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In a graph , the degree of a vertex , denoted by , is de�ned as the number of edges incident on . A set  of

vertices of  is called a strong dominating set if for every , there exists a vertex  such that  and .

For a given graph , Min-Strong-DS is the problem of �nding a strong dominating set of minimum cardinality. The decision version of Min-

Strong-DS is shown to be NP-complete for chordal graphs. In this paper, we present polynomial time algorithms for computing a strong

dominating set in block graphs and proper interval graphs, two subclasses of chordal graphs. On the other hand, we show that for a graph 

with -vertices, Min-Strong-DS cannot be approximated within a factor of  for every , unless NP  DTIME( ).

We also show that Min-Strong-DS is APX-complete for graphs with maximum degree . On the positive side, we show that Min-Strong-DS can

be approximated within a factor of  for graphs with maximum degree .

Research Papers

-Relaxed strong edge list coloring of planar graphs with girth 

Kai Lin, Min Chen and Dong Chen

1950064

https://doi.org/10.1142/S1793830919500642

Abstract PDF

 Preview Abstract

Let  be a graph. An -relaxed strong edge -coloring is a mapping  such that for any edge , there are at

most  edges adjacent to  and  edges which are distance two apart from  assigned the same color as . The -relaxed strong

chromatic index, denoted by , is the minimum number  of an -relaxed strong -edge-coloring admitted by .  is called 

-relaxed strong edge -colorable if for a given list assignment , there exists an -relaxed strong edge

coloring  of  such that  for all . If  is -relaxed strong edge -colorable for any list assignment with 

 for all , then  is said to be -relaxed strong edge -choosable. The -relaxed strong list chromatic index,

denoted by , is de�ned to be the smallest integer  such that  is -relaxed strong edge -choosable.

G = (V ,E) v ∈ V (v)dG v D

G v ∈ V \D u ∈ D uv ∈ E (u) ≥ (v)dG dG

G

G

n ( − ε) lnn1
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In this paper, we prove that every planar graph  with girth 6 satis�es that . This strengthens a result which says

that every planar graph  with girth 7 and  satis�es that .

Research Papers

Some results for the two disjoint connected dominating sets problem

Xianliang Liu, Zishen Yang and Wei Wang

1950065

https://doi.org/10.1142/S1793830919500654

Abstract PDF

 Preview Abstract

As a variant of minimum connected dominating set problem, two disjoint connected dominating sets (DCDS) problem is to ask whether there

are two DCDS  in a connected graph  with  and , and if not, how to add an edge subset with

minimum cardinality such that the new graph has a pair of DCDS. The two DCDS problem is so hard that it is NP-hard on trees. In this paper,

if the vertex set  of a connected graph  can be partitioned into two DCDS of , then it is called a DCDS graph. First, a necessary

but not su�cient condition is proposed for cubic (3-regular) graph to be a DCDS graph. To be exact, if a cubic graph is a DCDS graph, there

are at most four disjoint triangles in it. Next, if a connected graph  is a DCDS graph, a simple but nontrivial upper bound 

 of the girth  is presented.

Research Papers

Linear time algorithm for dominator chromatic number of trestled graphs

G (G) ≤ 3Δ(G) − 1ch′
(1,0)

G Δ(G) ≥ 4 (G) ≤ 3Δ(G) − 1χ′
(1,0)
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S. Arumugam and K. Raja Chandrasekar

1950066

https://doi.org/10.1142/S1793830919500666

Abstract PDF

 Preview Abstract

A dominator coloring (respectively, total dominator coloring) of a graph  is a proper coloring  of  such that each closed neighborhood

(respectively, open neighborhood) of every vertex of  contains a color class of  The minimum number of colors required for a dominator

coloring (respectively, total dominator coloring) of  is called the dominator chromatic number (respectively, total dominator chromatic

number) of  and is denoted by  (respectively, ). In this paper, we prove that the dominator coloring problem and the total

dominator coloring problem are solvable in linear time for trestled graphs.

Research Papers

Extremal trees with respect to the Steiner Wiener index

Jie Zhang, Guang-Jun Zhang, Hua Wang and Xiao-Dong Zhang

1950067

https://doi.org/10.1142/S1793830919500678

Abstract PDF

 Preview Abstract

The well-known Wiener index is de�ned as the sum of pairwise distances between vertices. Extremal problems with respect to it have been

extensively studied for trees. A generalization of the Wiener index, called the Steiner Wiener index, takes the sum of minimum sizes of

subgraphs that span  given vertices over all possible choices of the  vertices. We consider the extremal problems with respect to the

G C G

G C .

G

G (G)χd (G)χtd

k k
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Steiner Wiener index among trees of a given degree sequence. First, it is pointed out minimizing the Steiner Wiener index in general may be a

di�cult problem, although the extremal structure may very likely be the same as that for the regular Wiener index. We then consider the

upper bound of the general Steiner Wiener index among trees of a given degree sequence and study the corresponding extremal trees. With

these �ndings, some further discussion and computational analysis are presented for chemical trees. We also propose a conjecture based on

the computational results. In addition, we identify the extremal trees that maximize the Steiner Wiener index among trees with a given

maximum degree or number of leaves.

Research Papers

Graham’s pebbling conjecture holds for the product of a graph and a su�ciently large complete bipartite graph

Nopparat Pleanmani

1950068

https://doi.org/10.1142/S179383091950068X

Abstract PDF

 Preview Abstract

A graph pebbling is a network optimization model for the transmission of consumable resources. A pebbling move on a connected graph 

is the process of removing two pebbles from a vertex and placing one of them on an adjacent vertex after con�guration of a �xed number of

pebbles on the vertex set of . The pebbling number of , denoted by , is de�ned to be the least number of pebbles to guarantee that

for any con�guration of pebbles on  and arbitrary vertex , there is a sequence of pebbling movement that places at least one pebble on .

For connected graphs  and , Graham’s conjecture asserted that . In this paper, we show that such conjecture

holds when  is a complete bipartite graph with su�ciently large order in terms of  and the order of .

Research Papers

G

G G π(G)

G v v

G H π(G □ H) ≤ π(G)π(H)

H π(G) G
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A short proof of a min–max relation for the bases packing of a matroid

Brahim Chaourar

1950069

https://doi.org/10.1142/S1793830919500691

Abstract PDF

 Preview Abstract

Let  be a �nite set, and  be a matroid de�ned on . Given , we use the notations ( -maximum bases packing for the �rst one): 

 such that  for any , and  for any basis , and  such

that  and . In this paper, we give a short proof for the known min–max relation . Moreover, we prove

that the minimum  can be restricted to single elements and semi locked subsets only. A subset  is semi locked in  if 

is closed and 2-connected, and . We deduce then a polynomial algorithm to compute  in a large class of

matroids by using a matroid oracle related to semi locked subsets.

Research Papers

Some spectral properties of -matrix

Shuang Zhang and Yan Zhu

1950070

https://doi.org/10.1142/S1793830919500708

Abstract PDF

 Preview Abstract

E M E w ∈ R
E
+ w

λ(w) = Max{∑
Bbasis λB ≤ w(e)∑

B∋e
λB e ∈ E ≥ 0λB B} = Min{wℓ

w(E)−w(U)

r(E)−r(U)

U ⊂ E r(U) ≤ r(E) − 1} λ(w) = wℓ

wℓ L ⊂ E M |(E\L)M
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For a real number , the -matrix of a graph  is de�ned to be  where  and 

are the adjacency matrix and degree diagonal matrix of , respectively. The -spectral radius of , denoted by , is the largest

eigenvalue of . In this paper, we consider the upper bound of the -spectral radius , also we give some upper bounds for the

second largest eigenvalue of -matrix.

Research Papers

Resolving domination number of graphs

Ridho Alfarisi, Da�k and Arika Indah Kristiana

1950071

https://doi.org/10.1142/S179383091950071X

Abstract PDF

 Preview Abstract

For a set  of vertices of a graph , the representation multiset of a vertex  of  with respect to  is 

, where  is a distance between of the vertex  and the vertices in  together with

their multiplicities. The set  is a resolving set of  if  for every pair  of distinct vertices of . The minimum

resolving set  is a multiset basis of . If  has a multiset basis, then its cardinality is called multiset dimension, denoted by . A set 

 of vertices in  is a dominating set for  if every vertex of  that is not in  is adjacent to some vertex of . The minimum cardinality

of the dominating set is a domination number, denoted by . A vertex set of some vertices in  that is both resolving and dominating set

is a resolving dominating set. The minimum cardinality of resolving dominating set is called resolving domination number, denoted by 

. In our paper, we investigate and establish sharp bounds of the resolving domination number of  and determine the exact value of

some family graphs.

α ∈ [0, 1] Aα G (G) = αD(G) + (1 − α)A(G),Aα A(G) D(G)

G Aα G (G)ρα
(G)Aα Aα (G)ρα

Aα

W = { , , … , }s1 s2 sk G v G W

r(v |W ) = {d(v, ), d(v, ), … , d(v, )}s1 s2 sk d(v, )si v W

W G r(v |W ) ≠ r(u |W ) u, v G

W G G md(G)

W G G G W W

γ(G) G

(G)γr G
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Research Papers

The hull number of powers of cycle graphs under restricted conditions

Jameel Rwalah, Hasan Al-Ezeh and Manal Ghanem

1950072

https://doi.org/10.1142/S1793830919500721

Abstract PDF

 Preview Abstract

Let  be the cycle graph of order  on the vertices  and  be the th power of . In this paper, we �nd the hull

number of  under restricted conditions on the vertices of the graph  namely the independent and connected hull numbers of .

Research Papers

Adjacency and Laplacian spectra of variants of neighborhood corona of graphs constrained by vertex subsets

M. Gayathri and R. Rajkumar

1950073

https://doi.org/10.1142/S1793830919500733

Abstract PDF

 Preview Abstract
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In this paper, we de�ne some variants of corona of graphs namely, subdivision (respectively, -graph, -graph, total) neighborhood corona, 

-graph (respectively, -graph, total) semi-edge neighborhood corona, -graph (respectively, total) semi-vertex neighborhood corona of

graphs constrained by vertex subsets. These corona operations generalize some existing corona operations such as subdivision ( -graph, -

graph, total) double neighborhood corona, subdivision vertex (respectively, edge) neighborhood corona, -graph vertex (respectively, edge)

neighborhood corona of graphs. First, we consider a matrix in speci�c form and determine its spectrum. Then by using this, we derive the

characteristic polynomials of the adjacency and the Laplacian matrices of the new graphs when the base graph is regular. Also, we deduce

the characteristic polynomials of the adjacency and Laplacian matrices of the above mentioned particular cases from our results.

Research Papers

Counting dominating sets in generalized series-parallel graphs

Min-Sheng Lin

1950074

https://doi.org/10.1142/S1793830919500745

Abstract PDF

 Preview Abstract

Counting dominating sets in a graph is a #P-complete problem even in planar graphs. This paper studies this problem for generalized series-

parallel graphs, which are a subclass of planar graphs. This work develops some linear-time algorithms for counting dominating sets and
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For a set W = {s1, s2, . . . , sk} of vertices of a graph G, the representation multiset of
a vertex v of G with respect to W is r(v |W ) = {d(v, s1), d(v, s2), . . . , d(v, sk)}, where
d(v, si) is a distance between of the vertex v and the vertices in W together with their
multiplicities. The set W is a resolving set of G if r(v |W ) �= r(u |W ) for every pair u, v
of distinct vertices of G. The minimum resolving set W is a multiset basis of G. If G has
a multiset basis, then its cardinality is called multiset dimension, denoted by md(G). A
set W of vertices in G is a dominating set for G if every vertex of G that is not in W
is adjacent to some vertex of W . The minimum cardinality of the dominating set is a
domination number, denoted by γ(G). A vertex set of some vertices in G that is both
resolving and dominating set is a resolving dominating set. The minimum cardinality
of resolving dominating set is called resolving domination number, denoted by γr(G).
In our paper, we investigate and establish sharp bounds of the resolving domination
number of G and determine the exact value of some family graphs.

Keywords: Resolving set; multiset dimension; dominating set; domination number;
resolving dominating set; resolving domination number.

Mathematics Subject Classification 2010: 05C12

1. Introduction

In this paper, all graphs are nontrivial and connected graphs, for detailed definition
of graph, see [1, 2, 4]. The concept of metric dimension was independently introduced
by Slater [6], Harrary and Melter [3]. In his paper, Slater considered the minimum
resolving set of a graph as the location of the placement of a minimum number of
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sonar/loran detecting devices in a network. So, the position of every vertex in the
network can be uniquely described in terms of its distances to the devices in the set.
Applications of metric dimension problem can also be found in network and veri-
fication, robot navigation, combinatorial optimization, pharmaceutical chemistry,
and strategies for the mastermind game.

Simanjuntak et al. [7] started the definition of multiset dimension of G. Let G be
a connected graph with vertex set V (G). Suppose W = {s1, s2, . . . , sk} is a subset
of vertex set V (G), the representation multiset of a vertex v of G with respect to W

is r(v |W ) = {d(v, s1), d(v, s2), . . . , d(v, sk)}, where d(v, si) is a distance between v

and the vertices in W together with their multiplicities. The resolving set W is a
resolving set of G if r(v |W ) �= r(u |W ) for every pair of distances vertices u and
v. The minimum resolving set W is a multiset basis of G. If G has a multiset basis,
then its cardinality is called a multiset dimension, denoted by md(G).

A vertex v in a graph G is said to dominate itself as well as its neighbors. A
set W of vertices in G is a dominating set for G if every vertex of G is dominated
by some vertex of W . The minimum cardinality of a dominating set is domination
number, denoted by γ(G). In recent years, there exist additional properties for
dominating set, for example independent dominating set requires a dominating set
to be independent, the connected dominating set requires a dominating set to induce
a connected graphs and total dominating sets are not defined for graphs having an
isolated vertex. For more details about other conditional domination numbers see
[5]. Some results of domination numbers of some special families graphs are as
follows.

Proposition 1.1 ([5]). Let Pn be a path graphs, γ(Pn) = �n
3 �.

The centipede graphs, denoted by Cpn are the caterpillar graphs Cn,1.

Proposition 1.2 ([5]). Let Cn,m be a caterpillar graphs, γ(Cn,m) = n.

We define the new notation that combines the concept multiset dimension and
domination number of G, which is called the resolving domination number. We start
the definition of resolving domination number as follows.

Definition 1.1. A vertex set W of some vertices in G that is both resolving and
dominating set is a resolving dominating set. The minimum cardinality of resolving
dominating set is called the resolving domination number, denoted by γr(G).

We will illustrate these concepts in Fig. 1. In this case, we have the resolving set
W = {v1} which is shown in Fig. 1(a) that md(G) = 1 and the representations of
v ∈ V (G) with respect to W are distinct. On the other hand, the set W = {v2, v4}
is a dominating set of G and so we have γ(G) = 2 which is shown in Fig. 1(b). To
determine the resolving domination number of G, (a) W is a resolving set but not
a dominating set, (b) W is a dominating set but not a resolving set such that we
observe the set W = {v1, v3, v4} in (c) with the given representation of the vertices
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(a) (b) (c)

Fig. 1. (a) A graph with multiset dimension md(G) = 1; (b) A graph with domination number
γ(G) = 2; (c) A graph with resolving domination number γr(G) = 3.

of G with respect to W as follows:

r(v1 |W ) = {0, 2, 3}, r(v2 |W ) = {1, 1, 2},
r(v3 |W ) = {0, 1, 2}, r(v4 |W ) = {0, 1, 3},

and v2 ∈ V (G) − W adjacent to vertices in W , then W is a resolving set and a
dominating set. Hence, γr(G) = 3.

Until now, there have been some results of multiset dimension in Simanjuntak
et al. [7] as follows.

Theorem 1.3. The multiset dimension of a graph G is one if and only if G is a
path.

Theorem 1.4. Let G be a graph other than a path. Then md(G) ≥ 3.

Theorem 1.5. If G is a graph of diameter at most 2 other than a path, then
md(G) = ∞.

Lemma 1.1. If G contains a vertex which is adjacent to (at least) three pendant
vertices, then md(G) = ∞.

2. Main Results

In this paper, we investigate and determine the exact values of a resolving domina-
tion number of some family of graph.

Proposition 2.1. For every graph G,

max{γ(G), md(G)} ≤ γr(G).

Theorem 2.2. Let G be a connected graph with G ∼= K1, P2 if and only if the
resolving domination number of G is γr(G) = 1.
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Proof. For this proof, we characterize for a graph G ∼= K1, P2.

Case 1. Let K1 be a trivial graph with order one (say |V (K1)| = 1) such that we
have W = V (K1) = {u} that is a resolving and dominating set, then γM (K1) = 1.
Now, we show that if γM (K1) = 1, then G is trivial graph K1. Let W = {u} be a
resolving dominating set of a graph G. Thus, d(u, u) = 0 with diameter 0, hence G

is trivial graph K1.

Case 2. Let P2 be a path graph with order two. Then the set W = {u} contains
a pendant vertex of a path, which is resolving dominating set, thus γM (P2) = 1.
Now, we show that if γM (P2) = 1, then G is path graph P2. Let W = {u} be
a resolving dominating set of a graph G. Thus, r(u |W ) = {d(u, u)} = {0} and
r(v |W ) = {d(v, u)} = {1}, this implies that the diameter of G is 1, hence, G is
complete graph K2 isomorphic to path graph with order 2.

From both cases, for G ∼= K1, P2, if and only if the resolving domination number
γr(G) = 1.

Theorem 2.3. Let G be a connected graph with diameter one except P2, then the
resolving domination number of G is γr(G) = ∞.

Proof. If G has a diameter at most one expect K1 and P2, then every vertex is
adjacent to other vertices. We choose the vertices in W as w1, w2, w3, . . . , wk, where
i ∈ [1, k] such that we have r(wi |W ) = {0, 1k−1} that is same representation and
wi ∈ W is also dominator for vertices in G. For r(u |W ) = {1k} for u ∈ V (G) − W

has same representation. Therefore, W is not resolving dominating set of G.

Lemma 2.1. No graphs G has resolving domination number 2.

Proof. Let G be a connected graph with order at least 2. Assume that γr(G) = 2
for any graphs. We choose resolving dominating set W = {u, v}, then we have
r(u |W ) = {0, d(u, v)} = {d(v, u), 0} = r(v |W ), where d(u, v) = d(v, u), it is a con-
tradiction. Hence, all graphs do not have the resolving domination number 2.

From Lemma 2.1, Theorems 2.2 and 2.3, we have lemma as follows.

Lemma 2.2. Let G be a connected graph with diameter at least two, then the
resolving domination number of G is γr(G) ≥ 3.

Proof. Based on Theorem 2.2 that G ∼= K1, P2 ↔ γr(G) = 1 and Theorem 2.3 and
Lemma 2.1 that no graph has multiset dominating number two. Hence, γr(G) ≥ 3
for diameter at least 2.

Lemma 2.3. If G contains a vertex which is adjacent to (at least) three pendant
vertices, then the resolving domination number is γr(G) = ∞.
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Proof. Let W be a resolving dominating set of vertex set in G. We have u1, u2, u3

that is, three pendant vertices for some vertices in G. Therefore, there exist at least
two vertices of pendant vertices (u1 and u2) are in W , or at least two vertices of
pendant vertices (u1 and u2) aren’t in W . We know that the distance v1, v2 to other
vertex v of vertex set in G (say d(v1, v) = d(v2, v)), then in both cases these vertices
cannot be resolved or dominated.

The following theorem is a corollary of Theorem 2.3.

Corollary 2.1. Let Km be a complete graph with order m ≥ 3, then resolving
domination number of Km is γM (Km) = ∞.

The following theorem is a corollary of Lemma 2.3.

Corollary 2.2. Let Sm be a star graph with order m ≥ 2, then the resolving domi-
nation number of Sm is γM (Sm) = ∞.

Corollary 2.3. Let Brn,m be a broom graph with order n, m ≥ 3, then the resolving
domination number of Brn,m is γM (Sm) = ∞.

Corollary 2.4. Let DSn,m be a double star with order n, m ≥ 3, then the resolving
domination number of DSn,m is γM (Sm) = ∞.

For any two graphs G and H , a corona product of G and H , denoted by G�H ,
is a connected graph which is formed by taking n copies of graphs Hi, 1 ≤ i ≤ n of
H and connecting ith vertex of G to the vertices of Hi.

Theorem 2.4. Let G�mK1 be a corona product of G order n and mK1 is trivial
graph with m ≥ 3, then the resolving domination number of G � mK1 is γM (G �
mK1) = ∞.

Furthermore, we determine the exact value of some families graphs for the
resolving domination number, namely path, centipede graphs and tadpole T4,n.
The results of γr(G) as follows.

Theorem 2.5. Let Pn be a path with order n ≥ 2, then the resolving domination
number of Pn is

γM(Pn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if n = 2

∞, if n = 3

3, if n ∈ {4, 5, 6}⌈n

3

⌉
, if n ≥ 7, n �= 0 (mod 3)

⌈n

3

⌉
+ 1, if n ≥ 7, n = 0 (mod 3).

Proof. Path graph, denoted by Pn, is a tree graph with n vertices. Vertex set and
edge set of Pn, respectively, are V (Pn) = {xi : 1 ≤ i ≤ n} and E(Pn) = {xi−1xi :
1 ≤ i ≤ n − 1}. For this proof, we divide the proof into two cases as follows.
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Case 1. For n = 2.

Based on Theorem 2.2 that γM (P2) = 1.

Case 2. For n = 3.

Based on Lemma 2.1 that γM (P3) ≥ 3. Furthermore, we prove that γM (P3) ≤ 3? we
can construct the resolving dominating set of P3, namely W = V (P3) = {x1, x2, x3}.
The representation of vertex in P3 is as follows:

r(x1 |W ) = {0, 1, 2} r(x2 |W ) = {0, 1, 1} r(x3 |W ) = {0, 1, 2}.
There are same representations, namely r(x1 |W ) = r(x3 |W ). We know that

W is not a resolving set such that W is not a resolving dominating set. Thus, we
obtain that γM (P3) �= 3. It concludes that γM (P3) = ∞.

Case 3. For n = 4, 5, 6.

Based on Lemma 2.1 that γM (Pn) ≥ 3. Furthermore, we prove that γM (Pn) ≤ 3,
we can construct the resolving dominating set of Pn. The representation of vertex
in Pn is as follows:

P4 with P5 with P6 with
W = {x1, x2, x4} W = {x1, x2, x5} W = {x2, x5, x6}

r(x1 |W ) {0, 1, 3} {0, 1, 4} {1, 4, 5}
r(x2 |W ) {0, 1, 2} {0, 1, 3} {0, 3, 4}
r(x3 |W ) {1, 1, 3} {1, 2, 2} {1, 2, 3}
r(x4 |W ) {0, 2, 3} {1, 2, 3} {1, 2, 2}
r(x5 |W ) {0, 3, 4} {0, 1, 3}
r(x6 |W ) {0, 1, 4}

All vertices in Pn have distinct representations. We know that W is resolving
set and dominating set such that W is resolving dominating set. Thus, we obtain
that γM (Pn) ≤ 3. It concludes that γM (Pn) = 3.

Case 4. For n ≥ 7 and n ≡ 1 (mod 3).

Based on Proposition 2.1 that γM (Pn) ≥ max{γ(Pn), md(Pn)} = {�n
3 �, 1} = �n

3 �.
Furthermore, we prove that γM (Pn) ≤ �n

3 �, we can construct the resolving dominat-
ing set of Pn, namely W = {xi, xn−1; i ≡ 2 (mod 3)}. The vertex xi; i �= 2 (mod 3)
is dominated by vertices in W . We have the properties to show that all vertices
have distinct representation as follows:

(i) We know that d(xl, xn−1) �= d(xk, xn−1), for 1 ≤ l, k ≤ n − 1 and xl, xk /∈ W .
(ii) We have the representation of xi ∈ V (Pn)−W , namely r(xi |W ) = {d(xi, xs) :

xs ∈ W − {xn−1}} ∪ {d(xi, xn−1)}.
(iii) We have the representation of xi ∈ V (Pn) − W , namely r(xl |W − {yn}) =

{d(xl, xs) : xs ∈ W − {xn−1}} = {d(xk, xs) : xs ∈ W − {xn−1}} = r(xk |W −
{xn−1}) for l + k = n + 1 and 1 ≤ l, k ≤ n − 1.
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(iv) Based on (i)–(iii) that r(xl |W ) �= r(xk |W ) for 1 ≤ l, k ≤ n − 1.
(v) We know that r(xi |W ) �= r(xn |W ) for 1 ≤ i ≤ n − 1.

From the representation, all vertices are distinct. We know that W is a resolving
set and dominating set such that W is a resolving dominating set with |W | = �n

3 �.
Thus, we obtain that γM (Pn) ≤ �n

3 �. It concludes that γM (Pn) = �n
3 �.

Case 5. For n ≥ 7 and n ≡ 2 (mod 3).

Based on Proposition 2.1 that γM (Pn) ≥ max{γ(Pn), md(Pn)} = {�n
3 �, 1} = �n

3 �.
Furthermore, we prove that γM (Pn) ≤ �n

3 �, we can construct the resolving dominat-
ing set of Pn, namely W = {xi, xn−1; i ≡ 2 (mod 3)}. The vertex xi; i �= 2 (mod 3)
is dominated by vertices in W . We have the properties to show that all vertices
have distinct representation as follows:

(i) We know that d(xl, xn−1) �= d(xk, xn−1), for 1 ≤ l, k ≤ n − 1 and xl, xk /∈ W .
(ii) We have the representation of xi ∈ V (Pn)−W , namely r(xi |W ) = {d(xi, xs) :

xs ∈ W − {xn−1}} ∪ {d(xi, xn−1)}.
(iii) We have the representation of xi ∈ V (Pn) − W , namely r(xl |W − {xn−1}) =

{d(xl, xs) : xs ∈ W − {xn−1}} = {d(xk, xs) : xs ∈ W − {xn−1}} = r(xk |W −
{xn−1}) for l + k = n − 1 and 1 ≤ l, k ≤ n − 1.

(iv) Based on (i)–(iii) that r(xl |W ) �= r(xk |W ) for 1 ≤ l, k ≤ n − 1 .
(v) We know that r(xi |W ) �= r(xn |W ) for 1 ≤ i ≤ n − 1.

From the representation, all vertices are distinct. We know that W is a resolving
set and dominating set such that W is a resolving dominating set with |W | = �n

3 �.
Thus, we obtain that γM (Pn) ≤ �n

3 �. It concludes that γM (Pn) = �n
3 �.

Case 6. For n ≥ 7 and n ≡ 0 (mod 3).

Based on Proposition 2.1 that γM (Pn) ≥ max{γ(Pn), md(Pn)} = {�n
3 �, 1} = �n

3 �.
Assume that |W | = �n

3 �, namely W = {xi; i ≡ 2 (mod 3)}. There are at least two
vertices which have same representation. We can construct the representation as
follows:

(i) We have the representation of xi ∈ V (Pn)−W , namely r(xi |W ) = {d(xi, xs) :
xs ∈ W, i ≡ 2 (mod 3)}.

(ii) We have the representation of xi ∈ V (Pn)−W , namely r(xl |W ) = {d(xl, xs) :
xs ∈ W} = {d(xk, xs) : xs ∈ W} = r(xk |W ) for l + k = n + 1 and 1 ≤ l, k ≤
n − 1.

(iii) Based on (i)–(ii) that r(xl |W ) = r(xk |W ) for 1 ≤ l, k ≤ n − 1.

Based on the assumption above, there are same representations, which is a con-
tradiction. Thus, γM (Pn) ≥ �n

3 �+1. Furthermore, we prove that γM (Pn) ≤ �n
3 �+1,

we can construct the resolving dominating set of Pn, namely W = {xi, xn; i ≡
2 (mod 3)}. The vertex xi; i �= 2 (mod 3) is dominated by vertices in W . We have
the properties to show that all vertices have distinct representation as follows:

(i) We know that d(xl, xn) �= d(xk, xn), for 1 ≤ l, k ≤ n − 1 and xl, xk /∈ W .

1950071-7

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


December 4, 2019 15:47 WSPC/S1793-8309 257-DMAA 1950071

R. Alfarisi, Dafik & A. I. Kristiana

Fig. 2. A graph with resolving domination number γM (P12) = 5.

(ii) We have the representation of xi ∈ V (Pn)−W , namely r(xi |W ) = {d(xi, xs) :
xs ∈ W − {xn}} ∪ {d(xi, xn)}.

(iii) We have the representation of xi ∈ V (Pn) − W , namely r(xl |W − {xn}) =
{d(xl, xs) : xs ∈ W −{xn}} = {d(xk, xs) : xs ∈ W −{xn}} = r(xk |W −{xn})
for l + k = n + 1 and 1 ≤ l, k ≤ n − 1.

(iv) Based on (i)–(iii) that r(xl |W ) �= r(xk |W ) for 1 ≤ l, k ≤ n − 1.
(v) We know that r(xi |W ) �= r(xn |W ) for 1 ≤ i ≤ n − 1.

From the representation, all vertices are distinct. We know that W is a resolving
set and dominating set such that W is a resolving dominating set with |W | =
�n

3 �+ 1. Thus, we obtain that γM (Pn) ≤ �n
3 � + 1. It concludes that γM (Pn) =

�n
3 � + 1.

Theorem 2.6. Let Cpn be a centipede with order n ≥ 2, then the resolving domi-
nation number of Cpn is

γM (Cpn) =

{
3, if n = 2,

n, if n ≥ 3.

Proof. Centipede graph, denoted by Cpn, is a tree graph with 2n vertices. Ver-
tex set and edge set of Cpn, respectively, are V (Cpn) = {xi, yj : 1 ≤ i ≤ n} and
E(Cpn) = {xi−1xi : 1 ≤ i ≤ n−1}∪{xiyi; 1 ≤ i ≤ n}. The vertice xi is a backbone
and the vertice yi is a pendant vertex. For this proof, we divide the proof into two
cases as follows.

Case 1. For n = 2.

Centipede graph Cp2 has four vertices (two vertices as backbone and two vertices
in pendant vertex), based on the definition that Centipede graph Cp2 isomorphic
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Fig. 3. A graph with resolving domination number γM (Cp8) = 8.

to path with four vertices. It is based on Lemma 2.2 that γM (Cp2) ≥ 3. Further-
more, we prove that γM (Cp2) ≤ 3, we can construct the resolving dominating set
of Cp2, namely W = {x1, y1, y2}. The vertex x2 is dominated by y2 or x1. The
representation of vertex in Cpn is as follows:

r(x1 |W ) = {0, 1, 2} r(x2 |W ) = {1, 1, 2}

r(y1 |W ) = {0, 1, 3} r(y2 |W ) = {0, 2, 3}.

From the representation, all vertices are distinct. We know that W is resolving
set and dominating set such that W is a resolving dominating set with |W | = 3.
Thus, we obtain that γM (Cp2) ≤ 3. It concludes that γM (Cp2) = 3.

Case 2. For n ≥ 3.

Centipede graph Cpn has 2n vertices (n vertices as backbone and n vertices in pen-
dant vertex), based on Proposition 2.1 that γM (Cp2) ≥ max{γ(Cpn), md(Cpn)} =
{n, n} = n. Furthermore, we prove that γM (Cpn) ≤ n, we can construction
the resolving dominating set of Cpn, namely W = {x1, . . . , xn−1, yn}. The ver-
tex xn is dominated by yn or xn−1 and the vertex yi, 1 ≤ i ≤ n − 1 domi-
nated by xi, 1 ≤ i ≤ n − 1. The representation of vertex in Cpn is shown in
Table 1.

From Table 1, we have the properties that all vertices have distinct representa-
tion as follows:

(i) We know that d(yl, yn) �= d(yk, yn) �= d(xn, yn), for 1 ≤ l, k ≤ n − 1.
(ii) We have the representation of yi in Cpn, namely r(yi |W ) = {d(y1, xs) : xs ∈

W − {yn}} ∪ {d(yi, yn)}.
(iii) We have the representation of yi in Cpn, namely r(yl |W −{yn}) = {d(yl, xs) :

xs ∈ W −{yn}}={d(yk, xs) : xs ∈ W −{yn}} = r(yk |W −{yn}) for l + k = n

and 1 ≤ l, k ≤ n − 1.
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Table 1. The representation of Cpn.

y1 y2 y3 y4 y5 · · · yn−2 yn−1 xn

x1 1 2 3 4 5 · · · n − 2 n − 1 n − 1

x2 2 1 2 3 4 · · · n − 3 n − 2 n − 2

x3 3 2 1 2 3 · · · n − 4 n − 3 n − 3

x4 4 3 2 1 2 · · · n − 5 n − 4 n − 4

x5 5 4 3 2 1 · · · n − 6 n − 5 n − 5

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
xn−2 n − 2 n − 3 n − 4 n − 5 n − 6 · · · 1 2 2

xn−1 n − 1 n − 2 n − 3 n − 4 n − 5 · · · 2 1 1

yn n + 1 n n − 1 n − 2 n − 3 · · · 4 3 1

(iv) Based on (i)–(iii) that r(yl |W ) �= r(yk |W ) for 1 ≤ l, k ≤ n − 1.
(v) We know that r(yi |W ) �= r(xn |W ) for 1 ≤ i ≤ n − 1.

From the representation, all vertices are distinct. We know that W is a resolving
set and dominating set such that W is a resolving dominating set with |W | = n.
Thus, we obtain that γM (Cpn) ≤ n. It concludes that γM (Cpn) = n.

Theorem 2.7. Let T4,n be a tadpole graph with order n ∈ N, then resolving domi-
nation number of T4,n is

γM (T4,n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4, if n = 3,

⌈n

3

⌉
+ 2, if n �= 3.

Proof. Tadpole graph, denoted by T4,n, is a unicyclic graph which is obtained by
joining a cycle C4 and path Pn with a bridge. Vertex set and edge set of T4,n,
respectively, are V (T4,n) = {xi, yj : 1 ≤ i ≤ 4, 1 ≤ j ≤ n} and E(T4,n) = {yj−1yj :
1 ≤ j ≤ n− 1}∪{x1y1, x1x2, x2x3, x3x4, x4x1}. The edge x1y1 is a bridge in tadpole
graphs. For this proof, we divide the proof into two cases as follows:

Case 1. For n = 3.

Based on Lemma 2.1 that γM (T4,n) ≥ 3. Assume that |W | = 3, such that we have
the same representation as follows:

(i) If we choose the set W = {x3, y1, y3}, then we know that d(x2, x1) = d(x4, x1)
and d(x2, x3) = d(x4, x3) = 1. Thus, r(x2 |W ) = r(x4 |W ) = {1, 2, 4}.

(ii) If we choose the set W = {x3, x4, y2}, then we know that d(x2, x4) = d(y1, x4)
and d(x2, y2) = d(y1, x3). Thus, r(x2 |W ) = r(y1 |W ) = {1, 2, 3}.

There are same representations such that γM (T4,n) ≥ 4. Furthermore, we prove
that γM (T4,n) ≤ 4, we can construct the resolving dominating set of T4,n. The
representation of vertex in T4,n is as follows:
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T4,n with
W = {x3, x4, y1, y3}

r(x1 |W ) {1, 1, 2, 3}
r(x2 |W ) {1, 2, 2, 4}
r(x3 |W ) {0, 1, 3, 5}
r(x4 |W ) {0, 1, 2, 4}
r(y1 |W ) {0, 2, 2, 3}
r(y2 |W ) {1, 1, 3, 4}
r(y3 |W ) {0, 2, 4, 5}

All vertices in T4,n have distinct representations. We know that W is a resolving
set and dominating set such that W is a resolving dominating set. Thus, we obtain
that γM (T4,n) ≤ 4. It concludes that γM (T4,n) = 4.

Case 2. For n ≡ 0, 2 (mod 3).

We prove that γM (T4,n) ≥ �n
3 �+ 2. Assume that |W | = �n

3 �+ 1, namely W = {yj ;
j ≡ 2 (mod 3)} ∪ {x3}. There are at least two vertices which have same represen-
tation. We can construct the representation as follows:

(i) We have d(x2, x3) = d(x4, x3) and d(x2, x1) = d(x4, x1).
(ii) We know that d(x2, ys) = d(x2, x1)+ d(x1, ys) = d(x4, x1)+ d(x1, ys) =

d(x4, ys) for ys ∈ W .
(iii) We know that r(x2 |W ) = {d(x2, ys) : ys ∈ W} = {d(x4, ys) : ys ∈ W} =

r(x4 |W ).

Based on the assumption above, there are same representations, which is a contra-
diction. Thus, γM (T4,n) ≥ �n

3 �+2. Furthermore, we prove that γM (T4,n) ≤ �n
3 �+2,

we can construct the resolving dominating set of T4,n, namely W = {yj, x3, x4; j ≡
2 (mod 3)}. The vertex yj ; j �= 2 (mod 3) dominated by vertices in W . We have the
properties this show that all vertices have distinct representations as follows:

(i) We know that d(yl, x4) �= d(yk, x4), for 1 ≤ l, k ≤ n and yl, yk /∈ W .
(ii) We have the representation of yj ∈ V (T4,n)−W , namely r(yj |W ) =

{d(yj , ys) : ys ∈ W − {x3, x4}} ∪ {d(yj , x4)}.
(iii) We have the representation of yj ∈ V (T4,n), namely r(yl |W − {x3, x4}) =

{d(yl, ys) : ys ∈ W − {x3, x4}} = {d(yk, ys) : ys ∈ W − {x3, x4}} = r(yk |W −
{x3, x4}) for l + k = n + 2 and 1 ≤ l, k ≤ n.

(iv) Based on (i)–(iii) that r(yl |W ) �= r(yk |W ) for 1 ≤ l, k ≤ n.
(v) We know that r(yj |W ) �= r(x1 |W ) �= r(x2 |W ) for 1 ≤ j ≤ n.

From the representation, all vertices are distinct. We know that W is a resolving
set and dominating set such that W is a resolving dominating set with |W | =
�n

3 �+ 2. Thus, we obtain that γM (T4,n) ≤ �n
3 � + 2. It concludes that γM (T4,n) =

�n
3 � + 2.
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Fig. 4. A graph with resolving domination number γM (V (T4,6)) = 4.

Case 3. For n ≡ 1 (mod 3).

We prove that γM (T4,n) ≥ �n
3 � + 2. Assume that |W | = �n

3 � + 1, namely W =
{yj, yn; j ≡ 2 (mod 3)} ∪ {x3}. There are at least two vertices which have same
representation. We can construction the representation as follows:

(i) We have d(x2, x3) = d(x4, x3) and d(x2, x1) = d(x4, x1).

(ii) We know that d(x2, ys) = d(x2, x1)+ d(x1, ys) = d(x4, x1)+ d(x1, ys) =
d(x4, ys) for ys ∈ W .

(iii) We know that r(x2 |W ) = {d(x2, ys) : ys ∈ W} = {d(x4, ys) : ys ∈ W} =
r(x4 |W ).

Based on the assumption above, there are same representations, which is a con-
tradiction. Thus, γM (T4,n) ≥ �n

3 � + 2. Furthermore, we prove that γM (T4,n) ≤
�n

3 � + 2, we can construct the resolving dominating set of T4,n, namely W =
{yj, x3, x4, yn; j ≡ 2 (mod 3)}. The vertex yj; j �= 2 (mod 3) is dominated by
vertices in W . We have the properties this show that all vertices have distinct
representations as follows:

(i) We know that d(yl, x4) �= d(yk, x4), for 1 ≤ l, k ≤ n and yl, yk /∈ W .

(ii) We have the representation of yj ∈ V (T4,n)−W , namely r(yj |W ) =
{d(yj , ys) : ys ∈ W − {x3, x4, yn}} ∪ {d(yj , x4)}.

(iii) We have the representation of yj ∈ V (T4,n), namely r(yl |W − {x3, x4, yn}) =
{d(yl, ys) : ys ∈ W − {x3, x4, yn}} = {d(yk, ys) : ys ∈ W − {x3, x4, yn}} =
r(yk |W − {x3, x4, yn}) for l + k = n and 1 ≤ l, k ≤ n.

(iv) Based on (i)–(iii) that r(yl |W ) �= r(yk |W ) for 1 ≤ l, k ≤ n.

(v) We know that r(yj |W ) �= r(x1 |W ) �= r(x2 |W ) for 1 ≤ j ≤ n.

From the representation, all vertices are distinct. We know that W is a resolving
set and dominating set such that W is a resolving dominating set with |W | =
�n

3 � + 2. Thus, we obtain that γM (T4,n) ≤ �n
3 � + 2. It concludes that γM (T4,n) =

�n
3 � + 2.

1950071-12

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


December 4, 2019 15:47 WSPC/S1793-8309 257-DMAA 1950071

Resolving domination number of graphs

3. Conclusion

In this paper, we have given results on the lower bound of a resolving domination
number and determine the exact values of some special graphs. Hence, the following
problems arise naturally.

Open Problem 3.1. Determine the resolving domination number of family graph
namely family tree, unicyclic, regular graphs, and others.

Open Problem 3.2. Determine the resolving domination number of operation
graph namely corona product, cartesian product, joint, comb product, and others.

Open Problem 3.3. Characterize the resolving domination number γr(G) = n− 1.
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