Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/79805
Title: | AMMI Model for Yield Estimation in Multi-Environment Trials: A Comparison to BLUP |
Authors: | Sa'diyah, Halimatus Hadi, Alfian Futuhul |
Keywords: | Genotype-environmental experiment BLUP AMMI; random effect.. |
Issue Date: | 23-Mar-2017 |
Abstract: | Maximum information from the Multi-environment trials (MET) can be reached by seeking the best estimator of each genotype’s mean yield in a given environment. AMMI (additive main-effects and multiplicative interaction) is popular for analyzing MET data with fixed effect. When the environment included in MET is the sample of large environment, then environment effects regarded as random may be preferable, so the model is called mixed model. The assessment of it may be viewed as a problem of prediction rather than estimation. The prediction of the outcome of random variables is commonly done by Best Linear Unbiased Prediction (BLUP).Both methods are compared using the experimental rice data set from the Indonesian Rice Consortium’s research which aims to evaluate the phenotypic performance of rice (Oryza sativa). Applying postdictive success method resultedAMMI10 as the best model, and its Root Mean Square Error Prediction is smaller than BLUP. AMMI was found to outperform BLUP in this rice dataset. |
Description: | Agriculture and Agricultural Science Procedia 9 ( 2016 ) 163 – 169 |
URI: | http://repository.unej.ac.id/handle/123456789/79805 |
ISSN: | 2210-7843 |
Appears in Collections: | LSP-Conference Proceeding |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
20. Halimatus S, Alfian FH_FanRes 2015_1.pdf | 3.57 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.