Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/125451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKURNIAWAN, Johar Bayu-
dc.date.accessioned2025-02-20T01:40:55Z-
dc.date.available2025-02-20T01:40:55Z-
dc.date.issued2024-01-15-
dc.identifier.nim202410101054en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/125451-
dc.descriptionFinalisasi oleh Taufik Tgl 20 Pebruari 2025en_US
dc.description.abstractThis research addresses the enhancement of code smell recognition through an extensive investigation into two prominent types, Large Class and Long Method, utilizing advanced machine learning techniques. The study commences by establishing a comprehensive understanding of the code smell phenomenon, its detrimental impact on software quality, and the significance of efficient detection methods. Employing a novel approach, the research leverages two primary datasets, Large Class and Long Method, and introduces a meticulous data collection process, incorporating numerical features representing various program metrics. The preprocessing stage involves normalization and feature selection, refining the datasets for subsequent analysis. The utilization of the SMOTEENN technique proves instrumental in addressing class imbalance, resulting in a more balanced distribution and improved correlation between features and target variables. Model development encompasses hyperparameter optimization using RandomizedSearchCV and cross-validation, yielding refined decision trees, random forests, and boosting algorithms. The results showcase remarkable performance enhancements, outperforming previous studies, with accuracy and Matthews Correlation Coefficient reaching up to 99.69% and 99.38%, respectively, for Long Method detection using XGBoost and SMOTEENN. The overall findings underscore the efficacy of ensemble methods and data augmentation techniques in bolstering code smell recognition models. The research concludes by emphasizing the substantial advancements achieved in comparison to prior studies and suggests future investigations into diverse code smell types to further enrich dataset diversity and improve the robustness of the models.en_US
dc.description.sponsorshipProf. Dr. Saiful Bukhori, ST., M.Kom. Windi Eka Yulia Retnani, S.Kom., M.T.en_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectCODE SMELLen_US
dc.subjectPYTHONen_US
dc.subjectMACHINE LEARNINGen_US
dc.subjectSMOTEENNen_US
dc.subjectENSEMBLE MODELen_US
dc.subjectLARGE CLASSen_US
dc.subjectLONG METHODen_US
dc.titlePeningkatan Performa Rekognisi Code smell pada Bahasa Pemrograman Python Menggunakan Metode SMOTEENN dan Decision Tree Pruningen_US
dc.typeSkripsien_US
dc.identifier.prodiSistem Informasien_US
dc.identifier.pembimbing1Prof. Dr. Saiful Bukhori, ST., M.Kom.en_US
dc.identifier.pembimbing2Windi Eka Yulia Retnani, S.Kom., M.T.en_US
dc.identifier.validatorvalidasi_repo_ratna_Februari 2025en_US
dc.identifier.finalizationTaufiken_US
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
skripsi + wm.pdf
  Until 2029-03-01
1.21 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools