Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/116047
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFEBRIALYANO, Geenza Devis-
dc.date.accessioned2023-05-10T08:27:03Z-
dc.date.available2023-05-10T08:27:03Z-
dc.date.issued2023-01-11-
dc.identifier.nim191910301065en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/116047-
dc.descriptionFinalisasi unggah file repositori tanggal 10 Mei 2023_Kurnadien_US
dc.description.abstractTinggi rendahnya curah hujan tidak dapat ditentukan secara pasti, tetapi dapat diprediksi ataupun diperkirakan. Dengan menggunakan data historis jumlah hujan di masa lalu, dimungkinkan untuk memperkirakan berapa banyak hujan yang akan terjadi di masa mendatang. Ada banyak cara untuk memprediksi curah hujan di suatu lokasi, salah satunya dengan menggunakan data satelit. Salah satu satelit yang digunakan untuk mengetahui data curah hujan adalah CHIRPS (Climate Hazards Group Infrared Precipitation with Station Data) dan GPM (Global Precipitation Measurement). Satelit CHIRPS menghasilkan produk curah hujan berbasis satelit dengan resolusi spasial 0,05° x 0,05°, sedangkan satelit GPM memiliki resolusi spasial 0,10° x 0,10°. Dalam penelitian ini menggunakan data satelit CHIRPS dan GPM selama 10 tahun (2012 – 2021) dan data hujan observasi di DAS Bajulmati selama 10 tahun (2012 – 2021). Data hujan satelit CHIRPS dan GPM akan dilakukan analisis tingkat hubungan yaitu uji korelasi dengan data hujan observasi. Untuk memprediksi curah hujan yang sesuai dengan lokasi penelitian perlu diketahui tingkat keakuratan dari kedua data satelit. Tingkat keakuratan dilakukan menggunakan metode Jaringan Syaraf Tiruan untuk mengetahui pengaruh 2 data Regresi (R) dan tingkat error (MSE). Jaringan Syaraf Tiruan (JST) merupakan salah satu metode peramalan curah hujan dan memiliki keunggulan dalam memberikan hasil terbaik dalam menentukan tingkat error. Dalam pemodelan JST data hujan satelit CHIRPS dan satelit GPM merupakan data input dan data hujan observasi merupakan data target. Didapatkan nilai korelasi satelit CHIRPS dengan observasi sebesar 0.61 – 0.8. Nilai tersebut dapat dikategorikan memiliki tingkat hubungan kuat sampai sangat kuat, sedangkan satelit GPM mendapatkan hasil korelasi sebesar 0.59 – 0.68 dan dapat dikategorikan hubungan kuat. Hasil pemodelan JST menghasilkan nilai terbaik dari hasil pelatihan satelit CHIRPS menggunakan hidden Neuron 20 dengan nilai R training 0.8625, R validation 0.9146, R testing 0.93829 dengan nilai MSE 0.108. Dan nilai terbaik dari hasil pelatihan satelit GPM menggunakan hidden Neuron 15 dengan nilai R training 0.8019, R validation 0.812, R testing 0.922 dengan nilai MSE 0.147. Data output JST satelit CHIRPS dan GPM memiliki kemiripan pola dengan data hujan observasi sehingga dapat dinyatakan baik untuk prediksi curah hujan bulanan.en_US
dc.description.sponsorshipDosen Pembimbing Utama : Dr. Ir. Gusfan Halik, S.T.,M.T Dosen Pembimbing Anggota : Saifurridzal, S.T.,M.Engen_US
dc.language.isootheren_US
dc.publisherFakultas Tekniken_US
dc.subjectPREDIKSI CURAH HUJANen_US
dc.subjectDATA HUJANen_US
dc.subjectSATELIT CHIRPSen_US
dc.subjectDAS BAJULMATIen_US
dc.titlePrediksi Curah Hujan Menggunakan Data Hujan Satelit CHIRPS dan GPM di DAS Bajulmatien_US
dc.typeSkripsien_US
dc.identifier.prodiS1 Teknik Sipilen_US
dc.identifier.pembimbing1Dr. Ir. Gusfan Halik, S.T., M.T.en_US
dc.identifier.pembimbing2Saifurridzal., S.T., M.Eng.en_US
dc.identifier.validatorKacung-10 Februari 2023en_US
Appears in Collections:UT-Faculty of Engineering

Files in This Item:
File Description SizeFormat 
doc.pdf
  Until 2028-02-10
3.11 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools