Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/126553
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHIDAYAT, Aulia Putri-
dc.date.accessioned2025-06-16T01:54:04Z-
dc.date.available2025-06-16T01:54:04Z-
dc.date.issued2024-07-25-
dc.identifier.nim202410103033en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/126553-
dc.descriptionFinalisasi oleh Taufik tgl 16 Juni 2025en_US
dc.description.abstractMental health is crucial for decision-making, relationship-building, and daily life. Disorders like depression and anxiety are often undiagnosed and untreated. This study aims to use Long Short-Term Memory (LSTM) algorithms to detect depression and anxiety in social media text data. The study begins with collecting text data from kaggle, containing expressions of personal feelings. This data undergoes a series of pre-processing steps, including data cleaning, emoji replacement, case folding, punctuation removal, tokenization, normalization, stopword removal, and lemmatization. Key text features are extracted using word embedding methods, specifically Word2Vec, to capture the semantic meaning of words. The LSTM model is built using the Keras or TensorFlow framework and evaluated using metrics such as accuracy, precision, recall, and F1 score. The model is then tested on real twitter data, which is again pre-processed before being used to detect depression and anxiety. Detection results show the percentage of tweets from each username indicating depression or anxiety, categorized by depression levels. The study found that the LSTM algorithm effectively detects depression and anxiety with an accuracy of 89% on an 80%-20% data split. Implementing this technology enables early detection of mental disorders, providing timely assistance, and enhancing mental health awareness and support on online platforms.en_US
dc.description.sponsorshipDosen Pembimbing Utama: Prof. Dr.Saiful Bukhori ST., M.Kom Dosen Pembimbing Anggota: Muhammad `Ariful Furqon, S.Pd., M.Komen_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectMENTAL HEALTHen_US
dc.subjectDISORDERS LIKE DEPRESSION AND ANXIETYen_US
dc.titleDeteksi Depresi dan Kecemasan pada Data Tekstual Menggunakan Long Short-Term Memory (LSTM)en_US
dc.typeSkripsien_US
dc.identifier.prodiInformatikaen_US
dc.identifier.pembimbing1Prof. Dr.Saiful Bukhori ST., M.Komen_US
dc.identifier.pembimbing2Muhammad `Ariful Furqon, S.Pd., M.Komen_US
dc.identifier.validatorvalidasi_repo_ratna_Mei 2025en_US
dc.identifier.finalizationTaufiken_US
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
Skripsi Repository - Aulia Putri Hidayat.pdf
  Until 2030-08-01
1.81 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools