International Journal of Emerging Trends in Engineering Research

(IJETER)

ISSN (ONLINE): 2347 - 3983

Frequency
12 issues per year (January, February, March, April, May, June, July, August, September, October, November, December)

Publication Charges
Indian Authors: Rs.1500 Foreign Authors: USD 50

Published by
The World Academy of Research in Science and Engineering

Welcome to IJETER

(A Journal for Smooth, Simple and Timely publishing of Review and Research Articles - Crossref Index (DOI))

An Open Access Journal, where articles shall be viewed by all
International Journal of Emerging Trends in Engineering Research

(IJETER)

ISSN (ONLINE): 2347-3983

Frequency

12 issues per year (January, February, March, April, May, June, July, August, September, October, November, December)

Publication Charges

Indian Authors: Rs.1500
Foreign Authors: USD 50

Published by

The World Academy of Research in Science and Engineering

EDITORIAL BOARD

Editor in Chief
Dr. Weiqi Wang
Stanford University,
California, USA

Editorial Board Members
Dr. Amine Abdelmalek
Department of Mathematics and Computer Science
Faculty of Science and Technology
Taher Moulay University of Saida
Algeria
Dr. Priti Srinivas Sajja
PG Department of Computer Science
Sardar Patel University
Vallabh Vidyaganar 388 120
Gujarat, India

Prof. Bruno SOVIAC
Jean Monnet University, Telecom'St- Etienne
France

Dr. Abdel-Badeeh M. Salem
Professor of Computer Science
Head of Medical Informatics and Knowledge Engineering Research Unit,
Faculty of Computer and Information Sciences
Ain Shams University
Abbasia, Cairo-Egypt

Dr. Ana Azevedo
ISCAP/IPP, Portugal

Dr. Mokhtar Beldjehem
The School of Information Technology and Engineering(SITE)
University of Ottawa, Ottawa
ON, Canada
mbeldjeh@uOttawa.ca

Dr. Mohamed BEN AHMED
Professor of Networks and Telecommunications
Faculty of Science and Technology of Tangier
Abdelmalek Essaadi University
Morocco

Dr. Muhammed Miah
Tennessee State University, USA
miah@sunet.edu

Prof. (Dr.) Rajender Singh Chhillar
Maharshi Dayanand University, Haryana, India

Dr. B. Padmaja Rani
Jawaharlal Nehru Technological University, Hyderabad, India

Dr. Masoud Mohammadian
Associate Professor Information Systems
University of Canberra
Australia

Prof. Patricia Ordonez de Pablos
Dr. Satyadhyan Chickerur
B V Bhoomaraddi College of Engineering and Technology, Karnataka, India

Dr. Ioana Tuugalei Chan Mow
National University of Samoa, Apia, Samoa

Prof. SEDDIK BRI
Moulay Ismail University - Meknes, Morocco

Dr. D. S. R. Murthy
SreeNidhi Institute of Science and Technology, India

Dr Lim Sin Liang
Faculty of Engineering, Multimedia University
Jalan Multimedia, 63100 Cyberjaya Selangor
Malaysia
lim.sin.liang@mmu.edu.my

Dr. Asoke Nath
Associate Professor
Department of Computer Science
St. Xavier’s College(Autonomous)
30 Park Street
Kolkata-700016
India
<table>
<thead>
<tr>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. A Survey on Data Mining Techniques for COVID Prediction</td>
<td>Jayshree Pawar Ujita Thakar</td>
</tr>
<tr>
<td>7. A Novel Kernelized Fuzzy Clustering Algorithm for Data Classification</td>
<td>Neha Mehta</td>
</tr>
<tr>
<td>8. Modelling and Performance Analysis of a DSTATCOM using ISCT Control Technique</td>
<td>PINENKTI AJAY KUMAR PORIPRED DI VINUTHA PAKALAPATI NAVYA RAGHUPATRUNI CHAITANYA SAI KAMPARA RAVISANKAR</td>
</tr>
<tr>
<td>10. A Survey on Trending Topics of Microservices</td>
<td>Garvit Jain Ujita Thakar Vandana Tevari Sudarshan Varma</td>
</tr>
<tr>
<td>11. A Review of Skin Disease Classification Techniques based on Machine Learning</td>
<td>Gunjan Rathore Vandana Tevari</td>
</tr>
<tr>
<td>13. Indian Currency Detection Using KNN Classifier</td>
<td>Anusha K Sreedharamurthy S.K</td>
</tr>
<tr>
<td>14. Study and Assessment of Propulsion Systems of Three-Wheeled Electric Powered Rickshaw in India</td>
<td>Mohammad Waseem Mumtaz Ahmad Aasiya Parveen</td>
</tr>
<tr>
<td>15. Overview on Image Captioning Techniques</td>
<td>Urja Bahety Surendra Gupta</td>
</tr>
<tr>
<td>18. Design and Simulation of Seven Level Cascaded H Bridge Inverter for Medium Power Applications</td>
<td>K. NAGAMANI VEMPADAPU RAMUNAIDU MANYAPURI MAHESWARARAO THOTA DIVYEJASWIPADALA PRAVEEN KUMAR</td>
</tr>
</tbody>
</table>
Performance and Emissions of Mixed Ethanol-Biodiesel
Calophyllum Inophyllum Fueled Diesel Engine

Rima Zidni Karimatan Nisa1, Nasril Iluminafik2, Salahuddin Junus3
1,3Department of Mechanical Engineering, Jember University, Indonesia

ABSTRACT
This article evaluated the use of biodiesel from the Nyamplung seed oil (calophyllum inophyllum) and ethanol for petrodiesel mixture without modifying the diesel engine test instrument. The three tests were applied to each load on the test machine from 0 to 800 W with increments of 200 W at a constant engine speed of 2400 rpm. In this study, the percentage of biodiesel was 30%, while the ethanol was 10% and 20%, respectively. The percentage of petrodiesel decreased with the percentage of ethanol. From the analysis result of engine performance characteristics and exhaust emissions, it can be concluded that the addition of 20% ethanol and 30% biodiesel indicated the best engine performance characteristics with decreasing specific energy consumption up to 4.19% and the enhancement of effective thermal efficiency up to 1.60%. Furthermore, preferable combustion quality also reduced carbon monoxide emissions up to 28.57% and hydrocarbon emissions up to 32.02%.

Key words: Ethanol, Biodiesel, Nyamplung, Diesel Engine.

1. INTRODUCTION
The energy consumption is dominated by BBM (fuel oil) sourced from fossils (non-renewable energy) [1]. Indonesia Energy Outlook (2019) explains that the transportation sector is the largest sector in energy consumption (43%) of the total national energy consumption. The fulfillment energy based on fuel oil has an impact on the production of crude oil deficit and condensate (natural gas liquids), so the energy supply based on new and renewable energy needs to be increased.

Biodiesel is a type of liquid biofuel used as an alternative to petrodiesel (petroleum diesel) mixed fuel. The biodiesel features are good lubrication, non-toxicity, high cetane number, no aromatics content, and can reduce exhaust emissions [2]. Biodiesel-based from vegetable or animal oils contains saturated free fatty acids that can increase kinematic viscosity, density, cloud point and pour point. Therefore, the use of these raw materials in the transportation sector is restricted [3]-[5].

Ethanol is an inexpensive oxygenate produced through the fermentation process of biomass raw materials [6] and used as a mixed fuel of diesel engines without modification [7]. The low viscosity and density of ethanol improve the spray characteristics and the mixed air-fuel process [6].

Paul et al. (2017) conducted research on the use of biodiesel and ethanol on the CI (compression ignition) engine performance with biodiesel from Malapari (pangamia piana) [9]. The concentration of biodiesel is 50% and ethanol is 5% which increased to 20% an increasing interval of 5%. The results showed that the optimal engine performance is obtained by adding 15% ethanol pointed by an enhancement of BTE (brake thermal efficiency) as 21%, a reduction of BSEC (brake specific energy consumption) as 4.61% and, a reduction of NOx (nitrogen oxide) and HC (hydrocarbon) exhaust emissions.

Based on the previous research, the augment of biodiesel and ethanol can improve diesel engine performance and reduce harmful exhaust emissions. This study aims to determine the diesel engine performance and exhaust emissions by biodiesel fuel Nyamplung seed oil (calophyllum inophyllum) and 99.5% purity ethanol.

2. MATERIAL AND METHODS
2.1 Fuel Preparation
Biodiesel is produced from Nyamplung seed oil (calophyllum inophyllum) by esterification and transesterification processes. The esterification process aims to reduce the free fatty acids value using methanol as a solvent and H2SO4 as a catalyst at 60°C for 120 minutes with a solvent-to-oil ratio of 2:1 mol/mol and a catalyst-to-oil ratio of 2% mol/mol. The transesterification process was conducted with methanol and KOH as a catalyst at 60°C for 180 minutes with a solvent-to-oil ratio of 6:1 mol/mol and a catalyst-to-oil ratio of 1% g/g. The ethanol fuel with a purity of 99.5% was obtained from PT Energi Agro Nusantara, Mojokerto, East Java, Indonesia. Meanwhile, the petrodiesel fuel is obtained from PT Pertamina Tanjung Wangi, Ketapang, Banyuwangi, East Java, Indonesia.

Biodiesel as 30% and petrodiesel as 70% (B10) mixed with ratio vol/vol. The ethanol concentration of 10% mixed with B30 becomes B3010. The ethanol concentration of 20% mixed with B30 becomes B30E20. Each mixed fuel is observed for 24 hours to ensure mixed stability.
2.2 Fuel Characteristics

Table 1. Physical chemistry of mixed biodiesel-ethanol fuel

<table>
<thead>
<tr>
<th>Blends</th>
<th>Viscosity (cSt)</th>
<th>Density (kg/m³)</th>
<th>Caloric value (kJ/kg)</th>
<th>Cetane number</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B20</td>
<td>2.8</td>
<td>853</td>
<td>42221</td>
<td>-</td>
<td>[4]</td>
</tr>
<tr>
<td>B2E5</td>
<td>2.6</td>
<td>845</td>
<td>39761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2.5E2.5</td>
<td>2.6</td>
<td>830</td>
<td>47389</td>
<td>57.2</td>
<td>[10]</td>
</tr>
<tr>
<td>B5E5</td>
<td>2.6</td>
<td>830</td>
<td>46239</td>
<td>56.2</td>
<td></td>
</tr>
<tr>
<td>B10E5</td>
<td>1.6</td>
<td>808</td>
<td>42290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B16E10</td>
<td>1.4</td>
<td>808</td>
<td>41614</td>
<td></td>
<td>[11]</td>
</tr>
<tr>
<td>B16E15</td>
<td>1.3</td>
<td>808</td>
<td>40032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B17E5</td>
<td>3.4</td>
<td>848</td>
<td>37640</td>
<td>55.0</td>
<td>[12]</td>
</tr>
<tr>
<td>B49E10</td>
<td>3.2</td>
<td>854</td>
<td>35980</td>
<td>54.6</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td>3.7</td>
<td>843</td>
<td>43890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B20E5</td>
<td>3.3</td>
<td>839</td>
<td>43120</td>
<td></td>
<td>[13]</td>
</tr>
</tbody>
</table>

Table 1 presented the physical chemistry of mixed biodiesel-ethanol fuel from various references. Ethanol affects the physical chemistry of the fuel. The enhancement of ethanol reduces the kinematic viscosity, density, caloric value, and cetane number of fuel, it is similar to [1], [10]–[13].

2.3 Experimental Settings and Procedures

This study used the MDX-170 Matsumoto diesel engine, single-cylinder, four-stroke, and natural air system. A phase Dihao SD-3 generator has functioned as a dynamometer. The data collection was conducted 3 times by connecting the rotor to the engine shaft. The stator is located opposite the rotor and connected to the casing. In the casing, an arm is installed where the end of the arm is a load cell (load measuring instrument). Allocating lights on the stator at 0–800 W or 0–100% with an increasing interval of 200 W at a constant engine speed of 2400 rpm. The braking force will be read on the load cell which is equal to the engine shaft rotational force (F). Figure 1 showed the scheme on the experimental setup.

![Scheme of experimental setup](image1)

The gas analyzer HG-520 Hoshin is used to measure exhaust gas emissions of CO (carbon monoxide), CO₂ (carbon dioxide), and HC (hydrocarbon) with the instrument accuracy of 0.01%, 0.1%, and 0.01 ppm, respectively.

3. RESULTS AND DISCUSSIONS

3.1 The Effect of Biodiesel and Ethanol on Engine Performance

Parameters used to characterize diesel engine performance were specific energy consumption, effective thermal efficiency, and specific fuel consumption.

![Graph of brake specific energy consumption (kJ/kWh)](image2)

Figure 2. Brake specific energy consumption (kJ/kWh)

Figure 2 showed the graph of brake specific energy consumption or BSEC (kJ/kWh). BSEC indicated the engine efficiency on the input of the energy fuel used by the engine during combustion [9]. The results of the mixed fuel tested on different load conditions showed that the augment of 29% ethanol (B30E20) was adequate to reduce BSEC than B30E10, B30, and petrodiesel fuels. In the minimum load, the B30E20 reduces BSEC by 4.1%. It was lesser than petrodiesel. This result was similar to Isk, (2020) [14]. The consistent reduction of BSEC indicated the preferable utilization of chemical energy becomes useful energy [9]. The high oxygen in ethanol plays a role in the combustion phase and easy the release of higher fuel energy during oxidation [14], [15].

![Graph of brake thermal efficiency (%)](image3)

Figure 3. Brake thermal effective (%)
Figure 3 showed a graph of the brake thermal effective or BTE (%) BTE is used to evaluate the engine quality in converting the thermal energy of the fuel to mechanical energy [9]. The results of the mixed fuel tested at different load conditions revealed that B30E20 fuel had a higher BTE than other fuels, such as B30E10, B30, and petrodiesel. In the maximum load, the B30E20 increased BTE by 1.69% higher than petrodiesel fuel. This result is similar to Bhurat et al. (2019) [16].

The high percentage of ethanol had an effect on reducing the fuel viscosity, thus this condition allowed preferable fuel injection. The improvement of injection quality simplifies the fuel atomization. It allowed the large and small chain hydrocarbons from biodiesel and petrodiesel to bond rapidly into the smaller elements during combustion [9]. The oxygen in ethanol also participated in the fuel combustion process, thus the BTE B30E20 is detected to be higher than other mixed fuels [17].

Figure 4 showed a graph of specific fuel consumption or SFC (kg/kWh). The SFC is the fuel consumption rate used by the engine to produce force. The results of the mixed fuel tested at different load conditions showed an enhancement of SFC and ethanol concentration. A high concentration of ethanol reduced the heating value and density of the mixed fuel [18]. Lowering the heating value reduced the fuel energy discharge, thus it required a high rate of fuel consumption to obtain the same force [15].

The results of the mixed fuel tested at different load conditions showed that B30E20 had a higher SFC than other fuels, such as B30E10, B30, and petrodiesel. In the maximum load, the B30E20 increased SFC as 12.08% higher than petrodiesel fuel. These results were similar to Bhurat et al. (2019) [16].

3.2 The Effect of Biodiesel and Ethanol on Exhaust Emissions
Parameters used to characterize exhaust emissions of diesel engines were carbon monoxide, carbon dioxide, and hydrocarbon.

Figure 5 showed a graph of carbon monoxide or CO (%) exhaust emissions. The results of the mixed fuel tested on different load conditions showed that the CO emission of B30E20 fuel was lower than B30E10, B30, and petrodiesel fuels. It was similar to Paul et al. (2017) who stated that in the maximum load, B30E20 fuel reduces CO emissions as 28.37% lower than petrodiesel fuel [9]. The rate of CO emission depended on the air-fuel ratio. The enhancement of oxygen and the augment of ethanol assisted to increase the oxygen ratio of the mixed fuel in the rich fuel areas, thus leading to complete combustion [19].

Figure 6 showed a graph of carbon dioxide or CO2 (%) exhaust emissions. This graph showed that the augment of ethanol in the mixed fuel constantly increased CO2 emissions. The CO2 emissions increased because ethanol released ‘OH’ during oxidation. The ‘OH’ radicals supported the CO emissions oxidation to CO2 emissions [9]. The results of the mixed fuel tested at different load conditions showed that B30E20 had the highest CO2 emissions, followed by B30E10, B30, and petrodiesel fuels. This result similar to Ijik et al. (2020) who mention that in the maximum load, B30E20 fuel increased CO2 emissions as 24.47% higher than petrodiesel fuel [14].
Figure 7. Hydrocarbon (ppm)

Figure 7 showed a graph of hydrocarbon or HC exhaust gas emissions (ppm). The results of the mixed fuel tested on different load conditions showed that the HC emission of B30E20 fuel was lower than B30E10, B30, and petrodiesel fuels. This result was similar to Rizwanul Fattah et al. (2014) who stated that in the maximum load, B30E20 fuel reduced HC emissions by 32.02% less than petrodiesel fuel [20]. The unburned HC emission was related to combustion quality [18]. The oxygen content in ethanol contributed to the fuel combustion process in the complete combustion [19], so it was competent to reduce HC emissions [20].

5. CONCLUSION

In this study, the experimental research was conducted on diesel engine to explore the biodiesel and ethanol effects on the performance and exhaust emissions of diesel engine. The biodiesel percentage was still constant at 30%, while the ethanol had increased from 10% to 20%. The petrodiesel percentage decreased continuously with the ethanol percentage. Based on the results, it can be concluded that the augment of 20% ethanol and 30% biodiesel (B30E20) can improve engine performance, such as reducing BSEC and increasing BTE better than petrodiesel. However, the SFC was higher than petrodiesel. In terms of exhaust emissions, the B30E20 reduced CO and HC emissions but increased the CO₂ emissions.

REFERENCES

