Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/56814
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yuliani Setia Dewi | - |
dc.date.accessioned | 2014-04-10T04:32:19Z | - |
dc.date.available | 2014-04-10T04:32:19Z | - |
dc.date.issued | 2014-04-10 | - |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/56814 | - |
dc.description.abstract | The LASSO is a shrinkage and selection method for linear regression. It minimizes sum square of residual subject to sum of absolute coefficient less than a constant. Adaptive Ridge is special form of Ridge Regression, balancing the quadratic penalization on each parameter of the model. This paper describe the equivalence between LASSO (Least Absolute Shrinkage and Selection Operator) and Adaptive Ridge. | en_US |
dc.language.iso | other | en_US |
dc.relation.ispartofseries | Majalah Ilmiah Matematika dan Statistika;Volume 10, Juni 2010 | - |
dc.subject | LASSO, Ridge Regression, Adaptive Ridge, penalization | en_US |
dc.title | LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) DAN ADAPTIVE RIDGE (Least Absolute Shrinkage and Selection Operator (LASSO) and Adaptive Ridge) | en_US |
dc.type | Article | en_US |
Appears in Collections: | Fakultas Matematika & Ilmu Pengetahuan Alam |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
4 Yulimathmipa_1.pdf | 70.64 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.