Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/128069
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMUSLIMAH, Nabila Fortune
dc.date.accessioned2025-09-03T06:49:59Z
dc.date.available2025-09-03T06:49:59Z
dc.date.issued2024-07-18
dc.identifier.nim202410101142en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/128069
dc.descriptionFinalisasi tgl 3 Oktober 2025
dc.description.abstractThe increasing number of unresolved tax dispute cases in the Indonesian Tax Court, reaching 9,201 cases in 2024, highlights a significant challenge. To address this issue, the Ministry of Finance has implemented the e-tax court to enhance administrative and trial efficiency. However, additional tools are needed to assist judges in decision-making. This model is essential due to the necessity of adhering to deadlines in dispute resolution. This study develops a prediction model using historical tax court decision data categorized into three outcomes: 'Reject,' 'Fully Approve,' and 'Partially Approve.' The dataset includes 2,186 decisions with 14 case information attributes. The methods applied include data collection, preprocessing, classification, and evaluation with the optimal model scenario using an 80:10:10 split and 6-fold cross-validation. The test results indicate an accuracy of 81.7% and an F1 score of 81.5%. This indicates that the model performs quite well in predicting the target classes, although there are still some misclassifications that need to be addressed for further research.en_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectPREDICTIONen_US
dc.subjectLIGHTGBMen_US
dc.subjectTAX COURTen_US
dc.titlePrediksi Hasil Putusan Pengadilan Pajak Kementerian Keuangan Menggunakan Light Gradient Boosting Machine (Light GBM)en_US
dc.typeSkripsien_US
dc.identifier.prodiSistem Informasien_US
dc.identifier.pembimbing1Fajrin Nurman Arifin, S.T., M.Eng.en_US
dc.identifier.pembimbing2Diah Ayu Retnani Wulandari, ST., M.Eng.en_US
dc.identifier.validatorvalidasi_repo_ratna_September 2025en_US
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
202410101142_Skripsi.pdf
  Until 2030-09-02
1.49 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools