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Abstract. One of the critical jobs in the mine planning and design is to optimize an open pit mine under many uncertain 

factors. This paper explains the incorporation process of the volatility of commodity price or market uncertainty into 

production phase design and ultimate pit limit using a maximum flow minimum cut algorithm. The Ornstein-Uhlenbeck 

(OU) mean-reversion process was used to generate 50-coal price simulations for 10-years ahead. For implementation, data 

from an Indonesian coal mining site was integrated into the method and resulted in 42% differences compared to a 

conventional way. 
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INTRODUCTION 

An operation in the mine site needs significant and continuous investment. Valuable materials extraction is the 

goal of the mine operation. Long before extracting useful material begins, reserve calculation needs to be done. 

Physical features, i.e., shape, depth, and size of geological deposit can be determined by exploration drilling and 

consecutive geological analysis. All the retrieved data can be utilized to simulate profit along with the mine operations. 

Physical features become the input of the geological model. The output of the modeling is mining blocks that have 

specific properties, i.e., tonnage and valuable material content. Mine planning and optimization design will utilize the 

mining blocks to maximize net present value (NPV) of the mine operation. There are two ways to solve mine planning 

and design optimization; traditional one called conventional (deterministic) and advanced one called stochastic 

method. The latest exploration and modeling technologies have been implemented to increase the validity of the 

geological model. However, some geological factors remain uncertain. 

Moreover, fluctuating commodity price plays a significant rule for the profit generation of the mining company. 

The conventional method only applies the known and constant data; however, the uncertainty from commodity prices 

and geological aspects are ignored in the simulation. The ignorance of these uncertainties will lead to the constant 

value of the mining blocks generated from the geological modeling. 

The effect of the constant economic value of the mining blocks will result in impractical mine designs. 

Consequently, mining companies will suffer economic losses [1, 2]. Many researchers have shifted to apply a 

stochastic method. The stochastic method relies on a set of equiprobable simulated orebody as input for an optimal 

long-term mine planning and design. The method creates phase-designs and an ultimate pit limit and represents them 

as a graph [3, 4, 5]. In this research, a method that utilized from maximum flow minimum cut algorithm combined 

with commodity price scenarios is proposed to generate ultimate pit limit and phase-design. Ultimately, this method 

was applied to an Indonesian coal mining operation.  
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MATERIALS AND METHODS 

A block model was developed based on the geologist model. The geologists generated multiple layers of coal 

deposit (FIGURE 1b) that consist of 28 lithological codes; 4 coal codes (assigned “1”) and 24 non-coal codes 

(assigned “0”). There were 268 drill holes inside the case study area that contained a calorific value (CV), ash content, 

sulfur content, and moisture content data (hard conditioning data). The geologist model (training image) consisted of 

95 x 70 x 165 blocks for 20 x 20 x 10 m block dimension. FIGURE 1 represents the coal body model developed by 

the geologist, and TABLE 1 represents the technical and economic parameters of this research. The difference 

between overburden (OB) and coal mining cost was mainly because of the different mining methods that affected the 

selection of the loading and hauling equipment.  

 

 
(a) 

 

(b) 

FIGURE 1. The cross-section of the coal mine pit with coal seams (a) and the coal body model (b) 

 

 

 
 

 

                 TABLE 1. The technical and economic parameters 

 

No Technical Properties Value Unit 

1 Block Size 20×20×20 m 

2 Number of Blocks 113.05  
3 Mining Capacity 45,000,000 tonne/year 

4 Slope Constraint 45 degree 

5 Mining Period 10 year 

6 Mining Recovery 95 % 

7 OB Specific Gravity 2.1 tonne/m³ 

8 Coal Specific Gravity 1.3 tonne/m³ 
 

No Economical Properties Value Unit 

1 OB Mining Cost 3 $/tonne 

2 Coal Mining Cost 0.75 $/tonne 

3 Coal Washing Cost 1.4 $/tonne 

4 Selling Cost 2 

% of Selling 

Price 
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The mean-reversion (Ornstein-Uhlenbeck (OU)) process was extensively applied to simulate interest rates and 

commodity price [6, 7, 8, 9]. Charles and Darné [10] mentioned the requisite of using this model. The model was 

chosen to simulate coal price since its capability to represent parsimony or reduced-form together [10, 11, 12, 13]. 

Furthermore, Lucia and Schwartz [11]and Schwartz [14] stated that the mean-reversion process was one of the most 

tested stochastic processes for coal prices. Valdivieso et al. [15] and Smith [16] mentioned that the mean-reversion 

process fully supported the idea of supply and demand economic law; that is when commodity prices are extortionate, 

the demand for a particular commodity will be lower, and this condition makes the supply of the particular commodity 

will be abundant, and vice versa. In the end, the prices will follow their long-term mean. With the stochastic differential 

equation below, the OU process could be extended to simulate coal price: 

𝑑𝐶𝑡 = 𝛾(𝜌 − 𝐶𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡         (1) 

𝐶𝑡 − 𝐶𝑡−1  = 𝛾(𝜌 − 𝐶𝑡−1)𝛥𝑡 + 𝜎𝑑𝑊𝑡        (2) 

For time 𝑡, 𝐶𝑡 is defined as the market coal price. The Eq. 1 consists of two parts, the first one, 𝛾(𝜌 − 𝐶𝑡)𝑑𝑡 is 

defined as a drift component. The mean-reversion speed of the stochastic parameters is measured by variable 𝛾. It 

indicates how fast the price revert to their long-term mean 𝜌. The part of 𝜎𝑑𝑊𝑡 is complying with the standard 

Brownian motion. The volatility of the price is estimated by variable 𝜎. The OU process states that the price 

fluctuations will be close to their mean, and temporarily, there will be price peaks at some time. Gillespie [15] 

mentioned that Eq. 2 will be valid only if 𝛥𝑡 is small enough. He proposed for any value of 𝛥𝑡; the equation will be 

modified as shown below: 

𝐶𝑡 = 𝑒−𝛾𝛥𝑡𝐶𝑡−1 + (1 − 𝑒−𝛾𝛥𝑡)𝜌 + 𝜎√
(1−𝑒−2𝛾𝛥𝑡)

2𝛾
𝑑𝑊𝑡      (3) 

Valdivieso [15] and Smith [16]  examined the estimation of OU process parameters. Both least square regression 

and maximum likelihood were widely used and accurate to estimate 𝜎 and 𝜌 (following the unbiased estimator and 

low standard deviation) but not for 𝛾 [17]. He confirmed that maximum likelihood estimated 𝜎̂ and 𝜌̂ close to the true 

value of 𝜎 and 𝜌. Phillips and Yu [18] proposed to incorporate the jackknife technique with the maximum likelihood 

for the better estimation process. 

𝜌 =  
𝐶𝑦𝐶𝑥𝑥−𝐶𝑥𝐶𝑥𝑦

𝑛(𝐶𝑥𝑥−−𝐶𝑥𝑦)−(𝐶𝑥
2−𝐶𝑥𝐶𝑦)

         (4) 

𝛾 =  −
1

𝛥𝑡
𝑙𝑜𝑔

𝐶𝑥𝑦−𝜌𝐶𝑥−𝜌𝐶𝑦+𝑛𝜌2

𝐶𝑥𝑥2𝜌𝐶𝑥+𝑛𝜌2          (5) 

𝛼 = 𝑒−𝛾𝛥𝑡           (6) 

𝜎 = √(
1(𝐶𝑦𝑦−2𝛼𝐶𝑥𝑦+𝛼2𝐶𝑥𝑥−2𝜌(1−𝛼)(𝐶𝑦−𝛼𝐶𝑥)+𝑛𝜌2(1−𝛼2))

𝑛
)

2

∗
2𝛾

1−𝛼2     (7) 

𝐶𝑥 = ∑ 𝐶𝑖
𝑛
𝑖=1 − 1          (8) 

𝐶𝑦 = ∑ 𝐶𝑖
𝑛
𝑖=1            (9) 

𝐶𝑥𝑥 = ∑ 𝐶𝑖
2 − 1𝑛

𝑖=1           (10) 

𝐶𝑥𝑦 = ∑ 𝐶𝑖 − 1𝐶𝑖
𝑛
𝑖=1           (11) 

𝐶𝑦𝑦 = ∑ 𝐶𝑖
2𝑛

𝑖=1           (12) 

It was suggested for any 𝑡 > 𝑡0, the OU process of 𝐶𝑡 followed normal random variable [19]. To validate the OU 

process, the property of mean and variance can be estimated by the equation given below: 

𝑚𝑒𝑎𝑛 𝐶𝑡 = 𝐶0𝑒−(𝑡−𝑡0)𝛾 + 𝜌(1 − 𝑒(−𝛾(𝑡−𝑡0)))       (13) 

𝑣𝑎𝑟 𝐶𝑡 =
𝜎2

2𝛾
(1 − 𝑒−2(𝑡−𝑡0))         (14) 

5 Annual Discounted Rate 9.5 % 
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The stochastic framework used a set of the mathematical formulation (15) - (18) for generating production phase 

design based on uncertain commodity price [20, 21, 22]: 

Max ∑ ∑ 𝑐𝛾𝑏𝑥𝑏𝑏∈𝐵𝛾∈Г           (15) 

𝑥𝑏 − 𝑥𝑏′ ≤ 0,    𝑏′ ∈ 𝜉𝑏 ,    𝑏 ∈ 𝐵         (16) 

∑ 𝑎𝑘𝛾𝑏𝑥𝑏𝑏∈𝐵 ≤ 𝐻𝑘 ,    ∀𝑘 ∈ 𝐾, 𝛾 ∈ Г        (17) 

𝑥𝑏 ∈ {0,1},   𝑏 ∈ 𝐵          (18) 

where block economic value (BEV) of block 𝑏 for price scenario 𝛾 is 𝑐𝛾𝑏 . 𝑥𝑏 is defined as the binary variable, 

either 1 (if the mining block 𝑏 inside of the pit) or 0 (if the mining block 𝑏 outside of the pit). A set of precedence 

mining blocks that are necessary to be extracted before block 𝑏 is 𝜉𝑏. Sum of material 𝑘 in block 𝑏 for price scenario 

𝛾 is 𝑎𝑘𝛾𝑏. The extraction rate of material 𝑘 is 𝐻𝑘. The total number of mining blocks is 𝐵. The total number of price 

scenarios is Г. Extraction rate constraint is 𝐾. 

To maximize the profit, the objective function (Eq. 15) followed the rule of the precedence mining blocks (Eq. 16) 

and the extraction rate (Eq. 17). A stochastic method for the ultimate pit limit was eliminating the constraint of 

extraction rate (Eq. 17). Ultimately, a block economic value of block 𝑏 for price scenario 𝛾 (𝑣𝛾𝑏) is: 

𝑐𝛾𝑏 = [(𝑃𝛾 − 𝑟)𝑔𝑏𝑦 − 𝑚 − 𝑐]𝑄𝑏        (19) 

𝑐𝛾𝑏 = {
𝑐𝛾𝑏      → 𝑖𝑓 ((𝑃𝛾 − 𝑟)𝑔𝑏𝑦 > 𝑐, 𝑏𝑙𝑜𝑐𝑘 𝑏 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑐𝑜𝑎𝑙

−𝑚𝑄𝑏 → 𝑖𝑓 ((𝑃𝛾 − 𝑟)𝑔𝑏𝑦 ≤ 𝑐, 𝑏𝑙𝑜𝑐𝑘 𝑏 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑜𝑣𝑒𝑟𝑏𝑢𝑟𝑑𝑒𝑛
 

Since we used the data from the Ministry of Energy and Mineral Resources of Indonesia, Eq. 19 needs to be 

adjusted, as shown below: 

𝑐𝛾𝑏  𝑐𝑜𝑎𝑙 =
𝑔𝑏

6322
∗ 𝑄𝑐𝑏 ∗ 𝑦 ∗ (𝑃𝛾 − 𝑟𝑐) − (𝑚𝑐 ∗ 𝑄𝑐𝑏) − (𝑐𝑐 ∗ 𝑄𝑐𝑏)     (20) 

𝑐𝛾𝑏  𝑜𝑣𝑒𝑟𝑏𝑢𝑟𝑑𝑒𝑛 =  𝑚𝑤 ∗ 𝑄𝑤𝑏          (21) 

where 𝑔𝑏 is CV of mining block 𝑏 based on scenario 𝛾 (kcal), 𝑄𝑐𝑏  is coal tonnage of mining block 𝑏 with specific 

gravity equals to 1.3 ton/m3 (ton), 𝑦 mining recovery (%), 𝑃𝛾 is coal price under scenario 𝛾 ($/ton), 𝑟𝑐  is selling cost 

(2% of the coal selling price, $/ton), 𝑚𝑐 is coal mining cost ($/ton), 𝑐𝑐 is coal washing cost ($/ton), 𝑚𝑤 is overburden 

mining cost ($/ton), and 𝑄𝑤𝑏  is overburden tonnage of mining block 𝑏 with specific gravity 2.1 ton/m3. 

A maximum flow minimum cut algorithm can generate the optimal solution for this scenario [3, 23, 24]. FIGURE 

2a shows a fundamental graph structure incorporating various price scenarios. The graph is equipped with a source 

node, a node of mining block 𝑏 under each price scenario 𝛾, and a sink node. For price scenario 𝛾, each mining block 

𝑏 holds the same probability of an economic value 𝑐𝛾𝑏 . Therefore, if 𝑐𝛾𝑏 > 0, the node is linked to the source node; 

otherwise, the node is linked to the sink node for 𝑐𝛾𝑏 ≤ 0. The capacity of an arc linked to the source node is a positive-

valued node defined as 𝑐𝛾𝑏 . Likewise, the capacity of an arc linked to a sink node is a negative-valued node defined 

as |𝑐𝛾𝑏|. Also, an infinite (∞) capacity arc ensures the constraint to extract precedence mining block. This arc two 

from a mining block 𝑏 for price scenario 𝛾 to a set of nodes in 𝜉𝑏. According to Dimitrakopoulos et al. [25] these 

infinite (∞) capacity arcs played a role, while generating an optimal solution, an existing mining block 𝑏 in Г number 

of price scenarios, stayed on the same side of cut in all price scenarios, and finally created a valid optimal pit. 

A particular block is always on the same side of the cut in the different simulations by maintaining the bidirectional 

arcs across the simulations. The bidirectional arcs allowed the merging of the nodes from the different simulations 

into a single node. The process reduced the number of nodes within the graph and ultimately made the process less 

computationally demanding. The fact that a mining block 𝑏 stays on the same side of cut in all 𝛼 scenarios, the nodes 

can be updated as [𝑐̃𝑏 = ∑ 𝑐𝛾𝑏
Г
𝛾 ; 𝑖𝑓 𝑐𝛾𝑏 > 0], and the arc capacity of the single merged node to the sink node is updated 

as [𝑐̂𝑏 = ∑ 𝑐𝛾𝑏
Г
𝛾 ; 𝑖𝑓 𝑐𝛾𝑏 ≤ 0]. FIGURE 2b shows the merged nodes of the two simulations in FIGURE 2a. 

The price simulation produced multiple simulated prices over several time periods 𝑡 from 1 to 𝑇. Assuming the 

time period 𝑡, the coal selling price 𝑃𝛾 could be substituted with 𝑃𝛾𝑡  in Eq. 19. If 𝑑 is the discount rate, the discounted 

value of block 𝑏 over 𝑇 number of time periods is represented by 𝑐𝑏𝑡  as stated below: 

𝑐̃𝑏𝑡 = ∑
𝑐𝑏𝑡

(1+𝑑)𝑡  𝑖𝑓 𝑐𝛾𝑏 > 0Г
𝛾          (22) 
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𝑐̂𝑏𝑡 = ∑
𝑐𝑏𝑡

(1+𝑑)𝑡
Г
𝛾  𝑖𝑓 𝑐𝛾𝑏 ≤ 0 (23) 

The discounted value of block 𝑏 over a 𝑇 number of time periods is represented by 𝑐𝑏𝑡  as stated below:

𝑐̃𝑏𝑡  𝑐𝑜𝑎𝑙 = ∑
𝑐𝑏𝑡 𝑐𝑜𝑎𝑙

(1+𝑑)𝑡
𝑇
𝑡 (24) 

𝑐̂𝑏𝑡  𝑜𝑣𝑒𝑟𝑏𝑢𝑟𝑑𝑒𝑛 = ∑
𝑐𝑏𝑡 𝑜𝑣𝑒𝑟𝑏𝑢𝑟𝑑𝑒𝑛

(1+𝑑)𝑡
𝑇
𝑡 (25) 

Infinite-capacity arcs (∞) assisted not only to ensure precedence blocks mined but also to ensure the mining block 

𝑏 within the valid pit over time periods 𝑇 only mined once over a 𝑇 number of time periods. The next step was same 

as the undiscounted BEV. FIGURE 3 shows the implementation of the discounted block economic value over several 

time periods.  

        (a)                (b) 

FIGURE 2. Constructed graph of multiple coal body realizations (a) and Merged graph of two simulated models. 

FIGURE 3. The integration of the modified graph with discounted values of mining block. 

Extraction capacity constraints were not considered in the stochastic algorithm mentioned above. The integration 

of the extraction constraints was necessary to create reasonable and valid phase-design [25, 26]. Implementing the 

maximum flow minimum cut algorithm only produced an invalid solution for the problem [4, 5]. Extraction capacity 

constraints were added into phase design and Lagrangian parameter (𝜆) by Tachefine and Soumis [27]. Considering 

𝐻 is a set of extraction constraints, 𝑎𝑘𝑏  is the sum of material 𝑘 inside of block 𝑏, and 𝐻𝑘 is the extraction capacity of

material 𝑘, the Eq. (15) - (17) can be updated with a new extraction constraint by combining all uncertainty scenarios 

mentioned earlier: 

∑ 𝑎𝑘𝛾𝑏𝑥𝑏 ≤ 𝐻𝑘 , 𝑘 𝜖 𝐾 𝑎𝑛𝑑 𝛾 𝜖 Г𝑏 𝜖 𝐵 (26) 

the new Lagrangian formula; 
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Maximize 𝑍(𝜆) = ∑ ∑ 𝜆⌊∑ 𝑐𝛾𝑏𝑡𝛾 𝜖 Г ⌋𝑥𝑏𝑡𝑡 𝜖 𝑇𝑏 𝜖 𝐵        (27) 

Subject to 𝑥𝑏𝑡 − 𝑥𝑏′𝑡 ≤ 0, ∀𝑡, 𝑏′𝜖 𝜉𝑏 , 𝑏 𝜖 𝐵 (block 𝑏′ overlies block b)    (28) 

𝑥𝑏𝑡  𝜖 {0,1}, 𝑏 𝜖 𝐵 and ∑ 𝑥𝑏𝑡 ≤ 1𝑡 𝜖 𝑇         (29)  

and 𝜆 = {
𝜆, ∑ 𝑐𝛾𝑏𝑡𝛾 𝜖 Г > 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (30) 

where 𝜆 is curbed with (0,1], and 𝜆 changes to 𝜆 = 𝜆 + ∇𝜆 in each iteration. The iteration updated the arc capacity 

of from the source node to positive discounted value nodes, produced a consistent size of phase-designs. A smaller or 

higher step size or ∇𝜆 impacted differently on the generating phase-design. A smaller value of the step size created a 

computationally demanding calculation. However, a higher value of the step size generated unacceptable gaps [4]. 

Assuming 𝜖 is a very small positive number, a 𝜆 will be updated to a monotonically decreasing function as stated 

below: 

∇𝜆 = [∑ ∑ 𝑤𝑘𝛾 (
𝐻𝑘−∑ 𝑎𝑘𝛾𝑏𝑏 𝜖 𝐵

𝐻𝑘
)𝛾 𝜖 Г𝑘 𝜖 𝐾 ] 𝜖       (31) 

The flows of the stochastic framework solved with a push-relabel algorithm to develop an ultimate pit limit and 

production phase-design stated below: 

1. For each node and scenario, calculate the undiscounted BEV using Eq. (20) and (21). 

2. Merge all the nodes with calculated BEV over all the simulations into a single node and compute the 

discounted BEV over time periods using Eq. (24) and (25). 

3. Define a variable 𝜆 so that 0 < 𝜆 < 1. 

4. Set initial 𝜆 = 0. 

5. For all production capacity constraints 𝑘 for scenario 𝛾, set 𝛿𝑘𝛾 = 0 when 𝜆 = 0.  

6. Increment 𝜆 by a small value ∇𝜆, such that 𝜆 =  𝜆 + ∇𝜆. 

7. Calculate 𝑍(𝜆) in Equation (27). 

8. If ⟦𝛿𝑘𝛾 = ∑ 𝑎𝑘𝛾𝑏𝑥𝑏𝑏 ∈ 𝐵 ]≤ 𝐻𝑘∀𝛾, 𝑘] from 𝑍(𝜆) in Equation (27), update 𝜆 =  𝜆 + ∇𝜆. 

9. Go to step 7. 

10. End. 

RESULTS AND DISCUSSION 

The coal reference price of Ministry of Energy and Mineral Resources of Indonesia uses the calorific value of 6322 

kcal/kg GAR as a benchmark (other parameters, e.g. total moisture, total sulfur, and ash are not the scope of this 

research). The research used the coal reference price from January 2009 to January 2018. The coal price scenarios 

were needed to be simulated for 50 times over the next ten years. The mean-reversion process started with the 

calibrating the parameters in Eq. 3. Three calibrated parameters; ρ (mean-reversion level), σ (volatility), and γ (mean-

reversion speed). For the validation model, 10% of the historical coal price data were excluded. Next, these data were 

used for a paired-sample t-test statistics to know whether the model and the actual data have the same distribution. 

From Eq. (4) – (12), the parameters of the mean-reversion process could be derived. To improve the calibration process 

of γ, the jackknife method was integrated into the process. The value of 𝐶0 was $ 101.69. From Eq. (4) – (12) resulted 

parameters of OU mean-reversion for 𝛾 = 0.2521, 𝜌 = 93.1561, and 𝜎 = 15.9592. It was seen here that the coal price 

data had a very slow speed of reverting price (0.2521). These parameters were used along with the Monte Carlo 

simulation by setting up several simulations equal to 50 and the number of steps (months) equal to 120. The result of 

the Monte Carlo simulation is shown in FIGURE 4. 

The validation was performed by calculating the expected mean and variance vs. the mean and variance of the 

price simulation using Eq. (13) and (14). The results of the first and second momentum can be seen in FIGURE 5. In 

this case, a paired-sample t-test statistic (two-tailed test statistic) was also performed to see whether the model and 

actual data have the same distribution. The null hypothesis was set to that there was no significant difference mean 

between the model and the actual prices, and the alternative hypothesis was vice versa. By using 10% of the available 

historical coal price with 5% significance level, there was no significant difference between the mean of the model 

and the actual price. TABLE 2 shows the statistic result of 10% of the historical coal prices compared to the price 

simulations. With that was -2.12, it fell in the nonrejection region for a significance level of 0.05. The result implied 

the mean-reversion process model could be used to simulate future coal prices. 
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The stochastic model used jointly multiple realizations of the coal price of a mining block to simulate block 

economic value (BEV) using Equation (20-21) - (24-25). It produced 113,050 blocks of economic value over 50 

simulations each year. Afterward, a single graph was constructed (FIGURE 3). By applying the slope constraint, the 

block number decreased from 113,050 to 93,306 blocks. The total blocks were used to generate production phase-

designs. Production phase-design considered Eq. (31) to generate a solution. The function controlled the size of the 

individual phase-design by constraining it with mining production rate per year of 45 million tonnes of material 

(including overburden and coal). The proposed method produced ten production phase-designs within the ultimate pit 

limit. 

 

 

FIGURE 4. The Monte Carlo simulation from the OU mean-reversion process. 

 

 

 

 

 

 

 

 

 

  

 

FIGURE 5. The expected average vs. the average of the price simulations (left) and the expected variance vs. the variance of the 

price simulations (right). 

 

Although there were two gaps between phase-design number 2 and 4 resulting small phase-design in number 5, 

the total of removed material from the pit was close to the 10-year production target (450 million tons of material), 

and the life of mine was close to 10 years. The total blocks remain inside the ultimate pit limit is 67,026. To generate 

the discounted cash flow of the phase-design over the 10-year life of mine, BEV calculation of each year was used. 

The undiscounted BEV of each year from Equation (24) – (25) was needed to be multiplied by a discounted factor of 

9.5%.  Since the life of each phase-design in each year was not round 1, to calculate the discounted cash flow, prorating 

of the cash flow from each year was performed to get 1-year cash flow with the specified discounted rate. TABLE 3 

shows the risk profile of the phase-designs with minimum, maximum, and average cash flow. 

TABLE 2. The result of a paired-sample t-test with a significance level (α) = 0.05 
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No Actual Model Statistical Properties 

1 86.23 90.96 

t statistic -2.12 

2 83.32 86.53 

3 81.90 84.16 

4 82.51 87.32 

5 83.81 90.64 

6 75.46 80.96 

7 78.95 88.33 

critical value 2.18 

8 83.97 89.88 

9 92.03 90.87 

10 93.99 97.72 

11 94.80 96.54 

12 94.04 88.22 

13 95.54 89.55 

 

TABLE 3. The production phase designs and risk profile in a stochastic framework with monotonous decrease λ 
        

Phase 

Number 

Coal 

Block 

OB 

Block 

CV (kcal/kg) Quantity of 

Material (Ton) 

Life 

(Years) Minimum Average Maximum 

1 4543 2637 5074.52 5854.58 6570.67 45,774,400 1.02 

2 5993 4228 5131.98 5895.55 6597.47 66,678,800 1.48 

3 3102 2400 5171.51 5912.19 6697.18 36,290,400 0.81 

4 5155 4479 5125.91 6139.86 6656.57 64,429,600 1.43 

5 1019 914 5182.19 6060.94 6619.51 12,976,400 0.29 

6 4001 3621 5112.29 6004.31 6610.94 51,221,600 1.14 

7 2958 2854 5158.89 6055.53 6620.83 39,355,200 0.87 

8 3551 3858 5216.68 6076.96 6636.91 50,872,400 1.13 

9 2745 2864 5178.12 6104.26 6753.98 38,331,600 0.85 

10 2066 4038 5151.31 6092.46 6766.98 44,662,400 0.99 

Ultimate 

Pit 
35133 31893 5150.34 6019.66 6653.10 450,592,800 10.01 

 

Risk Profile (Discounted Case Flow)    

Phase 
Minimum  

(US$ Million) 

Maximum  

(US$ Million) 

Average         

  (US$ Million) 

1 1,615.90 2,204.10 1,860.10 

2 3,601.90 4,538.30 3,998.80 

3 3,743.40 5,029.90 4,443.80 

4 3,426.00 4,416.00 3,892.70 

5 3,797.30 5,570.70 4,872.00 

6 4,416.00 6,769.40 5,452.50 

7 4,109.70 6,747.40 5,452.10 

8 4,832.30 7,723.50 6,684.60 

9 3,968.70 5,823.50 4,966.80 

10 4,441.10 6,441.30 5,517.80 

Ultimate Pit 37,696.40 55,264.10 47,141.20 
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FIGURE 6. North-East (a) and North-South (b) views of production phase-design in the stochastic method (0 -10 is indicated 

year of production). 

 

Comparison between stochastic and conventional (deterministic) approach is described here. The stochastic 

approach integrates multiple coal price simulation while the conventional approach uses only a single coal price as 

the input of the process. The single coal price is obtained from averaging all the price scenarios within a period. For a 

valid comparison, all parameters remain the same. The algorithm in a conventional approach produces 10 phase-

designs within ultimate pit limit. This is similar to the stochastic model. From TABLE 4, it shows that the number of 

blocks (coal + overburden) and NPV are smaller if it is compared to the stochastic model. The blocks in the 

deterministic model equal to 66,946 or 0.2 % smaller than the stochastic model. The difference between the stochastic 

and deterministic model is not big since the monotonous decrease λ algorithm that used in this paper will stop the 

iteration only if the production each phase equal or one iteration greater than the target. This also will make the gap 

problem appear since the production of the consecutive pushback sometimes is not really close to the specified target. 

TABLE 4. The production phase design and risk profile in a stochastic framework with the deterministic model. 
        

Phase 

Number 

Coal 

Block 

OB 

Block 

CV (kcal/kg) Quantity of 

Material (Ton) 

Life 

(Years) Minimum Average Maximum 

1 4502 2660 5073.52 5854.58 6570.67 45,989,600 1.02 

2 5946 4144 5121.98 5895.55 6597.47 65,798,800 1.46 

3 3269 2348 5161.51 5912.19 6697.18 36,564,000 0.81 

4 5459 4199 5125.91 6139.86 6656.57 63,106,400 1.40 

5 1084 841 5182.19 6060.94 6619.51 12,742,800 0.28 

6 4213 3465 5112.29 6004.31 6610.94 50,536,800 1.12 

7 3037 2715 5158.89 6055.53 6620.83 39,224,800 0.87 

8 3671 3732 5116.68 6076.96 6636.91 50,482,000 1.12 

9 2289 3316 5078.12 6104.26 6753.98 39,733,200 0.88 

10 1622 4434 5101.31 6092.46 6766.98 45,873,600 1.02 

Ultimate 

Pit 
35092 31854 5123.24 6019.66 6653.10 450,592,000 10.00 

 

Risk Profile (Discounted Case Flow)    

Phase 
Minimum  

(US$ Million) 

Maximum  

(US$ Million) 

Average         

  (US$ Million) 

1 1,517.90 2,134.10 1,826.00 

2 3,401.30 4,514.80 3,958.05 
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3 3,711.10 5,020.60 4,365.85 

4 3,415.10 4,311.50 3,873.30 

5 3,790.20 5,511.60 4,650.90 

6 4,138.20 6,622.90 5,440.55 

7 4,011.10 6,713.10 5,362.10 

8 4,711.10 7,620.70 6,165.90 

9 3,818.10 5,726.00 4,772.05 

10 4,321.10 6,321.10 5,341.10 

Ultimate Pit 36,835.20 54,496.40 45,755.80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7. North-East (a) and North-South (b) views of the deterministic production phase-design (0 -10 is indicated year of 

production). 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. The stripping ratio profile of the in the stochastic method (left) dan conventional method (right). 

CONCLUSIONS 

This paper discussed generating phase design and ultimate pit limit by incorporating uncertain coal price using the 

maximum flow minimum cut algorithm. Multiple commodity price scenarios were integrated into the stochastic 

framework, which is different from the conventional method that used a single price over the life of mine. The 

proposed method revealed that incorporating uncertain commodity price into the minimum cut algorithm model was 

easy to construct and resolve. This paper also implemented a method for simulating coal prices. They were obtained 

by estimating the long term mean and mean reversion speed of the historical coal price using the Ornstein-Uhlenbeck 

(OU) algorithm. The proposed method promoted the incorporation of uncertain coal prices into the optimization 

framework. An application of Indonesian coal mine was used in this research and resulted in 10 production phase-
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design, a larger pit (0.2%), and critically, a higher net present value (42 %) as compared to the conventional method. 

The overall stripping ratio of the conventional model was slightly bigger than the stochastic model, which is 1.62.  
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