastery of materials, understanding the learners, educational learning, personal development and professionalism [7]. Teacher competence based on Law Number 14 the Year 2005 which furthermore regulated in Government Regulation Number 19 the Year 2005 is that
teacher must have pedagogic, personality, social and professional competence. Teacher’s competence becomes the main part that must be owned by a teacher to maximally carry out their duty to educate the life of Indonesian nation through education. Based on the literature review conducted by the researchers, it was decided that the focus of this research is on physics teacher competence in terms of pedagogic and professional competence.

According to [8], there is an academic qualification and pedagogic competence (formulated in Permendiknas Number 16 Year 2007 regarding Academic Qualification Standards and Teacher Competencies) that pedagogic competence consists of: (1) Mastering the characteristics of learners from the physical, moral, spiritual, social, cultural, emotional, and intellectual, (2) Mastering learning theories and principles of educational learning, (3) Developing curriculum that is related to subjects, (4) Organizing educational learning, (5) Utilizing information and communication technology for the sake of learning, (6) Facilitating the development of potential learners to actualize various potentials, (7) Communicating effectively, empathically and courteously with learners. Pedagogic competence includes not only planning, implementing and assessing the learning but also mastering the science of education (formulated in PP RI No. 19 the Year 2005). Educational science is needed because the teacher must know the insights about the existing education so that the teacher can prepare an effective and efficient strategy that should be used. Pedagogic competence is the ability in the management of learners which includes (a) understanding the knowledge or educational base, (b) understanding the learners, (c) curriculum or syllabus development, (d) learning design, (e) implementation of educational and dialogical learning, (f) evaluation of learning outcomes, and (g) development of learners to actualize their potentials [6]. Understanding the insights or educational platform is a pedagogic competence that must be had by teachers because teachers must understand the concept of education. Teachers have a scientific education background so that they have academic and intellectual expertise in their respective fields. Teachers must have a function and role in educational institutions and the national education system in the hope that they can innovate education in Indonesia. Learning system in education is based on subjects so that teachers must have a suitability between the background of science with their expertise subjects, in addition, teachers have knowledge and experience in the implementation of learning in class so that they can adjust themselves to face the learners [9].

According to the National Education Standards Agency (2006) in the book of Teacher Competence Improvement Through Training and Learning Resources Theory and Practice [6], professional competence is The ability of mastering the learning materials widely and deeply include; (a) the concepts, structures, and methods of science / technology / art that are coherent / coherent with teaching materials; (b) teaching materials that are presented in the school curriculum; (c) conceptual relationships among related subjects; (d) application of the science in everyday life concept; and (e) professional competence in a global context while maintaining national cultural values. Professional competence can only be done by people who have a profession so that the professional teacher is a teacher who mastered the learning materials to be transferred to learners to meet the established competency standards [9]. A professional physics teacher is a teacher who has a broad mastery of physics and learning materials. The above description shows how important the competence of physics teachers to prepare golden Indonesia in 2045. Therefore, research and innovation are needed to improve the competence of physics teachers in Indonesia.

The above expectation contradicts the preliminary study results in Teacher Education Program Surabaya State University that were conducted by researchers in 2017-2018 which stated that many physics teachers competence is still relatively low. Candidates for physics teachers also need to know pedagogic content knowledge even though they have not yet taught about it because pedagogic content knowledge will not appear when someone becomes a teacher [10-12]. These results are the problem that must be solved in order to maintain the quality of education in Indonesia. The alternative that has been prepared by the government of the Republic of Indonesia is with the Post SM-3T Teacher Education Program. SM3T is an Indonesian government program to optimize the fresh graduate process to educate in the foremost, outermost and underdeveloped areas. In the SM3T, the physics teacher education graduates will feel the inland areas, with illiterate public life and inadequate educational facilities. The physics teacher education graduates will teach students in remote areas with
less developed societies’ education, especially in Indonesia. Physics education teacher graduates will be selected and dispatched to these areas to serve one year of service. All costs are borne by the government as a whole. The physics teacher education graduates who have already performed 1-year service in the foremost, outermost and underdeveloped areas, will get the opportunity to follow Teacher Education Program (i.e. PPG) for 1 year with the borne cost by the government, starting from tuition, monthly, dormitory, and health. Not only that, scholars will also get educational guidance from professional education experts. To prepare the post SM3T Teacher Education Program that is held by Surabaya State University to run effectively, it is required the initial data through preliminary study to see physics teachers competence before following the Post SM3T Teacher Education Program at Surabaya State University. Therefore, the focus of this study aims to analyze the competence of physics teachers in post SM3T teacher education programs. The results of the study are expected to provide fundamental implications and benefits on improving process quality and learning outcomes in Post SM3T Teacher Education Program at Surabaya State University.

2. Experimental Method
2.1 General Background of Research
This research is a pre-experiment research. The main objective of this research is to analyze the physics teacher's competence in Post SM3T Teacher Education Program of Surabaya State University (Indonesia) in 2018.

2.2 Sample of Research
The subject of this research was students of Post SM3T Teacher Education Program of Surabaya State University (Surabaya, Indonesia). The used technique to determine the sample of this research was purposive sampling. This to facilitate the research process that had limited time. The selected students of Post SM3T Teacher Education Program were 18 physics teacher of the 6th grade physics education year 2018.

2.3 Instrument and Procedures
The physics teacher's competence data was measured by using the Physics Teacher Competence Test Instrument (PTCTI). This instrument has been declared valid and reliable by the drafting team. The research procedures include: (1) At the beginning of the meeting at the Post SM3T Teacher Education Program of Surabaya State University, the physics teachers were given the Physics Teacher Competence Test Instrument (PTCTI). (2) The time to complete PTCTI is 100 minutes. (3) Then a brief interview is conducted to find out the initial profile of the physics teacher competence. (4) The answers of the PTCTI results were analyzed by the researchers. (5) Creating a report. Some examples of PTCTI items are presented in Appendix.

2.4 Data Analysis
The physics teacher competence data was analyzed by using qualitative descriptive. This qualitative descriptive result will be used as a report and evaluation material in teaching and learning process of Post SM3T Teacher Education Program Post of Surabaya State University (Indonesia) in 2018, especially the 6th grade of physics teacher year 2018.

3. Result and Discussion
The results are presented in Table 1 which will be described as follows.

Table 1. Score of physics teacher competence.

<table>
<thead>
<tr>
<th>Initial Physics Teacher</th>
<th>Number of Correct Answers (50 Questions)</th>
<th>The Score of Physics Teacher Competence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>23</td>
<td>46.00</td>
</tr>
<tr>
<td>T2</td>
<td>27</td>
<td>54.00</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Initial Physics Teacher</th>
<th>Number of Correct Answers (50 Questions)</th>
<th>The Score of Physics Teacher Competence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>18</td>
<td>36.00</td>
</tr>
<tr>
<td>T4</td>
<td>33</td>
<td>66.00</td>
</tr>
<tr>
<td>T5</td>
<td>17</td>
<td>34.00</td>
</tr>
<tr>
<td>T6</td>
<td>14</td>
<td>28.00</td>
</tr>
<tr>
<td>T7</td>
<td>20</td>
<td>40.00</td>
</tr>
<tr>
<td>T8</td>
<td>13</td>
<td>26.00</td>
</tr>
<tr>
<td>T9</td>
<td>20</td>
<td>40.00</td>
</tr>
<tr>
<td>T10</td>
<td>18</td>
<td>36.00</td>
</tr>
<tr>
<td>T11</td>
<td>15</td>
<td>30.00</td>
</tr>
<tr>
<td>T12</td>
<td>9</td>
<td>18.00</td>
</tr>
<tr>
<td>T13</td>
<td>31</td>
<td>62.00</td>
</tr>
<tr>
<td>T14</td>
<td>18</td>
<td>36.00</td>
</tr>
<tr>
<td>T15</td>
<td>18</td>
<td>36.00</td>
</tr>
<tr>
<td>T16</td>
<td>14</td>
<td>28.00</td>
</tr>
<tr>
<td>T17</td>
<td>24</td>
<td>48.00</td>
</tr>
<tr>
<td>T18</td>
<td>27</td>
<td>54.00</td>
</tr>
<tr>
<td>Average</td>
<td>39.89</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 shows that out of 18 physics teachers who have competency score above 50 are only 3 people (T4, T13, and T18). 15 physics teachers have only a competency score below 50. This indicates the low competence of physics teachers after the SM3T program. This finding is used as a foundation for learning during PPG at Surabaya State University. Many aspects still need to be improved to produce qualified physics teachers. Some of the findings from the Physics Teacher Competence Test Instrument (PTCTI) will be described below.

Example 1.
Look at the following electrically wired loop image!

The strength of electric current on both loops equals to \(I\), the radius of the small circle is \(r\) and the large circle is \(2r\). The magnitude and direction of the magnetic induction at the center point of the circle segment in the left and right images are ____.

- **A.** \(\frac{3\mu_o I}{8r}\) the direction goes into the image area and \(\frac{\mu_o I}{8r}\) the direction goes out of the image area
- **B.** \(\frac{\mu_o I}{8r}\) the direction goes into the image area and \(\frac{3\mu_o I}{8r}\) the direction goes out of the image area (Answer)
- **C.** \(\frac{3\mu_o I}{4r}\) the direction goes into the image area and \(\frac{\mu_o I}{4r}\) the direction goes out of the image area
Example 2.
An object of mass m moves horizontally on the floor with a coefficient of friction μ then pounding the spring until the spring is suppressed maximally as far as x, if the spring elasticity constant is k while the acceleration of gravity is g. Then the magnitude of the velocity of the object just when it will spike the spring is ____.

A. $\sqrt{x \left(2\mu g + \frac{kx}{m}\right)}$
B. $\sqrt{x \left(2\mu g + \frac{kx}{m}\right)^{1/2}}$ (Answer)
C. $x \left(\mu g + \frac{kx}{m}\right)^{1/2}$
D. $x^{2} \left(2\mu g + \frac{kx}{m}\right)^{1/2}$

Based on the problems in Example 1 and Example 2 above, physics teachers still have many errors. The findings indicate that physics teachers find it difficult to solve problems that require high-level reasoning. Some previous researchers indicate that students' understanding of physics concepts remains low (e.g. Newtonian mechanics [13-16], electric circuit [17]).

Example 3.
Here is presented the material topics/sub material topics in physics

a. Magnitude and Unit
b. Acceleration for a moment
c. Average acceleration
d. Vector and scalar quantities
e. Movement
f. Average speed
g. Distance
h. Immediate velocity

The order/hierarchy of the most appropriate material presentation to achieve Basic Competence "Analyzing physical quantities on a straight motion with constant velocity and straight motion with constant acceleration" is ____.

A. 1, 5, 7, 6, 8, 3
B. 4, 5, 6, 7, 3, 2
C. 1, 5, 7, 6, 8, 3
D. 5, 7, 6, 8, 3, 2

Example 4.
A suitable indicator formulation of Basic Competency 'describes the circuit and working principle of the electrical appliances in the direction of DC and the alternating current (AC) in everyday life is ____.

A. Analyze direct current electric circuits based on graph
B. Formulate replacement resistance equations in series and parallel circuits
C. Compare large voltages between series and parallel circuits
D. Explain the voltage characteristics, electric current strength, and resistance in series and parallel circuit (Answer)

Example 5.
Mr. Tono undertook the core activities of learning as follows: 1) showing a video setting the angle of fire to adjust the height of shoot targets on sports firing, 2) asking questions about video content, 3) forming small heterogeneous groups, submitting group assignments to find track equations and
distance, 4) conveying a number of keywords as an alternative to answer questions, 5) being a facilitator and motivator when learners perform group work, 6) giving opportunities to group representatives to deliver their group work and 7) engaging learners to make a conclusion. Mr. Tono is applying the learning model of ____.

A. Discovery Learning (Answer)
B. Problem Based Learning
C. Cooperative Learning
D. Problem Solving

Based on the questions in Example 3, Examples 4 and Example 5 above, physics teachers still have many errors. The findings show that physics teachers have difficulties in designing and implementing physics lessons. The results of other studies indicate that the evaluation of the trend of dependent learning model to improve physics problem solving and self

tests of this study provide major implications for ____,

practitioners' scientific ____, prove the competence of physics teacher that has been ____,

-____,

-____.

The results of this study indicate that the need to improve the competence of novice physics teachers through learning, teaching, and innovative learning media to improve the competence of physics teachers, among others: (1) Problem-based hybrid learning model in physics teaching to enhance critical thinking [19]; (2) Multi representation based on scientific investigation for enhancing students' representation skills [20-21]; (3) Critical inquiry based learning model to promote critical thinking ability of pre-service teachers [22-23]; (4) C3PDR teaching model to improve students' scientific creativity [24]; (5) Physics independent learning model to improve physics problem solving and self-directed learning skills [25]; (6) INQF-based learning on a general physics for improving student’s learning outcomes [26]; and (7) Innovative learning models based on inquiry to improve process performance and high-level skills [27-29]. The above innovations need to be implemented to increase the importance of the competence of qualified physics teachers to prepare golden Indonesia in 2045.

4. Conclusion
The results of this study indicate that (1) The average competence of novice physics teachers is 38.89 (Low); (2) Competence of professionalism is the difficulty of novice physics teachers to interpret problem-solving that requires multi-representation and high-order thinking skills; and (3) pedagogic competence, especially in designing and implementing physics lesson is still low. The implications of this research are the need to improve the competence of novice physics teachers through learning, teaching, and innovative learning media to improve the competence of physics teacher that has been declared qualified (valid, practical, and effective).

5. References
Appendix

PHYSICS TEACHER COMPETENCE TEST INSTRUMENT

Hint:
Choose the correct answer by crossing [X] on the answer sheet provided!

1. The time-velocity graph (v–t graph) of an object is given by the image next to this. The description of the object’s motion from \(t = 5 \text{ s} \) to \(t = 15 \text{ s} \) are _____.
 A. The object is always accelerated
 B. The object is always slowed
 C. The objects are slowed until stop and then reversed and accelerated
 D. The object is accelerated until stop then reversed and slowed

2. Look at the picture on the side. The three spherical trajectories have the same maximum height \(h \). The longest ball trajectory form in the air is _____.
 A. (a)
 B. (b)
 C. (c)
 D. (a) = (b) = (c)

3. Spring 1 has a spring constant \(k \). The spring constant of spring 2 is unknown. The parallel arrangement of these two springs is hung and loaded with a mass of \(m \). The load is pulled down then released so that the oscillation motion occurs with the period \(T_p = 2\pi \sqrt{\frac{2m}{3k}} \). Spring 2 is hung by load \(m \) then withdrawn and released until it oscillates. The ratio of the oscillating period of the parallel spring arrangement to the oscillation period of spring 2 is _____.
 A. \(1:\sqrt[3]{3} \)
 B. \(\sqrt[3]{3}:1 \)
 C. \(2:\sqrt[3]{3} \)
 D. \(\sqrt[3]{3}:2 \)

4. A person at the top of the building throws three identical balls of the same initial speed but in different directions as shown by the picture on the side. The swipes of the ball with air can be ignored. The truest statement about the speed of the ball when it hits the ground is _____.
 A. \(v_2 > v_1 > v_3 \)
 B. \(v_3 > v_1 > v_2 \)
 C. \(v_2 = v_1 = v_3 \)
 D. \(v_1 < v_2 > v_3 \)

5. The picture shows a pipe-shaped wheel with radius (the mass is centered on a pipe) and a disc of the same mass and radius.

When the two wheels rotate at the same angular velocity, the kinetic energy of the wheel’s rotation is _____.
 A. Both of them have the same kinetic rotational energy
 B. The pipe wheel has twice kinetic rotational energy of the disc wheel’s
 C. The disc wheel has twice kinetic rotational energy of the pipe wheel’s
 D. The disc wheel has a larger kinetic rotational energy but is not twice of the pipe wheel’s
6. An ideal fluid flows through a pipe whose cross-sectional diameters vary. The height of the pipe position is also varied. The true statements is _____.
 A. The pressure decreases as the diameter and height of the pipe decreases
 B. The pressure increases as the diameter and height of the pipe increase
 C. The pressure decreases as the diameter decreases and the height of the pipe increases
 D. The pressure increases as the diameter decreases and the height of the pipe increases

7. Look at the picture below!

 ![Diagram of pressure vessels with different atmospheres](image)

 The correct statement about the nature of the gas in this same volume vessel is _____.
 A. If the temperature is the same, then the large pressure vessel has the smallest number of gas molecules
 B. If the temperature is the same, then in a large pressure vessel the molecule moves faster
 C. If the number of molecules is the same, the gas in the low-pressure vessel moves its molecules more rapidly
 D. If the number of molecules is the same, the gas in a large pressure vessel has a higher temperature

8. The Superposition of two waves runs on the rope and produce the resultant wave. Which of the following statements is WRONG about the resultant wave?
 A. It is a silent wave.
 B. It has an amplitude of 2A.
 C. It has a wavelength of \(2\pi/k\).
 D. The points on the rope vibrate harmoniously with the amplitude of \(2A \sin kx\).

9. The following figure shows three resistors that are connected in an electrical circuit with a battery. Which is the order of electrical energy magnitude that is dissipated by any true resistors?
 A. \(E_{200\Omega} > E_{300\Omega} > E_{100\Omega}\)
 B. \(E_{300\Omega} > E_{200\Omega} > E_{100\Omega}\)
 C. \(E_{100\Omega} > E_{200\Omega} > E_{300\Omega}\)
 D. \(E_{100\Omega} > E_{300\Omega} > E_{200\Omega}\)

10. In a photoelectric experiment, no electrons are released if the light energy that hit the metal is less than Ah with h is Planck’s constant. A is _____.
 A. The maximum frequency that is required to release electrons that have the smallest kinetic energy
 B. The minimum frequency that is required to release electrons that have the greatest kinetic energy
 C. The maximum frequency that is required to release electrons that have the greatest kinetic energy
 D. The minimum frequency that is required to release electrons that have the smallest kinetic energy

11. If the wavelength that carries the largest radiation energy is longer, then the temperature of the black body _____.
 A. Will be larger at the whole wavelength value
 B. Will be smaller at the whole wavelength value
 C. Will be larger at the high wavelength and smaller at low wavelengths
 D. will be larger at the low wavelength and smaller at high wavelength

12. A radioactive element has a half-life of 20 days. The amount of the radioactive substance that has not decayed after 60 days is _____.
 A. 1/2 part
 B. 1/4 part
 C. 1/8 part
 D. 1/12 part

13. A set of plans and arrangements about objectives, content, and learning materials and the means used as guidelines for the implementation of learning activities to achieve specific educational objectives, is _____.
 A. Syllabus
 B. Learning plans and programs
 C. Outline of learning program
 D. Curriculum
14. A learner always wants to dominate in a learning group. He does not give any other members the opportunity to express an opinion. If another friend leads and controls the course of the discussion, he breaks apart and tends to learn on his own. This learner is experiencing problems in the development of _____.
 A. Social-emotional
 B. Cognitive
 C. Moral
 D. Spiritual

15. An approach that views that students build knowledge through the process of social interaction that is implemented in learning become active and fun learning is _____.
 A. Cooperative learning
 B. Learning observation
 C. Constructivism
 D. Inquiry learning

16. The following lesson activities are presented in KD "Analyzing the relationship between force, mass, and movement of objects on a straight motion":
 a. Drawing gravity, normal force, and rope tension force in the discussion of straightforward motion problems without friction
 b. Discuss the influence of an object’s mass and its force on the speed of motion
 c. Asking the relationship between force, mass, and movement of objects in a straight motion
 d. The object is withdrawn or pushed to produce motion
 e. Calculate the acceleration of objects in the system that is located on the incline, the plane, and the pulley system in the class discussion.
 The sequence of learning activities that are included in the act of observing, questioning, gathering information, associating, and communicating respectively is _____.
 A. 4, 3, 1, 2, 5
 B. 1, 3, 2, 5, 1
 C. 4, 3, 2, 5, 1
 D. 1, 3, 4, 5, 2

17. A Physics teacher will teach learners to KD. ‘Analyzing the relationship between force, mass, and movement of objects in a straight motion’. The required prerequisite of knowledge is _____.
 A. Knowledge of displacement and distance concept
 B. Knowledge of vector and scalar quantities
 C. Knowledge of mass and acceleration concept
 D. Knowledge of speed and velocity concept

18. Doing item analysis on a subject to know its consistency to measure student’s ability is by doing analysis about _____.
 A. Qualitative and analysis
 B. The Form and type of questions
 C. The differentiating power of the item
 D. The question’s reliability level

19. From the following PTK (classroom action research) problem formulation, which is the best formulation of PTK problem?
 A. Does the influence of role-playing can improve the activity of students in class XI of SMAN18 Surabaya?
 B. How to improve students’ ability in analyzing experimental data in Physics lesson of Class XI IPA 2?
 C. Why do students of SMAN 18 Surabaya always become champions in various national competitions?
 D. How to use props that come from the school environment?

20. The design model of PTK lies in the flow of performed action. It is also a marker or a special feature that distinguishes PTK with other types of research. The flow of action research here is _____.
 A. Observation -> reflection -> planning -> implementation of action
 B. Reflection -> planning -> implementation of action -> observation
 C. Planning -> observation -> action execution -> reflection
 D. Planning -> action implementation -> observation -> reflection