Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/119574
Title: Deteksi Kerusakan Jalan Beraspal Menggunakan YOLOv5
Authors: SETYAWAN, Bima
Keywords: Deteksi Objek
YOLOv5
Kerusakan Jalan
Issue Date: 15-Jan-2023
Publisher: Fakultas Ilmu Komputer
Abstract: Kerusakan jalan beraspal merupakan kondisi dimana jalan mengalami kerusakan sehingga dapat mengurangi fungsi jalan sebagai jalur transportasi. Menurut data kondisi permukaan jalan 2021, kerusakan jalan dengan tipe kondisi rusak ringan mencapai 2646,43 KM dan kondisi rusak berat mencapai 1202,72 KM di Indonesia. Kerusakan jalan beraspal dapat mengganggu pengguna jalan sehingga terjadi hal – hal yang tidak diinginkan. Dengan menerapakn sistem deteksi dini menjadikan pengguna jalan dapat mengantisipasi langkah kedepannya sehingga mengurangi resiko terjadinya kecelakaan. YOLOv5 merupakan model untuk melakukan objek deteksi yang memiliki kecepatan deteksi dan akurasi yang tinggi. Proses deteksi objek akan dilatih dengan menggunakan dataset sebanyak 3321 gambar yang memilki 4 kategori kelas yaitu, alligator cracking, longitudinal cracking, lateral cracking, dan pothole. Terdapat 3 model modifikasi sebagai bahan perbandingan dengan model original. Modifikasi pertama dilakukan dengan menambahkan detection head, modikasi kedua dengan menambahkan proses C3 pada stage 4, dan modifikasi ketiga menambahkan teknik dropout. Perbandingan mAP didapatkan dengan nilai terbaik 72,6% pada modifikasi kedua. Uji coba model dilakukan dengan menerapkan model ke dalam mobile app dan diuji langsung dengan menggunakan mobil pada kecepatan -+10 km/jam dengan tatak letak device di kaca depan dengan posisi potrait. Hasilnya berupa model dengan modifikasi pertama dan dropout belum dapat mendeteksi beberapa objek sedangkan untuk model dengan modifikasi kedua dapat dengan baik mendeteksi beberapa objek dan objek yang lebih kecil dengan jarak -+8 m
URI: https://repository.unej.ac.id/xmlui/handle/123456789/119574
Appears in Collections:UT-Faculty of Computer Science

Files in This Item:
File Description SizeFormat 
WATERMARK SKRIPSI.pdf
  Until 2029-06-17
1.59 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools