Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/112316
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | TAUFIK, Asep Iqbal | - |
dc.contributor.author | SILABAN, Denny Riama | - |
dc.contributor.author | WIJAYA, Kristiana | - |
dc.date.accessioned | 2023-02-22T03:23:51Z | - |
dc.date.available | 2023-02-22T03:23:51Z | - |
dc.date.issued | 2022-02-08 | - |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/112316 | - |
dc.description.abstract | Let 𝐹, 𝐺, and 𝐻 be simple graphs. The notation 𝐹 → (𝐺, 𝐻) means that any red-blue coloring of all edges of 𝐹 will contain either a red copy of 𝐺 or a blue copy of 𝐻. Graph 𝐹 is a Ramsey (𝐺, 𝐻)-minimal if 𝐹 → (𝐺, 𝐻) but for each 𝑒 ∈ 𝐸(𝐹), (𝐹 − 𝑒) ↛ (𝐺, 𝐻). The set ℛ(𝐺, 𝐻) consists of all Ramsey (𝐺, 𝐻)-minimal graphs. Let 𝑚𝐾2 be matching with m edges and 𝑃𝑛 be a path on n vertices. In this paper, we construct all disconnected Ramsey minimal graphs, and found some new connected graphs in ℛ(3𝐾2 , 𝑃4 ). Furthermore, we also construct new Ramsey minimal graphs in ℛ((𝑚 + 1)𝐾2 , 𝑃4) from Ramsey minimal graphs in ℛ(𝑚𝐾2 , 𝑃4) for 𝑚 ≥ 4, by subdivision operation | en_US |
dc.language.iso | en | en_US |
dc.publisher | Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation | en_US |
dc.subject | Matching | en_US |
dc.subject | Path | en_US |
dc.subject | Ramsey minimal graphs | en_US |
dc.subject | Subdivision | en_US |
dc.title | On Ramsey (𝒎𝑲𝟐,𝑷𝟒)-Minimal Graphs | en_US |
dc.type | Article | en_US |
Appears in Collections: | LSP-Conference Proceeding |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FMIPA_On Ramsey (𝒎𝑲𝟐,𝑷𝟒)-Minimal Graphs.pdf | 2.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.