Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/56814
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYuliani Setia Dewi-
dc.date.accessioned2014-04-10T04:32:19Z-
dc.date.available2014-04-10T04:32:19Z-
dc.date.issued2014-04-10-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/56814-
dc.description.abstractThe LASSO is a shrinkage and selection method for linear regression. It minimizes sum square of residual subject to sum of absolute coefficient less than a constant. Adaptive Ridge is special form of Ridge Regression, balancing the quadratic penalization on each parameter of the model. This paper describe the equivalence between LASSO (Least Absolute Shrinkage and Selection Operator) and Adaptive Ridge.en_US
dc.language.isootheren_US
dc.relation.ispartofseriesMajalah Ilmiah Matematika dan Statistika;Volume 10, Juni 2010-
dc.subjectLASSO, Ridge Regression, Adaptive Ridge, penalizationen_US
dc.titleLEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) DAN ADAPTIVE RIDGE (Least Absolute Shrinkage and Selection Operator (LASSO) and Adaptive Ridge)en_US
dc.typeArticleen_US
Appears in Collections:Fakultas Matematika & Ilmu Pengetahuan Alam

Files in This Item:
File Description SizeFormat 
4 Yulimathmipa_1.pdf70.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.