Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/73338
Title: Pelabelan Total Super $(a,d)$-Sisi Antimagic pada Graf Shackle Fan Berorder 5
Authors: Arika Indah Kristiana, Dafik
Keywords: Super edge antimagic total labeling, generalized shackle, fan
Issue Date: 18-Feb-2016
Series/Report no.: Semnas Mat dan Pembelajaran;5/11/2015
Abstract: et $G$ be a simple graph of order $p$ and size $q$. The graph $G$ is called an {\it $(a,d)$-edge-antimagic total graph} if there exist a bijection $f : V(G)\cup E(G) \to \{1,2,\dots,p+q\}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequence with first term $a$ and common difference $d$. Such a graph is called {\it super} if the smallest possible labels appear on the vertices. In this paper we study a super edge-antimagicness of generalized shackle of fan of order five, denoted by $gshack(F_5,e,n)$. The result shows that the graph $gshack(F_5,e,n)$ admits a super $(a,d)$-edge antimagic total labeling for some feasible $d\le 2$.
URI: http://repository.unej.ac.id/handle/123456789/73338
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
Arika IK Kombinasi.pdf124.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.