Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/123395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorADRIENUFA, Kharisma Trinanda-
dc.date.accessioned2024-08-12T02:31:58Z-
dc.date.available2024-08-12T02:31:58Z-
dc.date.issued2023-07-26-
dc.identifier.nim192410103019en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/123395-
dc.description.abstractDocument clustering can’t avoid the problem of high dimensionality, which can be overcome by combining the advantage of statistical and semantic features. This study aims to determine the performance of clustering with the Stamantic (statistical and semantic) feature extraction technique compared to the several Bag Of Words Model (Bag Of All Word, Bag Of Noun, Bag Of Noun and Adjective) as well as a comparison between Spherical K-Means and K-Means++ clustering algorithm. Stamantic feature extraction use the Wordnet (Wn) database to form semantic features, while statistical features are obtained from TF-IDF (Term Frequency Inverse Document Frequency) word sense. Evaluation were carried out on clustering results with several metrics. The highest Silhouette score is 0.162213 on the BONA feature from Pubmed dataset which clustered with K-Means++ algorithm. The highest Purity score around 0.949643 on the BONA feature from Scopus dataset with Spherical K-Means algorithm. The highest AMI (Adjusted Mutual Information) score is 0.880835 on the BONA feature from Scopus dataset with Spherical K-Means clustering algorithm. The test results show that the Stamantic feature loses to all BOW features. Due to the loss data information from the effect of using Wn library and disambiguation process which inappropriate.en_US
dc.description.sponsorshipBapak Achmad Maududie, ST., M.Sc. Bapak Tio Dharmawan, S.Kom., M.Komen_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectClusteringen_US
dc.subjectStamantic Spherical K-Meansen_US
dc.titlePeningkatan Performa Clustering pada Large Text Dataset Menggunakan Stamantic Spherical K-Meansen_US
dc.title.alternativeClustering Enhancement Of Large Text Dataset Using Stamantic Spherical K-Meansen_US
dc.typeSkripsien_US
dc.identifier.prodiInformatikaen_US
dc.identifier.pembimbing1Achmad Maududie ST, M.Sc.en_US
dc.identifier.pembimbing2Tio Dharmawan, S.Kom., M.Komen_US
dc.identifier.validatorvalidasi_repo_ratna_juni_2024en_US
dc.identifier.finalization0a67b73d_2024_07_tanggal 10en_US
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
skripsi repo.pdf
  Until 2028-01-27
1.02 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools