Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/85193
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnam, Khairul-
dc.contributor.authorAl-Jumaily, Adel-
dc.date.accessioned2018-04-04T03:11:51Z-
dc.date.available2018-04-04T03:11:51Z-
dc.date.issued2018-04-04-
dc.identifier.isbn978-3-319-12636-4-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/85193-
dc.description21st International Conference, ICONIP 2014 Kuching, Malaysia, November 3–6, 2014 Proceedings, Part Ien_US
dc.description.abstractThis paper proposes a new structure of wavelet extreme learning machine i.e. an adaptive wavelet extreme learning machine (AW-ELM) for finger motion recognition using only two EMG channels. The adaptation mechanism is performed by adjusting the wavelet shape based on the input information. The performance of the proposed method is compared to ELM using wavelet (W-ELM0 and sigmoid (Sig-ELM) activation function. The experimental results demonstrate that the proposed AW-ELM performs better than W-ELM and Sig-ELM.en_US
dc.language.isoenen_US
dc.subjectWavelet extreme learning machineen_US
dc.subjectadaptiveen_US
dc.titleAdaptive Wavelet Extreme Learning Machine (AW-ELM) for Index Finger Recognition Using Two-Channel Electromyographyen_US
dc.typeProsidingen_US
Appears in Collections:LSP-Conference Proceeding

Files in This Item:
File Description SizeFormat 
F.T_Prosiding_Khairul Anam_Adaptive Wavelet.pdf781.32 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.