Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/113395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHADI, Alfian F.-
dc.contributor.authorNUSYIRWAN-
dc.contributor.authorNOTODIPUTRO, Khairil Anwar-
dc.date.accessioned2023-03-24T06:10:32Z-
dc.date.available2023-03-24T06:10:32Z-
dc.date.issued2008-11-30-
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/113395-
dc.description.abstractThe Poisson-Gamma (Negative Binomial) distribution is considered to be able to handle overdispersion better than other distributions. Estimation of the dispersion parameter, φ, is thus important in refining the predicted mean when the Empirical Bayes (EB) is used. In GLM’s sense dispersion parameter (φ) have effects at least in two ways, (i) for Exponential Dispersion Family, a good estimator of φ gives a good reflection of the variance of Y, (ii) although, the estimated β doesnt depend on φ, estimating β by maximizing log-likelihood bring us to Fisher’s information matrix that depends on its value. Thus, φ does affect the precision of β, (iii) a precise estimate of φ is important to get a good confidence interval for β. Several estimators have been proposed to estimate the dispersion parameter (or its inverse). The simplest method to estimate φ is the Method of Moments Estimate (MME). The Maximum Likelihood Estimate (MLE) method, first proposed by Fisher and later developed by Lawless with the introduction of gradient elements, is also commonly used. This paper will discuss the use of those above methods estimating φ in Empircal Bayes and GLM’s of Poisson-Gamma model that is applied on Small Area Estimation.en_US
dc.language.isootheren_US
dc.publisherFMIPA Universitas Negeri Yogyakartaen_US
dc.subjectSmall Area Estimationen_US
dc.subjectEmpirical Bayesen_US
dc.subjectPoisson-Gammaen_US
dc.subjectNegative Binomialen_US
dc.subjectdispersion parameteren_US
dc.subjectMLEen_US
dc.subjectMMEen_US
dc.titlePenduga Maksimum Likelihood untuk Parameter Dispersi Model Poisson-Gamma dalam Konteks Pendugaan Area Kecilen_US
dc.typeArticleen_US
Appears in Collections:LSP-Conference Proceeding

Files in This Item:
File Description SizeFormat 
MIPA_Penduga Maksimum Likelihood untuk Parameter Dispersi Model.pdf651.47 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.