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Abstract. In the classical-classification multivariate process, it becomes an interesting topic to 

be discussed in the research area because of the larger variables with smaller observations. For 

this we need a method that can handle this problem. One answer is to use machine learning. 

SVM is a classification method in machine learning that is able to classify these data types. In 

addition, SVM can also model and classify relationships between variables efficiently and easy 

interpretation. This paper aims to create a visualization of SVM classifiers, then obtain an 

accuracy value to have an optimal classification with a misclassification of small numbers. 

This study aims to find good SVM input parameters by assessing the importance of variables 

using visual methods. This visualization will distinguish groups of people who contract diffuse 

lymphoma cancer and follicular lymphoma cancer with data on the genetic expression of 

lymphoma cancer. The classification using kernel Linear, Gaussian RBF, Polynomial and 

Sigmoid. The best classification accuracy using linear kernel functions with training data has a 

classification accuracy of 100% and testing data has a classification accuracy of 94, 73%. 

1. Introduction 

Every year there are estimated 12 million people worldwide sufferings from cancer and 76 million of 

them die. In Indonesia, cancer is one of the causes of death and is a very big disease problem because 

until now there is no known definite cause of cancer. The types of cancer are breast cancer, neck 

cancer, lung cancer, liver cancer, ovarian cancer and lymph node cancer (lymphoma cancer). This 

study raised the case of lymphoma cancer because lymphoma cancer ranked 10th most cancer in 

Indonesia in 2010 and 2011 although the number of lymphoma cases is actually still relatively low but 

the number of lymphoma cases continues to increase rapidly each year [1]. When compared with 

normal people, the number of patients with cancer is very small, while the gene variables obtained in 

patients who have cancer are more numerous. In this case, the observation variable is bigger than the 

observation data so that it takes machine learning method. Therefore, the need for related analysis of 

contracting lymphoma cancer risks classification by mutation of genetic expression in lymphoma cells 

to be measured from the Affymetrix Gene Chip software. The form of genetic mutation data is 

microarray datasets, where the number of observed variables much more than individuals who were 

observed [2]. Support Vector Machine is a classification method in machine learning that is able to 

classify data types. SVM can classify relationships between variables without the need for strict 

assumptions, efficient and easy interpretation [3]. 

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


Ahmad Dahlan International Conference on Mathematics and Mathematics Education

Journal of Physics: Conference Series 1613 (2020) 012065

IOP Publishing

doi:10.1088/1742-6596/1613/1/012065

2

 

 

 

 

 

 

 

Based on previous research, SVM often classifies cancer data and gets high accuracy values. A 

high level of accuracy is believed to support cancer diagnosis. Research by Novianti [4] is a diagnosis 

of breast cancer patients using logistic regression and SVM based on the results of mammography has 

a classification accuracy of 94.34% while logistic regression of 84.90%. Research by Shofi [5] is the 

result of breast cancer classification showing that the use of Smooth Support Vector Machine (SSVM) 

has a value with an accuracy of 99.63% better than the Multivariate Adaptive Regression Splines 

(MARS) model of around 95.88%. Research from Puspitasari [6] is a method of SVM in classifying 

dental and oral diseases with an accuracy of 94.44%. Based on the explanation above, many studies 

have discussed the classification with the SVM method, in this study will use visualization of the 

results of the classification lymphoma cancer gene expression with the SVM method. 

These experiments primarily consist of either monitoring each gene multiple times under many 

conditions [7], or alternately evaluating each gene in a single environment but in different types of 

tissues, especially cancerous tissues [8]. Of the thousands of variables will be visualized into 2 classes 

including diffuse large B-cell lymphoma cancer and follicular lymphoma so that the best hyperplane 

will be obtained from lymphoma cancer data [9]. Visualization of SVM output can help to understand 

the results of the algorithm SVM [10]. 

2. Method 

2.1. Lymphoma Cancer Gene Expression 

Frozen diagnostic nodal tumor specimens from 58 DLBCL (Diffuse Large B-Cell Lymphoma) 

patients and 19 FL (Lymphoma Follicle) patients were selected for this study. Scans were carried out 

on the Affymetrix scanner and the expression values for each gene were calculated using Affymetrix 

Gene Chip software [11]. DNA microarray experiments generating thousands of gene expression 

measurements are being used to gather information from tissue and cell samples regarding gene 

expression differences that will be useful in diagnosing disease [12].   

2.2. Classification 

Classification is a method of grouping data that will learn training data using a classification 

algorithm. As for several classification algorithms, including Bayesian Classification, K-Nearest 

Neighbor, Decision Tree Induction, Case-Based Reasoning, Genetic Algorithms, Discriminant 

Analysis, and Support Vector Machines [13]. Experimental and evaluation shows that SVM, KNN and 

NB are traditional classification texts. Experiments and evaluations show valid clarification texts [14].  

Measurement of classification performance can describe how well the classifier is in classifying 

data. Confusion matrix is one method that can analyze how well the classifier recognizes tuples from 

each class classification [15]. Confusion matrix is a table recording the results of classification work, 

can be seen in Table 1. 

Table 1. Confusion Matrix 

Original class 
Prediction class 

Negative Positive 

Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

Based on the table, the classification performance of accuracy and precision can be calculated. The 

accuracy value is the value of how big the accuracy of the data classification results, while precision is 

the ratio between the true positive class and all positive result classes. Comparing precision and 

accuracy parameters can be used as a reference in determining the best classification method [16]. 
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2.3. Machine Learning 

Machine learning is a method that allows machines to gain knowledge for problem solving by 

showing old cases accordingly. Machine learning considers the use of artificial intelligence (AI) 

methods although some of these technologies do not show intelligence directly but they are very 

useful for the design of Intelligent Decision Support Systems [17]. The method in machine learning 

consists of two approaches, namely supervised learning and unsupervised learning. Supervised 

learning is the process of inducing knowledge from a series of observations where the expected results 

are known beforehand. Usually supervised learning uses existing data [18]. 

2.4. Support Vector Machine (SVM) 

Support Vector Machines (SVM), a supervised machine learning technique, have been shown to 

perform well in multiple areas of biological analysis including evaluating microarray expression data 

[19], detecting remote protein homologies [20], and recognizing translation initiation sites [21]. We 

have also recently become aware of another effort that uses SVM in analyzing expression data [22]. 

Support Vector Machine (SVM) is a learning system that uses a hypothetical space in the form of 

linear functions in a high-dimensional feature and is trained by using learning algorithms that are 

based on optimization theory [23]. The level of accuracy in the model that will be generated by the 

transition process with SVM is very dependent on the kernel function and parameters used [24]. Based 

on its characteristics, the SVM method is divided into two, including Linear SVM and Non-Linear 

SVM. Linear SVM is linearly separated data, which separates the two classes on the hyperplane with 

soft margins. While Non-Linear SVM is implementing the function of kernel tricks on high-

dimensional space [25]. 

The basic concept of SVM is to find the best hyperplane separating two classes. As Figure 1 below 

shows the separation of 2 classes, namely class -1 and class +1 with the SVM method. Data is denoted 

as xi     While each label is denoted yi   {-1, + 1} for i = 1,2, ..., n, and i is the amount of data. 

 
 

Figure 1. Classification of two classes with the SVM method 

 

Both classes are assumed -1 and +1 can be separated completely by hyperplane dimension d, which is 

defined 

 ⃗⃗         (3) 

Information: 

w: weighting vector 

x: training data 

b: bias 

Pattern     which belongs to the class -1 (negative samples) can be formulated as a pattern that 

satisfies inequality  

 ⃗⃗            (4) 
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while the pattern that belongs to the class +1 (positive samples) 

 ⃗⃗            (5) 

The margin can be found by maximizing the value of the distance between the hyperplane and the 

closest point, that 
 

   ⃗⃗   
  ‖ ‖ is the norm of the vector w) [26]. 

It can be formulated as a Quadratic Programming (QP) problem, that is finding the minimum point 

equation 4, with these limits 

By minimizing:‖ ‖      (6) 

With the provision of :          )         (7) 

This problem can be solved by a variety of computational techniques, including Lagrange Multiplier. 

       )  
 

 
‖ ‖  ∑             )

 

   

 
 

(8) 

   are Lagrange multipliers, which is zero or positive (  ≥ 0). The optimal value of the equation 5 can 

be calculated by minimizing L to and b, and maximize L against   . With regard to the nature that at 

the optimal point gradient L = 0, equation 5 can be modified as the maximization problem only 

contain   . Just as the equation 2.6 below. 

∑   
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     ∑      

 

   

 
 

(10) 

From the result of this calculation is obtained    the most positive value. Data were correlated with 

positive    called a support vector [27]. 

The explanation is the assumption that both classes can be separated perfectly by the hyperplane. 

However, generally two classes in the input space cannot be separated completely. SVM technique 

reformulated by introducing soft margins to solve this problem. In soft margin, equation 3 is modified 

by slack variable         ) as,  

         )          (11) 

Thus the equation becomes: 

minimize: 
 

 
‖ ‖   ∑   

 
     (12) 

C selected parameters to control the trade-off between the margins and the error classification. Great 

value C means it will provide a greater penalty against the classification error. 

To solve non-linear problems, SVM is modified by including kernel functions. In the non-linear 

SVM, the data    mapped by the function     ) vector space into a higher dimension. In this new 

vector space, a hyperplane that separates these two classes can be constructed. Illustration of this 

concept can be seen in Figure 2. 
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Figure 2.  The function maps ϕ data to vector spaces of higher dimensions 

Some kernel functions that are commonly used for the function of a Linear kernel, Polynomial, 

Gaussian and Sigmoid [26]. Summary of some kernel functions are included in Table 1. 

Table 2. Commonly Used Kernels in SVM 

Kernel Function Definition 

Linear  (       )  (       ) 

Polynomial  (       )  (         )
 

 

Gaussian 

 (       )      ( 
||       ||

   ) 

Sigmoid  (       )                 ) 

2.5. Principal Component Analysis 

Principal Component Analysis (PCA) is a method that used to reduce a number of data dimensions to 

smaller dimensions. The purpose of PCA is to explain part of the variation in the set of variables 

observed on the basis of several dimensions. From a variable that is changed to many variables [28]. 

Principal component is a linear combination of variables that are observed, information contained in 

the principal component is a combination of all variables with a certain weight. The selected linear 

combination is a linear combination with the largest variety that contains the most information [29]. 

The package used to be able to run PCA on the R program is the psych package. 

2.6. Support Vector Machine in R Program 

R is a language computer and an interactive programming environment for data analysis and graphs. 

The main objective of environmental R is for enable and encourages the creation of good data 

analysis.  In the R program, there are several packages that can be used to facilitate the processing of 

data as desired. One package in R used in this research that the package Support Vector Machine 

(SVM).There are four related packages existing SVM in R program is a package e1071, kernlab, Klar, 

and svmpath. Each package SVM has a different function. E1071 package works for completion 

method parameters and visualization. Kernlab package serves to optimize the kernel base so as to 

provide the result of SVM implementation is flexible and expandable. Klar package serves to 

implement the analysis SVM classification as a regular separator. Svmpath package serves to provide 

the appropriate algorithm with the results of the SVM solution [30]. 

2.7. Dataset 

This study will use microarray gene expression data from Shipp [11] produced at the Whitehead 

Institute. The data used by the authors include secondary data obtained from the website 
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[https://ico2s.org/datasets/microarray.html]. The Data obtained has a sample of 77 objects for 2647 

lymphoma cancer genes. The variables in this study are the independent variable (x) and the dependent 

variable (y). The independent variable (x) in this study is in the form of gene expression data of 2647 

variables with a total observation (n) of 77 objects. The dependent variable (y) is a variable that 

contains classes consisting of two categories, namely the Diffuse (D) category and the Follicle (F) 

category.  

2.8. Application  

The research steps in this study are attached as follows: 

1. Take observational data on lymphoma cancer gene expression. 

2. Transforming gene expression data using Principal Component Analysis. 

3. Install the SVM package and a number of packages needed in the R program. 

4. Import the data that has been transformed into the R program. 

5. Data is divided into two stages, namely the training and testing phase by dividing the training 

data by 75% and testing data by 25% randomly. 

6. Determine the kernel functions to be used in SVM, namely the Linear, Polynomial, Gaussian, 

and Sigmoid kernels. 

7. Obtained the results of SVM classification predictions with the best kernel. 

8. Visualization with the SVM classification plot results with the kernel used 

3. Result and Discussion  

The SVM results in linear kernels obtained training predictions of 100% and testing of 94,73%. In the 

RBF kernel the training prediction is 100% and the testing test is 84,21%. In Sigmoid kernel, training 

prediction is obtained 96,55% and testing is 89,47%. In the Polynomial kernel the training prediction 

is 86,20% and the testing test is 68,42%. Thus, the best classification accuracy uses the linear kernel 

function are included in Table 2.  

Table 3. Classification Using SVM in Linear Kernel 

Parameter 

SVM – Type : C – Classification 

SVM – Kernel : Linear 

Cost : 1 

Number of Support vector : 31 

 

Based on the Table 2 the classification results obtained using a linear kernel and the value of cost 

parameter 1 with a support vector of 31. From the SVM training process we get the confusion matrix 

in Table 3.  

Table 4. Confusion Matrix Training Process with Linear Kernel 

Confusion matrix 
Predictive Value 

Diffuse Follicle 

True Value 
Diffuse 42 0 

Follicle 0 16 

Accuracy 1 

 

Table 3 explains the results of the classification process there are 16 training data classified into 42 

diffuse data class and 16 follicle data class. The level of prediction accuracy in training data is 100%. 

From the SVM testing process we get the confusion matrix in Table 4. 
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Table 5. Confusion Matrix Testing Process with Linear Kernel 

Confusion matrix 
Predictive Value 

Diffuse Follicle 

True Value 
Diffuse 15 1 

Follicle 0 3 

Accuracy 0,9473684 

 

Table 4 explains the results of the classification process there are 58 training data classified into 15 

diffuse data class and 3 follicle data class with 1 data misclassification. The level of prediction 

accuracy in testing data is 94,73%. For visualization, dimension reduction must be done using PCA 

method. After dimension reduction, created SVM process and plotting data is generated in Figure 3. 

 
Figure 3. Plotting Data Visualization 

From Figure 3 it is known that the red pattern is the classification of diffuse class data, while the blue 

pattern is the classification of follicle class data. Purple pattern is a support vector. Then get a 

hyperplane by maximizing the margin of the support vector that supports in Figure 4.  

 
Figure 4. Process Training Data Visualization  

In Figure 4 that a straight line is a hyperplane that separates the diffuse class and the follicle class So 

that the best hyperplane is obtained to fix 2 classes.  

4. Conclusion 

The best classification results for lymphoma cancer gene expression are using a 100% linear kernel in 

training data and 94.73% in testing data. To visualize the results of the classification, it is necessary to 

do a PCA which aims to reduce the data dimensions. Furthermore, using the SVM method, it is 
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obtained the plot of Diffuse class and the Follicle class, so that the best hyperplane is obtained that 

separates the two classes.  
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