Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/73194
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | K. Rosyidah, Dafik, S. Setiawani | - |
dc.date.accessioned | 2016-02-02T06:50:44Z | - |
dc.date.available | 2016-02-02T06:50:44Z | - |
dc.date.issued | 2016-02-02 | - |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73194 | - |
dc.description.abstract | A graph $G(V,E)$ has a $H$-Covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $H$. The $(a,d)-H$ antimagic covering on the G graph is a biijective functin of $f:V(G)\cup E(G) \rightarrow \{1,2,...,|V(G)|+|E(G)|\}$ till all of the $H'$ subgraphs that isomorphic to H have weight $w(H)=\sum_{v\epsilon V(H')}f(v)+\sum_{e\epsilon E(H')}f(e)$ from an arithmatic sequence $\{a,a+d,a+2d,...,a+(t-1)d\}$, where $a$ and $d$ is the positive integres and $t$ is the number of all subgraphs $H'$ isomorphic to $H$. Such a labeling is called super if $f:V(G)\rightarrow \{1,2,...,|V(G)|\}$. This research aims to determine the super $(a, d)-S_3$ antimagic total decomposition of Helm graph and also we will use it to develop \textit{chipertext} from a secret message. | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.subject | Super (a, d)-S_3, Decomposition, Helm Graph, and ciphertext | en_US |
dc.title | Antimagic Total Dekomposisi Graf Helm dan untuk Pengembangan Ciphertext | en_US |
dc.type | Working Paper | en_US |
Appears in Collections: | Fakultas Matematika dan Ilmu Pengetahuan Alam |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
kholifatur kombinasi.pdf | 191.6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.