Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/122844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAHSNAI, Achmad Alfan-
dc.date.accessioned2024-07-31T08:21:21Z-
dc.date.available2024-07-31T08:21:21Z-
dc.date.issued2024-07-15-
dc.identifier.nim202410103024en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/122844-
dc.descriptionFinalisasi oleh Taufik Tgl 31 Juli 2024en_US
dc.description.abstractNutritional deficiency anemia, caused by inadequate absorption of essential substances for red blood cell formation, affects about 1.5 billion people globally, with varying prevalence rates. Diagnosis typically relies on Complete Blood Count (CBC) tests, which cannot specify anemia types, and advanced tests are often unavailable in smaller healthcare centers due to high costs. Therefore, developing cost-effective diagnostic methods is essential. This study develops a decision support system using machine learning algorithms for classifying nutritional deficiency anemia types based on CBC results. An ensemble majority voting approach, combining decision tree, random forest, and logistic regression algorithms, was optimized using hyperparameter tuning with GridSearchCV. Two voting methods, hard voting and soft voting, were applied. The dataset includes blood test results from 15,300 patients from 2013 to 2018, provided by Gaziosmanpaşa University, Tokat, Turkey. Results show that data preprocessing and hyperparameter tuning significantly improve the performance of the algorithms. Basic models without these optimizations performed worse. The hard voting ensemble achieved 99.94% in all metrics, while the soft voting ensemble achieved 99.95%. Combining optimized models in an ensemble improves classification performance and consistency. This study concludes that the soft voting ensemble approach significantly enhances the accuracy of nutritional deficiency anemia diagnosis using CBC results, offering an effective and efficient alternative to advanced tests, especially in resource-limited settings.en_US
dc.description.sponsorshipDr. Dwiretno Istiyadi Swasono. ST., M.Kom. Yudha Alif Auliya S.Kom, M.Kom.en_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectANEMIAen_US
dc.subjectMAJORITY VOTINGen_US
dc.subjectHYPERPARAMETER TUNINGen_US
dc.titleKlasifikasi Penyakit Anemia Defisiensi Gizi Menggunakan Majority Voting Ensembleen_US
dc.title.alternativeClassification of Nutritional Deficiency Anemia Diseases Using Majority Voting Ensembleen_US
dc.typeSkripsien_US
dc.identifier.prodiInformatikaen_US
dc.identifier.pembimbing1Dr. Dwiretno Istiyadi Swasono. ST., M.Kom.en_US
dc.identifier.pembimbing2Yudha Alif Auliya S.Kom, M.Kom.en_US
dc.identifier.validatorvalidasi_repo_ratna_juli_2024en_US
dc.identifier.finalizationTaufiken_US
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
[Skripsi] Upload Repository.pdf
  Until 2029-07-23
1.09 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools