Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/123127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRAMADHANI, Salsabilla-
dc.date.accessioned2024-08-08T03:46:13Z-
dc.date.available2024-08-08T03:46:13Z-
dc.date.issued2024-07-19-
dc.identifier.nim202410101116en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/123127-
dc.descriptionFinalisasi repositori tanggal 8 Agustus 2024_Kurnadi_Raraen_US
dc.description.abstractThis research implements the LRFM model and K-Means algorithm to find customer segments and analyze each segment. The LRFM model determines customer purchasing behavior using 4 variables (Length, Recency, Frequency, and Monetary) processed from sales and customer data of Mulia Jasa Aluminum and Glass Business. The LRFM model will be grouped using the K-Means algorithm and the Silhouette method to determine the segment of customer purchasing behavior. This research adapts the CRISP-DM (Cross Industry Standard Process for Data Mining) framework for data analysis. This research aims to help Mulia Jasa business find its customer groups as a consideration for making more targeted decisions in determining marketing strategies and services to customers. The results of this study are 3 customer clusters including cluster 0 with total data of 132 customers, cluster 1 with total data of 144 customers, and cluster 2 with total data of 28 customers.en_US
dc.description.sponsorship1. Priza Pandunata, S.Kom., M.Sc. 2. Fajrin Nurman Arifin, ST.,M.Eng.en_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectCustomer Segmentationen_US
dc.subjectLRFM Modelen_US
dc.subjectK-Meansen_US
dc.subjectSilhouetteen_US
dc.titleImplementasi Model LRFM dan Algoritma K-Means dalam Segmentasi Pelanggan Usaha Aluminium dan Kacaen_US
dc.typeSkripsien_US
dc.identifier.prodiSistem Informasien_US
dc.identifier.pembimbing1Priza Pandunata, S.Kom., M.Sc.en_US
dc.identifier.pembimbing2Fajrin Nurman Arifin, S.T., M.Eng.en_US
dc.identifier.validatorvalidasi_repo_ratna_juli_2024en_US
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
Watermark_Skripsi Salsabilla Ramadhani.pdf
  Until 2029-07-25
2.13 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools