Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/108219
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMAHARDIKA, W. P.-
dc.contributor.authorSOEPRIJANTO, A. Soeprijanto-
dc.contributor.authorSYAIIN, M. Syaiin-
dc.contributor.authorWIBOWO, S. Wibowo-
dc.contributor.authorKURNIAWAN, R. Kurniawan(-
dc.contributor.authorHERIJONO, B. Herijono-
dc.contributor.authorADHITYA, R.Y. Adhitya-
dc.contributor.authorZULIARI, E. A. Zuliari-
dc.contributor.authorSETIAWAN, D. K. Setiawan-
dc.contributor.authorRINANTO, N. Rinanto-
dc.contributor.authorKALOKO, Bambang Sri-
dc.date.accessioned2022-07-07T03:30:37Z-
dc.date.available2022-07-07T03:30:37Z-
dc.date.issued2017-10-17-
dc.identifier.govdocKODEPRODI1910201#Teknik Elektro-
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/108219-
dc.description.abstractThis paper has proposed a prototype of a control system in deaerator storage tank level at Industrial Steam Power Plant based on artificial intelligence (AI). There are two kind methods of AI which are implemented in this research, first is Back Propagation Neural Network (BP-NN) and the second is Extreme Learning Machine (ELM). The proposed method is aimed to improve the performance of an existing Proportional Integral (PI) control method. The input variables are error level and load condition. The output variables are control valve percentage and indicator value. From the experiment, the result proved that ELM is fast superior to BP-NN according to the time of training process and error tolerance. Prototype-based on ELM is also working properly with an error tolerance of 0.15 %.en_US
dc.language.isoenen_US
dc.publisherISESDen_US
dc.subjectDeaeratoren_US
dc.subjectExtreme Learning Machine (ELM)en_US
dc.subjectFS-400aen_US
dc.subjectNeural Network (NN)en_US
dc.subjectArduinoen_US
dc.titleDesign of Deaerator Storage Tank Level Control System at Industrial Steam Power Plant with Comparison of Neural Network (NN) and Extreme Learning Machine (ELM) Methoden_US
dc.typeArticleen_US
Appears in Collections:LSP-Conference Proceeding



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.