Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/113207
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKHAKIM, Lukmanul-
dc.date.accessioned2023-03-20T07:54:40Z-
dc.date.available2023-03-20T07:54:40Z-
dc.date.issued2022-07-29-
dc.identifier.nim181910201057en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/113207-
dc.description.abstractPerkembangan teknologi robotika berkembang sangat pesat termasuk di Indonesia, pada setiap tahunnya diselengarakan kompetisi robotika yang biasa disebut dengan KRI (Kontes Robot Indonesia). Salah satu cabang yang di kompetisikan adalah KRAI (Kontes Robot Abu Indonesia) yang mengacu pada kompetisi internasional ABUROBOCON, untuk tahun 2022 kompetisi tersebut mengusung tema “Lagori” yang mengharuskan setiap tim memiliki 2 robot yang memiliki tugas berbeda – beda. Pada penelitian ini menggunakan robot ke 1 yang bertugas untuk menjatuhkan objek bola yang di bawa oleh lawan, untuk meningkatkan efisiensi kerja robot penelitian ini mengembangkan sistem tracking objek yang bertujuan menjadikan robot berjalan secara semi – autonomus berbasis deep learning. Robot abu semi – autonomus dirancang secara manual dengan 1 buah motor DC yang berfungsi untuk pergerakan robot ditambah dengan mekanik pendukung lainnya serta ditambahkan kamera dibagian atas agar robot dapat mengenali objek. Pada sistem elektrikal robot terdapat beberapa komponen yang digunakan antara lain Teensy 4.1, driver motor, motor DC dan Jetson Nano. Untuk pengendalian robot digunakan sebuah webcam yang akan mengirim data ke Jetson Nano kemudian data data tersebut diolah untuk memberikan intruksi yang sesuai ke Teensy 4.1. Robot abu semi – autonomus juga dilengkapi dengan sistem pendeteksian objek bola dengan metode Convolutional Neural Network algoritma yolov5 yang terdiri dari 213 layer. Sebelum implementasi pendeteksian dibutuhkan model yang didapatkan setelah proses training yang membutuhkan 2.500 data gambar training dan 353 data testing dengan hyperparameter 100 epoch dan 24 batch dan proses tersebut menghasilkan model dengan nilai mAP 0.850. Berdasarkan pengujian untuk mengetahui kehandalan model, sistem pendeteksian mampu mencapai nilai akurasi deteksi 78.3 % - 100 % pada pengujian secara offline dan secara real time dengan perbedaan jarak objek serta intensitas cahaya saat pendeteksian objek. Kemudian dalam sistem tracking objek disertai pergerakan robot yang telah dilakukan pengujian sebanyak 10 kali dengan perbedaan jangkauan sudut objek dihasilkan waktu rata – rata tempuh 2.27 detik untuk mencapai titik tengah objek. Kesimpulan yang didapatkan dari penelitian ini adalah diperlukan model CNN yolov5s untuk menghasilkan akurasi pengenalan objek bola yang tinggi. Metode yolo CNN juga mampu dapat mendeteksi objek bola dengan baik meskipun dengan jarak dan intensitas cahaya yang berbeda.en_US
dc.language.isotren_US
dc.publisherFakultas Tekniken_US
dc.subjectRoboten_US
dc.subjectCNNen_US
dc.subjectYoloen_US
dc.subjectTracking Objeken_US
dc.subjectImage Processingen_US
dc.titleRancang Bangun Robot Semi - Autonomus untuk Tracking Bola pada Robot Abu Universitas Jember Berbasis Deep Learningen_US
dc.typeSkripsien_US
dc.identifier.prodiS1 Teknik Elektroen_US
dc.identifier.pembimbing1Ir. Khairul Anam, S. T.,M. T., Ph. D., IPM.en_US
dc.identifier.pembimbing2Ir. Gamma Aditya Rahardi, S. T., M. T.en_US
dc.identifier.validatorArinen_US
dc.identifier.finalizationFinalisasi Tanggal 20 Maret 2023_M. Arif Tarchimansyahen_US
Appears in Collections:UT-Faculty of Engineering

Files in This Item:
File Description SizeFormat 
doc (1).pdf
  Until 2027-07-29
2.62 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools