Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/82066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnam, Khairul
dc.contributor.authorPrihastono, Prihastono
dc.contributor.authorWicaksono, Handy
dc.contributor.authorEffendi, Rusdhianto
dc.contributor.authorAdji S, Indra
dc.contributor.authorKuswadi, Son
dc.contributor.authorJazidie, Achmad
dc.contributor.authorSampei, Mitsuji
dc.date.accessioned2017-10-11T07:55:25Z
dc.date.available2017-10-11T07:55:25Z
dc.date.issued2017-10-11
dc.identifier.isbn978-979-8689-12-3
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/82066
dc.descriptionProceeding of the 11th Industrial Electronics 2009en_US
dc.description.abstractFuzzy Q-learning is extending of Q-learning algorithm that uses fuzzy inference system to enable Qlearning holding continuous action and state. This learning has been implemented in various robot learning application like obstacle avoidance and target searching. However, most of them have not been realized in embedded robot. This paper presents implementation of fuzzy Q-learning for obstacle avoidance navigation in embedded mobile robot. The experimental result demonstrates that fuzzy Q-learning enables robot to be able to learn the right policy i.e. to avoid obstacle.en_US
dc.language.isoenen_US
dc.subjectfuzzy q-learningen_US
dc.subjectobstacle avoidanceen_US
dc.titleEMBEDDED LEARNING ROBOT USING FUZZY Q-LEARNING FOR OBSTACLE AVOIDANCE BEHAVIORen_US
dc.typeProsidingen_US
Appears in Collections:LSP-Conference Proceeding

Files in This Item:
File Description SizeFormat 
F. T_Prosiding_Khairul Anam_Embedded_Learning_Robot_with_Fuzzy_Q-Lea.pdf704.69 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.