

ANALISIS DISKRIMINAN KEPUASAN KONSUMEN ATAS VARIABEL KUALITAS LAYANAN PADA ORISKIN SKIN CARE JEMBER

ANALYSIS DISCRIMINANT CUSTOMER SATISFACTION OF SERVICES QUALITY VARIABLES AT ORISKIN SKIN CARE JEMBER

SKRIPSI

Oleh:

Yashita Yuni Safitri NIM. 150810201216

UNIVERSITAS JEMBER
FAKULTAS EKONOMI DAN BISNIS
2019

ANALISIS DISKRIMINAN KEPUASAN KONSUMEN ATAS KUALITAS LAYANAN PADA ORISKIN *SKIN* CARE JEMBER

ANALYSIS DISCRIMINANT CUSTOMER SATISFACTION OF SERVICES QUALITY AT ORISKIN SKIN CARE JEMBER

SKRIPSI

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Ekonomi Pada Fakultas Ekonomi Dan Bisnis Universitas Jember

Oleh:

Yashita Yuni Safitri

NIM. 150810201216

UNIVERSITAS JEMBER
FAKULTAS EKONOMI DAN BISNIS
2019

KEMENTERIAN PENDIDIKAN NASIONAL UNIVERSITAS JEMBER – FAKULTAS EKONOMI DAN BISNIS

SURAT PERNYATAAN

Nama : Yashita Yuni Safitri

Nim : 150810201216

Jurusan : Manajemen

Konsentrasi : Manajemen Pemasaran

Judul : Analisis Diskriminan Kepuasan Konsumen Atas Kualitas

Layanan Pada Oriskin Skin Care Jember

Menyatakan dengan sesungguhnya dan sebenar-benarnya bahwa Skripsi yang saya buat adalah benar-benar hasil karya sendiri, kecuali apabila dalam pengutipan substansi disebutkan sumbernya, dan belum pernah diajukan pada institusi manapun, serta bukan karya jiplakan milik orang lain. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenar-benarnya, tanpa adanya paksaan dan tekanan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata dikemudian hari pernyataan yang saya buat tidak benar.

Jember, 14 Mei 2019 Yang menyatakan,

Yashita Yuni Safitri

NIM: 150810201216

TANDA PERSETUJUAN

Judul Skripsi : ANALISIS DISKRIMINAN KEPUASAN KONSUMEN

ATAS KUALITAS LAYANAN PADA ORISKIN SKIN

CARE JEMBER

Nama Mahasiswa : Yashita Yuni Safitri

NIM : 150810201216

Jurusan : Manajemen

Disetujui Tanggal : 13 Mei 2019

Dosen Pembimbing I

Dosen Pembimbing II

<u>Drs. Adi Prasodjo, M.P</u> NIP. 19550516 198703 1 001 <u>Drs. Sudaryanto, MBA, Ph.D</u> NIP. 19660408 199103 1 001

Mengetahui, Koordinator Program Studi S1-Manajemen

> <u>Hadi Paramu, MBA, Ph.D</u> NIP. 19690120 199303 1 002

JUDUL SKRIPSI

ANALISIS DISKRIMINAN KEPUASAN KONSUMEN ATAS KUALITAS LAYANAN PADA ORISKIN *SKIN CARE* JEMBER

Yang dipersiapkan dan disusun oleh:

Nama Mahasiswa : Yashita Yuni Safitri

Nim : 150810201216

Jurusan : Manajemen

Telah dipertahankan di depan panitia penguji pada tanggal:

23 Mei 2019

Dan dinyatakan telah memenuhi syarat untuk diterima sebagai kelengkapan guna memperoleh Gelar Sarjana Ekonomi pada Fakultas Ekonomi dan Bisnis Universitas Jember.

SUSUNAN TIM PENGUJI

Ketua : <u>Dr. Bambang Irawan, M.Si</u> : (.....)

NIP. 19610317 198802 1 001

Sekertaris: Prof. Dr. Isti Fadah, M.Si: (......

NIP. 19661020 199002 2 001

Anggota : <u>Drs. Sampeadi, M.S.</u> : (......)

NIP. 19560404 198503 1 002

Mengetahui, Dekan Fakultas Ekonomi dan Bisnis Universitas Jember

<u>Dr. Muhammad Miqdad, S.E, M.M., Ak.</u> NIP: 197107027 199512 1 001

PERSEMBAHAN

Skripsi ini dipersembahkan untuk:

- Terimakasih kepada Papa dan Mama tercinta, kakakku Dio Risky Pratama dan Romy Jose Faizal yang senantiasa membantuku dalam menulis skripsi ini.
- 2. Terimakasih untuk sahabatku tersayang Laksmi Paramitha yang selalu mensupport dan mendampingiku dalam menyelesaikan skripsi ini.
- 3. Specially for u Satrio Utama yang senantiasa sabar mendampingiku kesana kemari dari awal hingga akhir.
- 4. Teman-temanku Maulita Nanda Nilam Putri dan Ayu Ravina Dewi yang menemani dari awal menjadi mahasiswa baru sampai menjadi alumni.
- 5. Komplotan-ku tersayang Binda, Gulip, Gembah, Girma, Derinda, Dale, Gatih yang selalu menjadi penghibur dikala sedih.
- 6. Pejuang ruang kacaku tersayang Novita, Fian, Wahyu, Ejak, Bila, Bagas, Salsabila yang bersama-sama berjuang untuk mendapatkan gelar ini. Selalu semangat dan jangan lupakan aku.
- 7. Terimakasih kepada aplikasi viu, wattpad telah menjadi penghibur dikala bosan mengerjakan skripsi.

MOTTO

"Ikhlas iku gampang di unikno, nanging angel dilakukno"

(Drs. Sampeadi, M.S.)

"Imperfection is beautiful"

(Yashita Yuni Safitri)

"Selalu ada jalan disetiap cobaan"

(Yashita Yuni Safitri)

RINGKASAN

Analisis Diskriminan Kepuasan Konsumen Atas Kualitas Layanan Pada Oriskin *Skin Care* Jember; Yashita Yuni Safitri; 150810201216; 2019; 97 halaman; Jurusan Manajemen Fakultas Ekonomi dan Bisnis Universitas Jember

Kesehatan kulit sedang menjadi sorotan bagi setiap manusia khususnya kaum wanita. Pendapatan yang meningkat mengakibatkan kaum wanita berlombalomba mendatangi berbagai perusahaan *skin care* untuk memenuhi kebutuhannya. Penelitian ini bertujuan menganalisis variabel kualitas layanan (bukti fisik, kehandalan, daya tanggap, jaminan dan empati) untuk membedakan konsumen puas dan konsumen tidak puas pada klinik Oriskin Skin Care Jember. Penelitian ini juga bertujuan untuk menganalisis variabel kualitas layanan mana yang paling dominan bagi konsumen dalam membedakan konsumen puas dan tidak puas pada Oriskin Skin Care Jember. Populasi penelitian ini adalah konsumen wanita Oriskin Skin Care sedangkan sampel pada penelitian ini dipilih berdasarkan purposive sampling. Data yang digunakan pada penelitian ini adalah data primer dan sekunder. Data primer diperoleh melalui kuesioner online dan juga offline yang dibagikan kepada 150 responden. Sedangkan data sekunder diperoleh melalui internet. Metode analisis yang digunakan adalah analisis diskriminan dua kategori yaitu konsumen puas dan konsumen tidak puas. Hasil penelitian menunjukkan bahwa terdapat variabel-variabel yang membedakan antara konsumen puas dan konsumen tidak puas yaitu variabel kehandalan, daya tanggap, jaminan, bukti fisik, dan empati.

Variabel kehandalan merupakan variabel dominan pertama yang dapat membedakan antara konsumen puas dan konsumen tidak puas pada Oriskin. Variabel daya tanggap merupakan variabel dominan kedua yang dapat membedakan konsumen puas dan konsumen tidak puas. Variabel jaminan merupakan variabel dominan ketiga yang dapat membedakan konsumen puas dan konsumen tidak puas. Variabel bukti fisik merupakan variabel keempat yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin. Variabel empati adalah variabel yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin yang memiliki discriminating power paling rendah diantara variabel lainnya.

SUMMARY

Analysis Discriminant Customer Satisfaction Of Services Quality At Oriskin *Skin Care* Jember; Yashita Yuni Safitri; 150810201216; 2019; 97 pages; Departmen of Management Faculty of Economics and Business Jember University

Healthy skin is important for every human being, especially women. Rising income makes woman's competing to visit various skin care companies to fill their needs. This study aims to analyze service quality variables (physical evidence, reliability, responsiveness, assurance and empathy) to differentiate satisfied consumers and dissatisfied consumers at Oriskin Skin Care Jember clinics. This study also aims to analyze which service quality variables are the most dominant for consumers in differentiating satisfied and dissatisfied consumers in Oriskin Skin Care Jember. The population of this study was female consumers of Oriskin Skin Care while the sample in this study was selected based on purposive sampling. The data used in this study are primary and secondary data. Primary data was obtained through an online and also offline questionnaire distributed to 150 respondents. While secondary data is obtained through the internet. The analytical method used is a discriminant analysis of two categories namely satisfied consumers and dissatisfied consumers. The results showed that there are variables that distinguish between satisfied consumers and dissatisfied consumers, namely the variables of reliability, responsiveness, assurance, physical evidence, and empathy.

Reliability variable is the first dominant variable that can distinguish between satisfied consumers and dissatisfied consumers at Oriskin. The responsiveness variable is the second dominant variable that can distinguish satisfied consumers and dissatisfied consumers. Guarantee variable is the third dominant variable that can distinguish satisfied consumers and dissatisfied consumers. Physical proof variable is the fourth variable that can distinguish satisfied consumers and dissatisfied consumers from Oriskin. Empathy variable is a variable that can distinguish satisfied consumers and dissatisfied consumers in Oriskin who have the lowest discriminating power among other variables.

KATA PENGANTAR

Puji syukur alhamdulillah penulis panjatkan atas kehadirat Allah SWT, karena atas segala rahmat, hidayah dan karuniaNya yang diberikan kepada penulis sehingga mampu menyelesaikan Skripsi yang berjudul "Analisis Diskriminan Kepuasan Konsumen atas Kualitas Layanan Pada Oriskin Skin Care Jember". Skripsi ini disusun untuk memenuhi salah satu syarat untuk menyelesaikan pendidikan program studi strata Satu (S1) pada Program Studi Manajemen Fakultas Ekonomi dan Bisnis Universitas Jember.

Penulis sangat menyadari bahwa dalam penulisan ini masih sangat banyak kekurangan yang disebabkan karena keterbatasan daripada kemampuan penulis, akhirnya penulisan skripsi ini mampu terselesaikan. Dalam penyusunan Skripsi ini tidak lepas dari bantuan berbagai pihak, oleh karena itu penulis ingin menyampaikan ucapan terima kasih yang sebesar-besarnya kepada :

- a. Hadi Paramu, SE, MBA, Ph.D, selaku Ketua Program Studi S1-Manajemen Fakultas Ekonomi dan Bisnis Universitas Jember.
- b. Drs. Adi Prasodjo, M.P selaku Dosen Pembimbing yang telah banyak memberikan dorongan semangat, bimbingan, pengarahan, serta telah meluangkan waktu sehingga Skripsi ini mampu terselesaikan.
- c. Drs. Sudaryanto, MBA, Ph.D selaku Dosen Pembimbing yang telah banyak memberikan dorongan semangat, bimbingan, pengarahan, serta telah meluangkan waktu sehingga Skripsi ini mampu terselesaikan.
- d. Dr. Bambang Irawan M.Si selaku Ketua Penguji yang telah banyak memberikan dorongan semangat, bimbingan, pengarahan, serta telah meluangkan waktu sehingga Skripsi ini mampu terselesaikan.
- e. Prof. Dr. Isti Fadah M.Si selaku Sekretaris Penguji yang telah banyak memberikan dorongan semangat, bimbingan, pengarahan, serta telah meluangkan waktu sehingga Skripsi ini mampu terselesaikan.
- f. Drs. Sampeadi M.S selaku Anggota Penguji yang telah banyak memberikan dorongan semangat, bimbingan, pengarahan, serta telah meluangkan waktu sehingga Skripsi ini mampu terselesaikan.

- g. Seluruh Dosen dan Karyawan Program Studi Manajemen Fakultas Ekonomi dan Bisnis Universitas Jember.
- h. Kedua orang tuaku, yang telah memberikan kasih sayang, motivasi dan dukungan doa selama ini.
- i. Kakak-kakakku tercinta. Terima kasih atas kasih sayang, dukungan doa, perhatian dan bantuannya yang telah diberikan untuk penulis selama ini.
- Seluruh teman-teman Program Studi Manajemen Fakultas Ekonomi dan Bisnis Universitas Jember angkatan 2015.
- k. Seluruh pihak yang telah banyak membantu memberikan bantuan dan dorongan semangat yang tidak dapat disebut satu persatu. Terimakasih sehingga Skripsi ini dapat terselesaikan.

Penulis sadar akan keterbatasan dan kurang sempurnanya penulisan Skripsi ini, oleh karena itu segala saran dan kritik yang bersifat membangun akan sangat penulis harapkan. Semoga Skripsi ini dapat bermanfaat dan memberikan tambahan pengetahuan bagi yang membacanya.

Jember, 15 Mei 2019

Yashita Yuni Safitri

DAFTAR ISI

HALAMAN JUDULi
HALAMAN PERNYATAANii
HALAMAN PERSETUJUANiii
HALAMAN PENGESAHANiv
HALAMAN PERSEMBAHANv
HALAMAN MOTTOvi
RANGKUMANvii
SUMMARYviii
KATA PENGANTARix
DAFTAR ISIxi
DAFTAR TABELxiii
DAFTAR GAMBARxiv
DAFTAR LAMPIRANxv
BAB 1 PENDAHULUAN
1.1 Latar Belakang1
1.2 Rumusan Masalah5
1.3 Tujuan Penelitian5
1.4 Manfaat Penelitian6
BAB 2 TINJAUAN PUSTAKA
2.1 Landasan Teori
2.1.1 Kepuasan Konsumen
2.1.2 Kualitas Pelayanan
2.1.3 Bukti Fisik 11
2.1.4 Kehandalan 12
2.1.5 Daya Tanggap
2.1.6 Jaminan
2.1.7 Empati
2.2 Penelitian Terdahulu
2.3 Kerangka Konseptual
2.4 Hipotesis Penelitian

BAB 3 METODOLOGI PENELITIAN

I AMPIRAN	57
DAFTAR PUSTAKA	.54
5.2 Saran	.53
5.1 Kesimpulan	.53
BAB 5 KESIMPULAN DAN SARAN	
4.6 Pembahasan	.49
4.5 Hasil Analisis Data	.43
4.4 Deskripsi Variabel Penelitian	.38
4.3 Karakteristik Responden	.34
4.2 Hasil Uji Instrumen	.33
4.1 Gambaran Umum dan Layanan Oriskin Skin Care	.31
BAB 4 HASIL DAN PEMBAHASAN	
3.11 Kerangka Pemecahan Masalah	.29
3.7 Analisis Diskriminan	.27
3.8.2 Uji Reliabilitas	.26
3.8.1 Uji Validitas	.26
3.8 Uji Instrumen	
3.7 Skala Pengukuran Variabel	.26
3.6 Definisi Operasional Variabel	. 24
3.5 Identifikasi Variabel	.23
3.4 Metode Pengumpulan Data	.22
3.3 Jenis dan Sumber Data	.22
3.2 Populasi dan Sampel Penelitian	.21
3.1 Rancangan Penelitian	.21

DAFTAR TABEL

I	Halaman
1.1 Total Nilai Penjualan Industri Kosmetik di Indonesia	2
1.2 Persebaran Klinik Oriskin Skin Care di Indonesia	3
2.1 Tabel Penelitian Terdahulu	17
4.1 Hasil Uji Validitas	33
4.2 Hasil Uji Reliabilitas	34
4.3 Karakteristik Responden Berdasarkan Umur	35
4.4 Karakteristik Responden Berdasarkan Pendidikan Terakhir	35
4.5 Karakteristik Responden Berdasarkan Status Perkawinan	36
4.6 Karakteristik Responden Berdasarkan Status Pekerjaan	36
4.7 Karakteristik Responden Berdasarkan Banyaknya Kunjungan	37
4.8 Karakteristik Responden Berdasarkan Status Kepuasan	38
4.9 Frekuensi Jawaban Variabel Bukti Fisik	39
4.10 Frekuensi Jawaban Variabel Kehandalan	40
4.11 Frekuensi Jawaban Variabel Daya Tanggap	
4.12 Frekuensi Jawaban Variabel Jaminan	
4.13 Frekuensi Jawaban Variabel Empati	43
4.14 Tests of Equality of Group Means	44
4.15 Canonical Discriminant Function Coefficients	
4.16 Hasil uji Wilk's Lambda	45
4.17 Eigenvalues	45
4.18 Standardized Canonical Discriminant Function Coefficients	46
4.19 Structure Matrix	
4.20 Classification Results ^a	
4.21 Kesalahan Klasifikasi	48
4.21 Hasil Uji Beda <i>Independent Sample t Test</i>	48

DAFTAR GAMBAR

	Halaman
2.1 Kerangka Konseptual	19
3.1 Kerangka Pemecahan Masalah	29

DAFTAR LAMPIRAN

		Halamar
1.	Kuesioner Penelitian	57
2.	Karakteristik Responden	61
3.	Rekapitulasi Jawaban Responden	66
4.	Distribusi Statistik Karakteristik Responden	72
5.	Distribusi Statistik Jawaban Responden	74
6.	Uji Validitas	79
7.	Uji Reliabilitas	82
8.	Output Analisis Diskriminan	85
9.	Hasil Uji Beda Independent Sample t Test	99
10.	R Tabel	100

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Pendidikan merupakan kebutuhan manusia yang sangat penting. Pendidikan selalu mengalami sebuah perubahan, perbaikan, dan perkembangan mengikuti segala perubahan aspek lainnya. Perkembangan pendidikan di Indonesia telah mengalami banyak perubahan yang cukup pesat. Perubahan yang dirasakan di Indonesia juga dirasakan oleh negara-negara lain. Terjadi perubahan seperti ekonomi, sistem pendidikan, sosial, politik, dan juga budaya. Masyarakat Indonesia perlu mempersiapkan diri dengan banyak perubahan yang terjadi agar tidak tertinggal oleh negara lain. Ciri-ciri manusia yang berpendidikan ialah berpikir secara rasional, memiliki kemampuan dalam berpikir, membangun pengetahuan, mengkritisi, dan memiliki kemampuan berkomunikasi secara efektif. Manusia yang berpendidikan cenderung akan memikirkan bahwa kesehatan merupakan sebuah kebutuhan, termasuk kesehatan kulit. Selain pendidikan, manusia juga memiliki kebutuhan dasar atas kesehatan. Semakin baik perekonomian dan meningkatnya pendapatan seseorang, maka semakin banyak pula kebutuhan yang harus dipenuhi oleh manusia.

Kesehatan kulit sedang gencar menjadi sorotan bagi setiap manusia khususnya kaum wanita dengan pendapatan yang mencukupi. Pendapatan yang meningkat mengakibatkan kaum wanita berlomba-lomba mendatangi berbagai perusahaan *skincare* untuk mendapatkan kulit yang sehat dan perawatan kecantikan lainnya untuk memenuhi kebutuhannya. Salah satu konsumsi wajib bagi wanita adalah perawatan kecantikan (Hidayah dan Imron, 2014). Kebutuhan ini dijadikan sebuah peluang bagi perusahaan jasa layanan perawatan kesehatan dan kecantikan kulit. Bermunculan usaha klinik perawatan kulit dan wajah di kota-kota besar. Banyak alasan yang mendorong wanita modern untuk melakukan perawatan kecantikan. Gaya hidup saat ini menuntut agar masyarakat luas terutama wanita untuk melakukan perawatan kecantikan. Perawatan kulit saat ini sudah menjadi kebutuhan bagi setiap manusia yang menginginkan kulit yang

sehat. Alasan itulah yang mengakibatkan usaha klinik perawatan kulit dan kecantikan sangat diminati pada persaingan bisnis saat ini.

Peluang yang besar telah terbuka bagi perusahaan *skincare* dalam memasuki persaingan bisnis. Kesadaran akan pentingnya kesehatan kulit dan penampilan mengakibatkan banyak sekali bermunculan perusahaan *skincare* yang saat ini sedang gencar-gencarnya memikat konsumen dengan berbagai macam strategi *marketing*. Bukan lagi kebutuhan tambahan atau sekunder yang tujuannya hanya mempercantik diri, perawatan kulit sudah menjadi gaya hidup bagi wanita modern. Karena itulah peluang bisnis perusahaan *skincare* sangat terbuka lebar dimasa kini dan masa mendatang. Hal ini dibuktikan dengan meningkatnya penjualan industri kosmetik di Indonesia yang cukup pesat. Menurut ketua Umum Persatuan Perusahaan Kosmetika Indonesia (Perkomsi) Nurhayati Subakat perkembangan industri kosmetik di Indonesia melesat tajam. Total nilai penjualan industri kosmetik di Indonesia selama 5 tahun terakhir dapat dilihat pada Tabel 1.1.

Tabel 1.1 Total Nilai Penjualan Industri Kosmetik Di Indonesia

Pertumbuhan
18,4 %
14%
16,4%
19%
9%

Sumber: Duniaindustri.com

Tabel 1.1 menunjukkan bahwa pertumbuhan nilai penjualan industri kosmetik di Indonesia setiap tahun mengalami kenaikan yang cukup stabil. Nilai pasar dari industri kosmetik juga menunjukkan tahun 2011 sampai 2015 tetap mengalami kenaikan setiap tahunnya. Potensi bisnis itulah yang disadari oleh Oriskin *Skin Care*, salah satu brand klinik perawatan wajah dan tubuh. Brand lokal yang hadir sejak tahun 2014 kini telah memiliki 26 cabang di seluruh Indonesia. Salah satunya di kota Jember. Sejak hadir dari tahun 2014 lalu, saat ini jumlah member Oriskin sudah mencapai 10 ribu. Rata-rata setiap tahun

pertambahan jumlah membership oriskin mencapai 2.000 orang. Adapun porsi member Oriskin, 70% wanita dan 30% pria. Berikut disajikan persebaran klinik Oriskin *Skin Care* di berbagai provinsi Indonesia dapat dilihat pada Tabel 1.2.

Tabel 1.2 Persebaran Klinik Oriskin Skin Care di Indonesia

No Provinsi		Jumlah Klinik	
1	Banten	2 Klinik	
2	Dki Jakarta	8 Klinik	
3	Jawa Barat	3 Klinik	
4	Jawa Tengah	2 Klinik	
5	Jawa Timur	3 Klinik	
6	Sulawesi Selatan	2 Klinik	
7	Sumatera	5 Klinik	
8	Kepulauan Riau	1 Klinik	
	Total	26 Klinik	

Sumber: Oriskin.id, 2019

Tabel 1.2 menunjukkan bahwa klinik Oriskin telah tersebar dan terus berkembang di seluruh bagian Indonesia. Sampai saat ini, klinik Oriskin telah memiliki total 26 klinik dan masih terus berproses untuk membangun cabang lainnya. Pelanggan yang menjadi anggota *membership* pada klinik oriskin *Skin Care* di Jember setiap bulan mengalami kenaikan yang cukup stabil. Hal ini berbanding terbalik dengan masih banyaknya komentar negatif yang diberikan kepada oriskin *Skin Care*. Terdapat komentar yang mengatakan bahwa konsumen merasa kecewa dengan pelayanan yang diberikan kepada konsumen. Berdasarkan hal itu, penelitian ini diharapkan mampu menganalisis variabel bukti fisik, kehandalan, daya tanggap, jaminan dan empati mana yang dapat membedakan konsumen puas dan konsumen tidak puas pada oriskin *Skin Care*.

Perusahaan diharapkan mampu menetapkan efisiensi dan efektifitas strategi pemasaran demi pencapaian tujuan perusahaan yaitu memberikan kepuasan konsumen agar loyalitas konsumen tetap terjaga (Kotler dan Keller, 2009:135). Perusahaan yang mampu bertahan dalam persaingan yang ketat membuktikan

bahwa perusahaan tersebut memiliki sebuah kelebihan dalam memuaskan konsumennya dibandingkan dengan perusahaan pesaing.

Kepuasaan konsumen merupakan tingkat perasaan seseorang setelah membandingkan hasil yang didapatkan dengan harapannya (Kotler, 2001:46). Tujuan dari suatu bisnis pada dasarnya ialah menciptakan perasaan puas dari memperoleh kepuasan konsumen, perusahaan Untuk menciptakan kualitas pelayanan yang baik dan sesuai harapan konsumennya. Apabila perusahaan mampu menciptakan kepuasan konsumen, maka perusahaan tersebut akan mendapatkan respon positif dari konsumennya. Untuk mengukur kualitas layanan dapat melalui tangibles, reliabilty, responsiveness, assurance, dan empathy. Penelitian ini akan menganalisis mengenai variabel bukti fisik, kehandalan, daya tanggap, jaminan dan empati manakah yang secara nyata mempengaruhi kepuasan konsumen pada Oriskin Skin Care Jember. Untuk menganalisis perbedaan konsumen yang puas atas kualitas layanan dan yang tidak puas atas kualitas layanan diperlukan analisis diskriminan. Analisis diskriminan membantu menganalisis apakah terdapat perbedaan antara konsumen yang puas dan tidak puas atas kualitas layanan yang diberikan.

1.2 Rumusan Masalah

Penelitian ini dilakukan untuk menganalisis variabel bukti fisik, kehandalan, daya tanggap, jaminan dan empati manakah yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin *Skin Care* Jember. Kepuasan konsumen merupakan perasaan pada diri konsumen setelah menggunakan produk atau jasa. Kepuasan konsumen dipengaruhi oleh kualitas layanan yang diberikan perusahaan kepada konsumen. Perusahaan perlu menetapkan sebuah strategi kualitas layanan dengan tepat agar konsumen merasa puas. Untuk menganalisis variabel bukti fisik, kehandalan, daya tanggap, jaminan dan empati yang dapat membedakan konsumen puas dan tidak puas diperlukan analisis diskriminan. Maka dari itu penelitian ini mengkaji mengenai perbedaan konsumen yang puas dan yang tidak puas atas variabel bukti fisik, kehandalan, daya tanggap, jaminan, dan empati pada Oriskin *Skin Care* Jember.

Berdasarkan uraian latar belakang di atas, dapat dirumuskan bahwa permasalahan pada penelitian ini adalah sebagai berikut :

- a. Apakah variabel bukti fisik, kehandalan, daya tanggap, jaminan, dan empati dapat membedakan konsumen puas dan tidak puas pada Oriskin Skin Care Jember?
- b. Variabel bukti fisik, kehandalan, daya tanggap, jaminan, dan empati manakah yang secara nyata mempengaruhi kepuasan konsumen (konsumen puas dan konsumen tidak puas) pada Oriskin *Skin Care* Jember?

1.3 Tujuan Penelitian

Agar didalam penelitian ini dapat diperoleh tujuan sesuai yang diinginkan, maka diperlukan adanya suatu tujuan penelitian. Tujuan dari penelitian ini dapat dirumuskan sebagai berikut:

- a. Untuk menguji dan menganalisis variabel bukti fisik, kehandalan, daya tanggap, jaminan, dan empati yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin *Skin Care* Jember.
- b. Untuk menguji dan menganalisis variabel bukti fisik, kehandalan, daya tanggap, jaminan, dan empati yang secara nyata mempengaruhi kepuasan konsumen (konsumen puas dan konsumen tidak puas) pada Oriskin *Skin Care* Jember.

1.4 Manfaat Penelitian

Adapun manfaat dari penelitian ini antara lain adalah:

a. Bagi Akademisi

Penelitian ini dapat menjadi bahan informasi dan referensi untuk penelitian selanjutnya khususnya dalam bidang manajemen pemasaran yang berkaitan dengan *tangibles, reliability, responsiveness, assurance, empathy* dan kepuasan konsumen. Disamping itu, penelitian ini dapat memberikan kontribusi dalam pengembangan ilmu khususnya pada bidang kecantikan mencakup kualitas layanan dan pemasaran.

b. Bagi Oriskin Skin Care

Penelitian ini dapat digunakan sebagai tolak ukur tingkat kepuasan konsumen Oriskin *Skin Care* dan bahan pertimbangan dalam mengambil keputusan dalam melayani konsumennya.

BAB 2 TINJAUAN PUSTAKA

2.1 Landasan Teori

2.1.1 Kepuasan Konsumen

Kepuasan dan ketidakpuasan adalah perasaan senang atau kecewa seseorang yang berasal dari perbandingan antara kesannya terhadap kinerja produk yang riil atau aktual dengan kinerja produk yang diharapkan. Kepuasan konsumen adalah perasaan yang dirasakan konsumen setelah membandingkan antara ekspektasi dengan apa yang mereka dapat, perasaan senang atau kecewa (Kotler, 2009:70). Kepuasan konsumen merupakan "customer's evaluation of a product or service in terms of wether that product or service has met their needs and expectation." (Zeithaml dan Bitner, 2003:26). Konsumen akan melakukan pembelian ulang produk atau jasa jika konsumen merasa puas dengan produk atau jasa tersebut. Faktor utama penentu kepuasan pelanggan adalah persepsi konsumen terhadap kualitas jasa (Rambat Lupiyoadi et al, 2006: 192). Sebagai contoh kualitas layanan diukur oleh call quality, mobile device, kenyamanan prosedur, dan jasa tambahan pada jasa mobile telecommunication (Rambat Lupiyoadi et al, 2006:192).

Ada lima tahap pasca pembelian produk yang akan dilalui konsumen, yaitu konsumsi produk, perasaan puas atau tidak puas, perilaku keluhan konsumen, disposisi barang, dan pembentukan kesetiaan merek. Selain untuk menciptakan keuntungan bagi perusahaan, produk dan layanan merupakan faktor penting dalam membentuk kepuasan konsumen. Pentingnya kepuasan konsumen berkaitan dengan kepercayaan dan kesetiaan konsumen terhadap suatu produk dan perusahaan. Kepuasan adalah perasaan senang seseorang yang muncul setelah membandingkan harapan dengan hasil yang didapatkan. Kepuasaan konsumen merupakan tingkat perasaan seseorang setelah membandingkan hasil yang didapatkan dengan harapannya (Kotler, 2001:46). Tujuan dari perusahaan ialah menciptakan perasaan puas dari konsumen. Untuk memperoleh kepuasan konsumen, perusahaan perlu menciptakan kualitas pelayanan yang baik dan sesuai

harapan konsumennya. Setelah perusahaan mampu menciptakan kepuasan konsumen maka perusahaan tersebut akan mendapatkan respon positif dari konsumennya.

Terdapat lima faktor dalam menentukan tingkat kepuasan pelanggan yang harus diperhatikan yaitu kualitas produk, kualitas pelayanan, emosional, harga, dan biaya. Konsumen akan merasa puas apabila evaluasi setelah membeli produk dengan kualitas yang baik dan sesuai harapan. Konsumen akan merasa puas apabila mendapatkan pelayanan yang baik dan sesuai yang diharapkan oleh pelanggan. Konsumen akan merasa bangga jika produk yang ia gunakan mempunyai nilai sosial yang tinggi. Harga sangat menentukan dalam mempengaruhi kepuasan konsumen. Dimana harga yang relatif murah dengan kualitas yang sama dengan harga yang lebih mahal akan mampu meningkatkan kepuasan konsumennya. Konsumen akan merasa puas jika mereka tidak perlu mengeluarkan biaya tambahan terhadap produk yang ia beli.

Berikut merupakan teori yang membahas mengenai kepuasan konsumen (Etta Mamang Sangadji, 2013:183) :

a. Teori Perasaan Afektif Eksperiental

Teori ini menyatakan bahwa kepuasan konsumen dipengaruhi oleh perasaan positif dan negatif disatukan konsumen dengan produk atau jasa yang telah dibeli.

b. Teori Kepuasan

Teori kepuasan ini menjelaskan bahwa rasa puas dan tidak puas konsumen merupakan dampak dari perbandingan antara harapan sebelum konsumen melakukan pembelian dan setelah pembelian. Saat membeli suatu produk atau jasa, konsumen memiliki harapan tentang bagaimana kinerja produk atau jasa tersebut:

 Diskonfirmasi positif (positive discorfirmation) adalah disaat konsumen merasakan produk atau jasa berkinerja lebih baik dari yang diharapkan. Jika terjadi diskonfirmasi positif ini maka konsumen akan merasa puas akan produk atau jasa yang dibeli.

- 2. Konfirmasi sederhana (simple confirmation) adalah disaat konsumen merasakan produk atau jasa berkinerja sesuai dengan yang diharapkan. Jika terjadi konfirmasi sederhana ini konsumen akan merasakan perasaan netral. Konsumen tidak merasa puas, namun juga tidak merasakan kecewa.
- 3. Diskonfirmasi negatif (*negative disconfirmation*) adalah disaat konsumen merasakan produk atau jasa berkinerja lebih buruk dari yang diharapkan. Jika terjadi diskonfirmasi negatif maka konsumen akan merasa kecewa karena produk dan jasa yang dibeli tidak sesuai dengan harapan, sehingga konsumen merasa tidak puas.

Menurut Fandy Tjiptono, *et al* (2011:315) mengemukakan bahwa dalam mengukur kepuasan pelanggan dapat menggunakan beberapa cara :

a. Sistem Keluhan dan Saran

Dalam sisitem ini perusahaan berpusat pada (*Customer Centered*) yang memberikan kesempatan bagi pelanggan untuk menyampaikan saran dan keluhan untuk perusahaan dan seluruh pelayanan yang telah diberikan. Seperti menggunakan kotak saran.

b. Survei Kepuasan Pelanggan

Sistem ini dapat dilakukan oleh perusahaan dalam mengidentifikasi kepuasan pelanggan melalui pos, telepon, kuesioner, maupun wawancara secara langsung. Pengukuran dalam menggunakan metode ini dapat dilakukan dengan cara:

- 1. Directly Reported Satisfaction: Pengukuran dilakukan secara langsung melalui pertanyaan seperti sangat puas, puas, netral, tidak puas, sangat tidak puas.
- 2. *Derived Dissatisfaction*: Pengukuran dilakukan dengan menanyakan dua hal yang utama, yaitu harapan pelanggan dan kenyataan setelah membeli produk dan pelayanan yang diterima.
- 3. *Problem Analysis*: Pengukuran dilakukan dengan menanyakan dua hal kepada pelanggan, yaitu keluhan menyangkut perusahaan dan saran untuk melakukan perbaikan.

4. *Importance Performance Analysis :* Pengukuran dilakukan dengan meminta pelanggan merangking berbagai atribut perusahaan berdasarkan derajat pentingnya setiap atribut dan merangking seberapa baik kinerja perusahaan dalam setiap atribut tersebut.

c. Ghost Shopping

Metode ini dilakukan dengan cara mempekerjakan seseorang (*ghost shopper*) berpura-pura menjadi pelanggan perusahaan pesaing untuk mengetahui kekuatan dan kelemahan perusahaan pesaing. Metode ini dapat digunakan pula untuk mengamati bagaimana cara perusahaan tersebut menangani keluhan pelanggan.

d. Lost Customer Analysis

Metode ini dilakukan dengan cara menghubungi pelanggan yang telah berhenti membeli produk atau jasa dari perusahaan tersebut. Hal ini dilakukan untuk mencari informasi dan mengetahui penyebab terjadinya hal tersebut.

2.1.2 Kualitas Pelayanan

Kualitas adalah "degree to which a set of inherent characteristics fulfils requirements (derajat yang dicapai oleh karakteristik yang inheren dalam memenuhi persyaratan)" (Rambat Lupiyoadi et al, 2006:175). Definisi pelayanan adalah setiap tindakan yang ditawarkan suatu pihak kepada pihak lain, namun tidak berwujud dan tidak mengakibatkan kepemilikan apapun (Kotler, 2002:83). Keberhasilan perusahaan dalam memberikan layanan yang berkualitas kepada para pelanggannya sangat ditentukan oleh pendekatan yang digunakan (Rambat Lupiyoadi, 2006:181). Salah satu pendekatan kualitas jasa yaitu model servqual (service quality) yang dikembangkan oleh Parasuraman, Zeithmal, dan Berry. Servqual dibentuk atas perbandingan dua faktor persepsi pelanggan atas kualitas layanan nyata yang diterima (perceived service) dengan layanan yang diharapkan (expected service). Jika kenyataannya service yang diberikan melebihi harapan maka dapat dikatakan pelayanan tersebut berkualitas.

Dapat disimpulkan bahwa kualitas jasa merupakan segala bentuk aktifitas yang ditawarkan pemilik jasa kepada penerima jasa yang menentukan sejauh mana dapat memenuhi kebutuhan penerima jasa setelah membandingkan kenyataan dengan harapan. Di dalam memberikan kualitas pelayanan yang baik dapat menguntungkan perusahaan dari berbagai kemungkinan, yaitu kepuasan konsumen yang didapat dari kualitas pelayanan yang telah diberikan kepada konsumen tersebut. Kualitas pelayanan adalah upaya pemenuhan kebutuhan berdasarkan keinginan konsumen serta ketepatan cara penyampaiannya agar dapat memenuhi harapan dan kepuasan pelanggan. Kualitas layanan yang terdiri dari tangible, reliabilty, responsiveness, assurance, dan emphaty. Untuk mengukur kualitas pelayanan dapat melalui lima aspek tersebut.

2.1.3 Bukti Fisik (*Tangibles*)

Bukti fisik di dalam kualitas pelayanan merupakan bentuk aktualisasi nyata dan secara fisik dapat terlihat atau digunakan oleh pegawai perusahaan dengan penggunaan dan manfaat yang dapat dirasakan oleh konsumen, sehingga konsumen puas atas pelayanan yang dirasakan dan sekaligus menunjukkan prestasi kerja atas pemberian pelayanan yang diberikan (Kotler, 2007:55).

Kemampuan perusahaan dalam menunjukkan eksistensinya kepada pihak eksternal seperti penampilan dan sarana yang diberikan merupakan bukti nyata atas pelayanan dari suatu perusahaan. Bukti fisik terdiri dari fasilitas fisik, perlengkapan, sarana komunikasi, pegawai, dan kendaraan operasional. Wujudnya adalah nyata dan dapat dilihat. Konsumen dapat melihat aspek *tangibles* ini menggunakan indera penglihatan untuk menilai dan mengevaluasi suatu kualitas pelayanan yang diberikan. *Tangibles* yang akan mempengaruhi persepsi utama dari pelanggan. Saat konsumen melihat aspek *tangibles* yang baik pada suatu perusahaan, maka harapan dari konsumen akan aspek-aspek lain menjadi lebih tinggi. Maka dari itu perusahaan harus memberikan kualitas yang baik di dalam aspek bukti fisik. Penelitian Oriskin *Skin Care* yang termasuk dalam aspek bukti fisik ialah peralatan yang digunakan, fasiitas yang tersedia seperti ruang tunggu yang nyaman, ruangan yang bersih, penampilan petugas yang rapi, peralatan yang

digunakan saat *treatment*, perlengkapan gedung, dan produk yang dijual kepada konsumen seperti *day cream*, *night cream* dan lain-lain. Salah satu cara memikat konsumen dalam aspek *tangibles* tentunya Oriskin *Skin Care* harus menggunakan peralatan yang berkualitas dan fasilitas yang memadai dalam melayani pelanggannya.

2.1.4 Kehandalan (*Reliabilty*)

Setiap pelayanan memerlukan kehandalan, artinya dalam memberikan pelayanan, seluruh pegawai harus memiliki kemampuan dalam pengetahuan, kemandirian, penguasaan, profesionalisme dan keahlian kerja yang tinggi, sehingga menghasilkan rasa puas konsumen tanpa ada keluhan dan kesan yang berlebihan atas pelayanan yang diterima (Kotler, 2007:55). *Reliabilty* atau kehandalan merupakan kemampuan perusahaan dalam memberikan pelayanan yang dijanjikan dengan baik dan konsisten. Kinerja pegawai harus sesuai dan konsisten dalam memberikan pelayanan yang tepat waktu, menanggapi keluhan pelanggan, pelayanan yang dapat dipercaya, sikap dan simpatik.

Kehandalan pegawai merupakan syarat penilaian bagi konsumen yang dilayani dalam memperlihatkan aktualisasi kerja pegawai. Kehandalan pegawai dituntut dalam memberikan pelayanan yang cepat, tepat waktu, mudah dimengerti, dam lancar menjadi fokus bagi setiap pegawai dalam memberikan pelayanan kepada setiap konsumen. Penelitian pada Oriskin *Skin Care* yang termasuk dalam aspek kehandalan adalah pegawai yang memiliki kemampuan yang handal dan tepat waktu dalam memberikan layanan, mengetahui mekanisme kerja dengan baik, mengetahui seluk beluk prosedur dalam bekerja, mampu menunjukkan dan memberi arahan yang benar dan sopan kepada konsumen dalam setiap bentuk pelayanan yang belum dimengerti konsumen, sehingga konsumen merasa puas dan akan memberikan dampak positif atas pelayanan yang di rasakan.

Setiap pegawai harus mampu memberikan pelayanan yang sama tanpa membeda-bedakan konsumen. Kehandalan pegawai dapat terlihat dari bagaimana pegawai memberikan pelayanan sesuai dengan pengetahuan yang dimiliki, terampil dalam menguasai bidang kerja yang diterapkan, penguasaan menggunakan teknologi kerja. Kehandalan sangat diperlukan bagi Oriskin *Skin Care* dalam memberikan pelayanan untuk menghadapi persaingan yang ketat dengan kompetitior klinik kecantikan lainnya.

2.1.5 Daya Tanggap (Responsiveness)

Daya Tanggap setiap pegawai dalam memberikan bentuk-bentuk pelayanan diperlukan kemampuan daya tanggap pegawai dalam menangani ketidaksesuaian atas berbagai hal bentuk pelayanan yang tidak diketahui konsumen. Hal ini mencakup penjelasan yang bijaksana, membina, mendetail, membujuk dan mengarahkan agar menyikapi segala bentuk-bentuk prosedur dan mekanisme kerja yang berlaku dalam suatu perusahaan, sehingga diperoleh respon positif dari konsumen tentang bentuk pelayanan tersebut (Kotler, 2007:56).

Responsiveness merupakan sikap cepat daya tanggap pegawai dalam memberikan pelayanan secara tepat waktu. Kecepatan pelayanan merupakan sikap tanggap pegawai dalam melayani konsumen agar konsumen tidak kecewa. Suatu perusahaan harus mengerti bahwa daya tanggap merupakan faktor yang penting. Setiap konsumen yang tidak mengerti akan suatu hal yang berkaitan dengan pelayanan sangat membutuhkan penjelasan agar konsumen paham dengan prosedur pelayanan yang ada. Apabila pelayanan daya tanggap diberikan kepada konsumen dengan baik dan penjelasan yang bijaksana, ini merupakan suatu bentuk prestasi kerja. Daya tanggap merupakan sikap cepat daya tanggap pegawai dalam memberikan pelayanan secara tepat waktu.

Penelitian pada Oriskin *Skin Care* yang termasuk dalam faktor daya tanggap adalah pegawai yang mampu menjelaskan dengan bijaksana, mampu memberikan penjelasan yang mendetail, penjelasan yang mengarahkan, penjelasan yang membina dan bersifat membujuk konsumen. Apabila pegawai dapat menerapkan hal tersebut dan konsumen dapat mengerti dan menerima dengan baik maka pelayanan daya tanggap dianggap berhasil. Pegawai Oriskin *Skin Care* harus bersedia membantu dan memberikan pelayanan yang cepat (*responsive*) dan tepat kepada konsumen dengan penyampaian informasi yang jelas. Tentunya pelayanan

daya tanggap ini sangat penting bagi Oriskin *Skin Care* dalam membetuk rasa puas dari diri konsumen.

2.1.6 Jaminan (*Assurance*)

Jaminan adalah perlindungan yang diberikan mencakup kemampuan, kesopanan, pengetahuan, sifat dapat dipercaya pegawai dan terlepas dari bahaya, resiko, dan keragu-raguan. Untuk menumbuhkan rasa percaya para pelanggan perusahaan harus memperhatikan beberapa hal antara lain sopan santun, komunikasi, kredibilitas, keamanan, dam kompetensi. Setiap bentuk pelayanan yang diberikan kepada konsumen memerlukan adanya kepastian. Bentuk kepastian tersebut berupa jaminan dari pegawai yang memberikan pelayanan, sehingga konsumen yang menerima layanan merasa yakin atas segala pelayanan yang diberikan akan tuntas dan diselesaikan sesuai yang diinginkan konsumen. Pelayanan harus selesai dengan ketepatan, kecepatan, kemudahan, kelancaran dan kualitas layanan (Kotler, 2007:57).

Jaminan atas kualitas pelayanan yang diberikan pegawai kepada konsumen sangat ditentukan oleh *performance* atau kinerja pelayanan. Konsumen meyakini bahwa pegawai tersebut mampu memberikan pelayanan yang profesional dan handal yang nanti akan berdampak pada kepuasan konsumen atas kualitas layanan yang diberikan oleh karyawan. Jaminan juga ditentukan dari adanya komitmen perusahaan yang sangat kuat dalam mengatur para pegawai dalam memberikan pelayanan yang serius dan sungguh-sungguh untuk memuaskan setiap konsumen. Selain itu, bentuk jaminan lainnya adalah pegawai dengan *personality behavior* atau perilaku kepribadian yang baik dalam memberikan pelayanan kepada konsumen.

Penelitian pada Oriskin *Skin Care* yang termasuk dalam faktor jaminan adalah pegawai yang memiliki sifat dapat dipercaya, kemampuan, kesopanan, dan pengetahuan dalam memberikan pelayanan pada konsumen terlepas dari bahaya, resiko dan keragu-raguan. Pegawai Oriskin *Skin Care* harus mampu menyelesaikan pelayanan dengan kecepatan, ketepatan, kemudahan, dan kelancaran agar konsumen puas atas pelayanan yang diberikan. Tentunya

assurance menjadi hal yang sangat penting bagi Oriskin Skin Care dalam membangun citra perusahaan. Karena dengan jaminan Oriskin Skin Care dapat membangun trust dari konsumennya.

2.1.7 Empati (*Empathy*)

Empati adalah perhatian yang diberikan kepada pelanggannya dengan cara melakukan hubungan yang baik, komunikasi yang baik, dan berusaha memahami kebutuhan dan keinginan pelanggan. Dalam melaksanakan pelayanan perusahaan diharapkan memiliki pengertian terhadap pelanggannya, memahami kebutuhan pelanggannya, dan memiliki waktu pengoperasian yang baik bagi setiap pelanggannya. Setiap pelayanan akan berjalan lancar apabila pegawai dapat memberikan pelayanan dengan adanya rasa empati atau perhatian dalam menyelesaikan, mengurus dan memiliki komitmen yang sama terhadap pelayanan (Kotler, 2007:58).

Kemampuan untuk merasakan keadaan emosional orang lain, merasa simpatik dan mencoba untuk menyelesaikan masalah, mengalami emosi yang serupa, dan mengetahui apa yang orang lain rasakan dan pikirkan termasuk dalam faktor empati. Petugas memberikan pelayanan kepada konsumen dapat berupa suatu perhatian, simpatik, keseriusan untuk melakukan aktivitas dalam memperbaiki pelayanan untuk terus membangun kepuasan konsumen. Petugas yang memberikan pelayanan harus memiliki pengertian dan pemahaman dalam mengatasi masalah dari konsumen. Jika terdapat empati antara pihak yang melayani dan dilayani maka konsumen dapat memahami keterbatasan dan kemampuan pegawai dalam memberikan pelayanan.

Penelitian Oriskin *Skin Care* yang termasuk dalam faktor empati adalah pegawai yang mampu memberikan perhatian kepada konsumen, pegawai yang mampu memberikan simpatik kepada konsumen, dan pegawai yang mampu memberikan keseriusan dalam menyelesaikan masalah yang dihadapi konsumen, pegawai yang berusaha merasakan perasaan yang dirasakan oleh konsumennya. Pegawai Oriskin *Skin Care* harus mampu memahami dan mengerti keinginan konsumennya dengan cara memberikan perhatian yang baik namun tidak

berlebihan. Jika pegawai Oriskin *Skin Care* mampu memberikan rasa perhatian maka akan timbul perasaan yang sama dari diri konsumen. Konsumen yang merasa diperhatikan dengan layak akan memahami setiap perkataan dan keterbatasan akan kemampuan pegawai dalam memberikan pelayanan.

2.2 Penelitian Terdahulu

Penelitian terdahulu menjadi salah satu sumber acuan dalam melakukan penelitian sehingga dapat menambah teori yang digunakan dalam mengkaji penelitian yang dilakukan. Dengan penelitian terdahulu dapat diperoleh referensi dalam memperkaya bahan kajian pada penelitian ini.

Penelitian pertama dilakukan oleh Albert (2002) perbedaan terletak pada variabel yaitu variabel intervening Z adalah kepuasan konsumen dan variabel terikat Y adalah loyalitas. Selain itu, perbedaan metode yang digunakan, oleh Albert Caruana yaitu menggunaakan metode *Regression Equations testing Mediation*. Kemudian, perbedaan mendasar antara keduanya adalah perbedaan objek penelitian dan periode pengamatan. Albert Caruana melakukan penelitian pada tahun 2002 dengan objek penelitian Perbankan Ritel.

Penelitian kedua dilakukan oleh Ying (2009) perbedaan terletak pada variabel perceived value, customer satisfaction, post-purchase intention. Selain itu, perbedaan metode yang digunakan, oleh Ying-Feng Kuo, et al yaitu menggunaakan metode Multiple Regression Analysis, Path Analysis. Kemudian, perbedaan mendasar antara keduanya adalah perbedaan objek penelitian dan periode pengamatan. Ying-Feng Kuo, et al melakukan penelitian pada tahun 2009 dengan objek penelitian mahasiswa pasca sarjana di 15 Universitas Taiwan.

Penelitian ketiga yang dilakukan oleh Ruth (2012) perbedaan terletak pada variabel X_1 = Produk dan X_3 = Kewajaran Harga, variabel Z = Kepuasan Pelanggan dan variabel terikat Y = Loyalitas Pelanggan. Selain itu, perbedaan metode yang digunakan oleh Ruth Amryyanti, *et al* yaitu menggunaakan metode Deskriptif dan SEM. Kemudian, perbedaan mendasar antara keduanya adalah perbedaan objek penelitian dan periode pengamatan. Ruth Amryyanti, *et al*

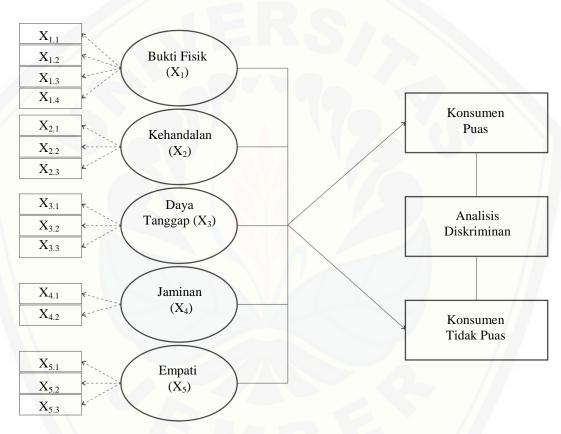
melakukan penelitian pada tahun 2012 dengan objek penelitian LnC *Skin Care* Singaraja.

Penelitian keempat yang dilakukan oleh Ayu (2015) perbedaan terletak pada metode Asosiatif dan Regresi Linier Berganda. Perbedaan mendasar antara keduanya adalah perbedaan objek penelitian dan periode pengamatan. Ayu Inten Surya Utami dan I Made Jatra melakukan penelitian pada tahun 2015 dengan objek penelitian Restoran Baruna Sanur.

Penelitian kelima yang dilakukan oleh Alfin $et\ al\ (2017)$ perbedaan terletak pada variabel $X_1 = Brand\ Image\ dan\ X_3 = Harga,\ variabel\ Z = Kepuasan Konsumen dan variabel terikat <math>Y = Loyalitas$. Selain itu, perbedaan metode yang digunakan, oleh Alfin Rosita Wiluajeng, $et\ al\$ yaitu menggunaakan metode $Path\ Analysis$. Kemudian, perbedaan mendasar antara keduanya adalah perbedaan objek penelitian dan periode pengamatan. Alfin Rosita Wilujeng, $et\ al\$ melakukan penelitian pada tahun 2017 dengan objek penelitian Jasa J&T Express.

Tabel 2.1 Penelitian Terdahulu

No	Nama Peneliti (tahun)	Variabel – variabel Penelitian	Metode Analisis	Hasil (Kesimpulan)
1	Albert Caruana (2002)	X = Service Quality Z = Customer Satisfaction Y = Service Loyalty	Regression Equations testing Mediation	Kualitas Layanan berpengaruh signifikan terhadap Kepuasan Konsumen. Kepuasan Konsumen bepengaruh signifikan terhadap Loyalitas Layanan.


2	Ying-Feng	$X_1 = Service$	Multiple	Service Quality dan
	Kuo, Chi-	Quality	Regression	Perceived Value
	Ming Wu,	$X_2 = Perceived$	Analysis,	berpengaruh signifikan
	Wei-Jaw	Value	Path	terhadap Customer
	Deng (2009)	Z = Customer	Analysis	Satisfaction. Customer
		Satisfaction		Satisfaction
		Y = Post-		berpengaruh signifikan
		Purchase		terhadap Post-Purchase
		Intention		Intention.

3	Ruth Amryyanti dan I Putu Gede Sukaatmadja (2013)	X_1 = Kualitas Layanan X_2 = Produk X_3 = Kewajaran Harga Z = Kepuasan Konsumen Y = Loyalitas Pelanggan	Deskriptif dan SEM	Kualitas Layanan, Produk, Kewajaran Harga berpengaruh positif dan signifikan terhadap Kepuasan Konsumen. Kepuasan Konsumen berpengaruh positif dan signifikan terhadap Loyalitas Pelanggan
4	Ida Ayu Inten Surya Utami dan I Made Jatra (2015)	X_1 = Tangible X_2 = Reliability X_3 = Responsiveness X_4 = Assurance X_5 = Empathy Y = Kepuasan Pelanggan	Asosiatif dan Regresi Linier Berganda	Variabel Independen Bukti Fisik, Kehandalan, Daya Tanggap, Jaminan, dan Empati berpengaruh positif dan signifikan terhadap Variabel Kepuasan Pelanggan.
5	Alfin Rosita Wilujeng, Sudaryanto dan N. Ari Subagio (2017)	$X_1 = Brand$ Image $X_2 = Kualitas$ Layanan $X_3 = Harga$ $Z = Kepuasan$ Konsumen $Y = Loyalitas$	Path Analysis	Brand Image, Kualitas Layanan, dan Harga berpengaruh signifikan terhadap Kepuasan Konsumen. Kepuasan Konsumen bepengaruh signifikan terhadap Loyalitas.

Sumber : Alfin Rosita Wilujeng, Sudaryanto dan N. Ari Subagio (2017), Ruth Amryyanti dan I Putu Gede Sukaatmadja (2013), Ida Ayu Inten Surya Utami dan I Made Jatra (2015), Albert Caruana (2002), Ying-Feng Kuo, Chi-Ming Wu, Wei-Jaw Deng (2009)

2.3 Kerangka Konseptual

Penelitian ini menggunakan lima variabel bebas yaitu (*tangible, reliabilty, responsiveness, assurance, dan emphaty*). Hal ini sesuai dengan hasil riset Ida Ayu Inten Surya Utami dan I Made Jatra (2015) yang menunjukkan bahwa variabel (*tangible, reliabilty, responsiveness, assurance, dan emphaty*) berpengaruh signifikan terhadap kepuasan konsumen. Oleh karena itu, dibuat kerangka konseptual seperti Gambar 2.1:

Gambar 2.1 Kerangka Konseptual

2.4 Hipotesis Penelitian

Sugiyono (2010:93) menyatakan bahwa hipotesis merupakan jawaban sementara terhadap rumusan masalah penelitian, oleh karena itu rumusan masalah disusun dalam bentuk pertanyaan. Kualitas layanan menurut Tjiptono (2007:71) merupakan upaya dalam pemenuhan kebutuhan dan keinginan serta ketepatan dalam penyampaiannya untuk mengimbangi harapan dari konsumen. Kualitas layanan dapat dinyatakan sebagai perbandingan antara layanan yang diinginkan oleh konsumen dengan layanan yang diterima oleh konsumen tersebut.

Menurut Lupiyoadi (2009:168) salah satu penentu dalam menentukan keberhasilan bisnis jasa adalah kualitas layanan yang diberikan. Penelitian ini mengukur perbedaan kepuasan konsumen dengan menggunakan varianbel dari kualitas layanan yaitu bukti fisik, kehandalan, daya tanggap, jaminan, dan empati. Berdasarkan landasan teori dan kajian empiris tersebut, hipotesis pada penelitian ini adalah sebagai berikut:

H₁ : Terdapat perbedaan konsumen puas dan tidak puas atas bukti fisik, kehandalan, daya tanggap, jaminan, dan empati pada Oriskin *Skin Care* Jember.

H₀ : Tidak terdapat perbedaan konsumen puas dan tidak puas atas bukti fisik, kehandalan, daya tanggap, jaminan, dan empati pada Oriskin *Skin Care* Jember.

Digital Repository Universitas Jember

BAB 3 METODE PENELITIAN

3.1 Rancangan Penelitian

Penelitian ini adalah penelitian *eksplanatory* yang tujuannya untuk menguji suatu hipotesis untuk memperkuat atau menolak hipotesis hasil penelitian. Tujuan dari penelitian *eksplanatory* adalah memperoleh keterangan, informasi, data mengenai hal yang belum diketahui. Penelitian ini bertitik pada pertanyaan "mengapa" dan menjelaskan sebab terjadinya peristiwa. Oleh karena itu, penelitian ini juga disebut sebagai penelitian konfirmatori (*confirmatory research*).

3.2 Populasi Dan Sampel

3.3.1 Populasi

Konsumen Oriskin *Skin Care* meliputi perempuan dan laki-laki, namun konsumen perempuan lebih dominan dibandingkan konsumen laki-laki. Populasi penelitian ini adalah konsumen perempuan pada Oriskin *Skin Care*. Cakupan wilayah populasi penelitian ini adalah konsumen klinik Oriskin *Skin Care* Jember.

3.3.2 Sampel

Sampel merupakan bagian dari populasi yang digunakan untuk memperkirakan hasil dari penelitian. Teknik pengambilan sampel menggunakan purposive sampling yaitu pengambilan sampel berdasarkan suatu pertimbangan tertentu seperti sifat-sifat populasi ataupun ciri-ciri yang sudah diketahui sebelumnya. Besarnya sampel yang diambil dapat dilakukan dengan cara mengalikan seluruh variabel keseluruhan dengan 10. Indikator penelitian sebanyak $15 \times 10 = 150$ responden. Kriteria pengambilan sampel pada penelitian ini adalah konsumen yang berkunjung minimal 2 kali dan konsumen membership Oriskin *Skin Care* Jember. Hal ini dikarenakan agar konsumen mengerti dan memahami objek penelitian.

3.3 Jenis dan Sumber Data

3.3.1 Jenis Data

Jenis data pada penelitian ini adalah data yang bersifat kuantitatif dengan tipe skala ordinal. Dilihat dari segi waktu, data yang diperoleh pada penelitian ini adalah data *cross section* yaitu data yang dikumpulkan dalam satu waktu yang sama. Sedangkan tipe skala ordinal yaitu data yang disusun secara berjenjang untuk menunjukkan suatu tingkatan atau urutan data. Jenis data ini memiliki peringkat atau urutan digunakan untuk mengurutkan objek dari terendah hingga tertinggi atau terbaik hingga terburuk.

3.3.2 Sumber Data

a. Data Primer

Sumber data dari penelitian ini adalah sumber data primer yaitu data yang diperoleh dengan cara membagikan kuesioner dengan pelanggan Oriskin *Skin Care* Jember. Data primer yang diperoleh adalah jawaban dari responden berupa karakteristik responden, persepsi terhadap *instrument* penelitian.

b. Data Sekunder

Sumber data dari penelitian ini adalah sumber data sekunder yaitu data yang diperoleh melalui media perantara atau secara tidak langsung berupa buku, catatan, jurnal, internet, bukti yang telah ada, pusat arsip, dan pusat kajian. Sumber data sekunder yang diperoleh penelitian ini berupa total nilai penjualan kosmetik di Indonesia, layanan yang ditawarkan oleh Oriskin, dan data persebaran klinik Oriskin di Indonesia.

3.4 Metode Pengumpulan Data

Metode pengumpulan data pada penelitian ini menggunakan kuesioner. Kuesioner diajukan kepada konsumen Oriskin *Skin Care* Jember dan diperoleh jawaban dari responden. Pengumpulan data pada penelitian ini 70% menggunakan kuesioner *online*, dan 30% menggunakan kuesioner *offline*.

3.5 Identifikasi Variabel Penelitian

Variabel penelitian merupakan objek atau fokus pada suatu penelitian yang memiliki nilai dan dapat diukur. Penelitian ini menggunakan kepuasan konsumen sebagai *dependent variable* dengan dua kategori yaitu konsumen puas dan konsumen tidak puas. *Independent variable* terdiri dari lima variabel yaitu (Bukti Fisik, Kehandalan, Daya Tanggap, Jaminan, dan Empati). Secara rinci *independent variable* dan *dependent variable* tersebut adalah:

a. Bukti Fisik / Tangibles (X₁)

Variabel bebas X_1 pada penelitian ini adalah bukti fisik. Bukti fisik adalah aktualisasi nyata dan dapat dilihat. Bukti fisik dapat dirasakan manfaatnya oleh konsumen secara nyata.

b. Kehandalan / Reliabilty (X₂)

Variabel bebas X_2 pada penelitian ini adalah kehandalan. Kehandalan adalah kemampuan perusahaan dalam memberikan pelayanan, kemampuan dapat berarti pengetahuan, kemandirian, penguasaan, keahlian, dan profesionalisme. Karyawan yang memiliki kehandalan yang baik mampu membangun perasaan puas pada diri konsumen.

c. Daya Tanggap / Responsiveness (X₃)

Variabel bebas X₃ pada penelitian ini adalah daya tanggap. Daya tanggap adalah sikap cepat daya tanggap karyawan dalam memberikan pelayanan secara *ontime*. Membiarkan konsumen menunggu dalam waktu lama tanpa alasan yang jelas akan menimbulkan kesan negatif dari konsumen. Kesalahan harus ditanggapi dengan cepat agar mendapat kesan positif dari konsumen.

d. Jaminan / Assurance (X₄)

Variabel bebas X_4 pada penelitian ini adalah jaminan. Jaminan adalah perlindungan yang diberikan kepada konsumen mencakup kemampuan, kesopanan, pengetahuan, terlepas dari bahaya, resiko, dan keragu-raguan.

e. Empati / Empathy (X₅)

Variabel bebas X_5 pada penelitian ini adalah empati. Empati perhatian dari karyawan yang diberikan kepada konsumen dengan cara melakukan hubungan yang baik, komunikasi yang baik, dan berusaha memahami kebutuhan

konsumen. pelayanan yang diberikan mampu berjalan dengan lancar apabila karyawan dapat memberikan pelayanan dengan didampingi rasa empati atau perhatian dalam menyelesaikan pekerjaannya.

f. Variabel Terikat (Dependent Variable)

Variabel terikat pada penelitian ini adalah kepuasan konsumen yang terdiri dari dua kategori :

Y = Konsumen Puas dengan kode (1)

Y = Konsumen Tidak Puas dengan kode (2)

3.6 Definisi Operasional Variabel

Kualitas layanan adalah segala bentuk aktifitas perusahaan yang diberikan kepada konsumen guna memenuhi harapan dan kebutuhan konsumen. Service quality dapat dibangun atas adanya perbandingan layanan yang mereka terima dan layanan yang diharapkan (Rambat Lupiyoadi, 2006:181). Kepuasan konsumen adalah perasaan senang atau kecewa seseorang setelah membandingkan kinerja yang diterima terhadap kinerja yang diharapkan (Philip Kotler, et al 2007:177). Mengukur variabel bukti fisik (X_1) , Kehandalan (X_2) , Daya Tanggap (X_3) , Jaminan (X_4) , Empati (X_5) digunakan indikator-indikator sebagai berikut:

- a. Menurut Daryanto (2013:289) indikator bukti fisik (X₁) adalah sarana fisik perkantoran, ruang tunggu, tempat informasi, komputerisasi. Indikatornya adalah sebagai berikut:
 - 1. Penampilan pegawai Oriskin *Skin Care* rapi.
 - 2. Gedung Oriskin *Skin Care* memiliki suasan yang nyaman.
 - 3. Peralatan yang digunakan Oriskin Skin Care.
 - 4. Bahan yang digunakan Oriskin Skin Care.
- b. Kehandalan (X₂) adalah kemampuan dan kehandalan pegawai dalam memberikan pelayanan secara terpercaya. Menurut J. Supranto (2001:244) indikatornya adalah sebagai berikut:
 - 1. Pelayanan sesuai yang dijanjikan.
 - 2. Karyawan yang siap melayani tepat waktu.

- 3. Karyawan mampu memberikan informasi yang baik dan benar.
- c. Daya Tanggap (X₃) adalah kesanggupan pegawai dalam memberikan pelayanan secara tepat dan cepat kepada konsumen. Menurut J. Supranto (2001:244) indikatornya adalah sebagai berikut:
 - 1. Kesediaan petugas dalam menanggapi kritik dan saran.
 - 2. Karyawan memiliki sikap sigap saat melayani konsumen.
 - 3. Kemudahan dalam menghubungi konsumen.
- d. Jaminan (X_4) adalah kemampuan pegawai dalam meyakinkan konsumen. Menurut Daryanto (2013:289) indikatornya adalah sebagai berikut :
 - 1. Jaminan ganti rugi jika terjadi kesalahan selama proses pelayanan.
 - 2. Skill yang dimiliki petugas sangat baik
- e. Empati (X₅) adalah sikap perhatian pegawai yang diberikan kepada konsumen. Menurut Daryanto (2013:289) indikatornya adalah sebagai berikut
 - 1. Petugas memberikan perhatian kepada pelanggan.
 - 2. Petugas memahami kebutuhan pelanggan.
 - 3. Petugas mampu menjalin komunikasi yang baik terhadap konsumen.

3.7 Skala Pengukuran Variabel

Penelitian ini menggunakan skala likert yaitu skala yang digunakan mengukur persepsi, sikap, dan pendapat seseorang atau kelompok mengenai sebuah subjek dalam penelitian dengan rentang skala lima berupa:

- a. 5 =Sangat Puas
- b. 4 = Puas
- c. 3 = Cukup Puas
- d. 2 = Tidak Puas
- e. 1 =Sangat Tidak Puas

3.8 Uji Instrumen

3.8.1 Uji Validitas

Uji *Validitas* adalah uji yang digunakan untuk menunjukkan tingkat ketepatan suatu istrumen untuk mengukur apa yang diukur (Sugiyono, 2010:267). Validitas suatu instrumen berhubungan dengan tingkat akurasi dari suatu alat ukur mengukur apa yang akan diukur. Tingkat signifikansi dalam penelitian ini menggunakan 1%, 5% dan 10%. Untuk menguji validitas digunakan teknik *product pearson moment* yang rumusnya sebagai berikut:

$$r = \frac{n\sum XY - (\sum X)(\sum Y)}{\sqrt{\{n\sum X^2 - (\sum X)^2\}\{N\sum Y^2 - (N\sum Y)^2\}}}$$

Keterangan: n = jumlah data observasi

X = skor pertanyaan

Y = skor total

r = koefisien korelasi

3.8.2 Uji Reliabilitas

Uji *Reliabilitas* adalah uji yang digunakan untuk mengukur tingkat ketetapan suatu instrumen mengukur apa yang akan diukur (Sugiyono, 2010:354). Ada tiga cara dalam melakkan uji reliabilitas yaitu: tes tunggal, tes ulang, dan tes ekuivalen. Uji reliabilitas dihitung dengan program SPSS. Tinggi rendahnya reliabilitas ditunjukkan oleh Cronbach Alpha (α) variabel dikatakan *reliable* apabila bernilai cronbach apha > 0.06. Apabila nilai *cronbach* atau nilai *alpha* semakin mendekati satu maka reliabilitas dapat dipercaya. Dengan rumus berikut:

$$\alpha = \frac{(K)Cov/Var}{1 + (K - 1)Cov/Var}$$

Keterangan: α = alpha

K = banyaknya butir pertanyaan

Cov = rerata kovarians diantara butir

Var = rerata varians dari butir

3.9 Analisis Diskriminan

Untuk mengetahui dan menganalisis kepuasan konsumen atas kualitas layanan pada Oriskin *Skin Care* digunakan alat analisis diskriminan. Analisis diskriminan merupakan teknik menganalisis data, dalam analisis diskriminan variabel tak bebas (*criterion*) merupakan kategori *non-metrik*, nominal atau ordinal, bersifat kualitatif sedangkan variabel bebas sebagai prediktor merupakan *metrik interval* atau rasio, bersifat kuantitatif (J Supranto, 2004:77). Kegunaan utama uji diskriminan ada dua. Pertama adalah kemampuan memprediksi terjadinya variabel dependen dengan masukan variabel independen. Kedua adalah kemampuan memilih mana variabel independen yang secara nyata mempengaruhi variabel dependen dan mana yang tidak. Langkah-langkah dalam melakukan uji diskriminan adalah sebagai berikut (Santoso, 2010:155):

a. Model analisis diskriminan adalah sebuah persamaan yang menunjukkan suatu kombinasi linear dari berbagai variabel independen, yaitu :

$$D = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_5 X_5$$

Keterangan:

D = skor diskriminan

b = koefisien diskriminan atau bobot

X = variabel bebas

b. Untuk membedakan responden masuk golongan yang mana, menggunakan *optimum cutting score*. Untuk sampel yang tidak proporsional (jumlah anggota kedua grup berbeda), digunakan rumus sebagai berikut:

$$Z_{cu} = \frac{Z_b N_A + Z_a N_B}{N_A + N_B}$$

Keterangan:

Z_{cu} = *critical cutting score*/angka kritis

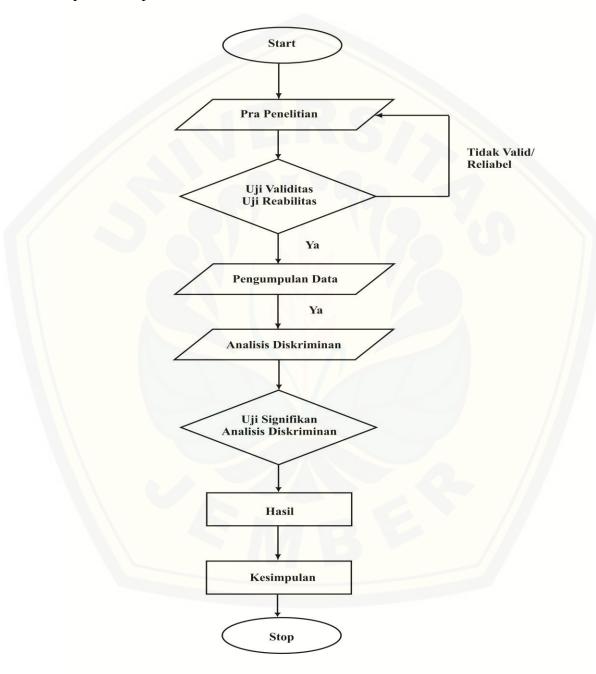
 N_A = jumlah sampel konsumen yang puas

 N_B = jumlah sampel konsumen yang tidak puas

 $Z_A = centroid$ konsumen yang puas

 $Z_B = centroid$ konsumen yang tidak puas

Bila Z score konsumen lebih besar dari pada Z_{cu} maka dimasukkan dalam kategori puas, sedangkan apabila lebih kecil daripada Z_{cu} maka dimasukkan dalam kategori tidak puas.


- c. Melihat nilai dari of original grouped cases correctly classified dan cross validated grouped cases correctly classified. Nilai ini digunakan untuk mengetahui presentase kasus atau responden yang dapat diuji dan mengurangi bias yang terjadi saat proses klasifikasi.
- d. Uji signifikansi diskriminan dilihat melalui nilai *Wilk's Lambda* atau *Chi Square*. Signifikan fungsi diskriminan dilihat melalui nilai *Wilk's Lambda* atau *chi square* (Santoso 2010:178). Pedoman *Wilks's Lambda* jika mendekati (0) maka data tiap grup semakin berbeda, jika semakin mendekati (1) data tiap grup mendekati sama atau tidak berbeda. Pedoman dengan sig. Tes yaitu jika sig. ≥ 0,05 maka tidak ada perbedaan antar grup, sedangkan jika ≤ 0,05 maka terdapat perbedaan antar grup.

3.10 Uji Beda Independent Sample t Test

Independent sample t Test adalah uji komparatif atau uji beda untuk mengetahui adakah perbedaan mean atau rerata yang bermakna antara 2 kelompok bebas yang berskala data interval/rasio. Setelah dilakukan analisis diskriminan untuk memperkuat hipotesis terdapat perbedaan antara konsumen puas dan konsumen tidak puas atas kualitas layanan pada Oriskin *Skin Care* Jember. Apabila nilai signifikansi < 0.05 maka dapat dikatakan H₀ (Tidak terdapat perbedaan konsumen puas dan tidak puas atas bukti fisik, kehandalan, daya tanggap, jaminan, dan empati pada Oriskin *Skin Care* Jember) ditolak dan H₁ (Terdapat perbedaan konsumen puas dan tidak puas atas bukti fisik, kehandalan, daya tanggap, jaminan, dan empati pada Oriskin *Skin Care* Jember) diterima.

3.9 Kerangka Pemecahan Masalah

Kerangka pemecahan masalah disajikan untuk menggambarkan tahapantahapan yang akan dilakukan dalam penelitian. Kerangka pemecahan masalah dapat dilihat pada Gambar 3.1 di bawah ini :

Gambar 3.1 Kerangka Pemecahan Masalah

Keterangan:

1. Start merupakan proses awal dalam melakukan penelitian.

- 2. Pengumpulan data, dimulai dengan mencari data yang diperlukan dalam penelitian baik secara primer maupun secara sekunder.
- 3. Uji instrumen (uji validitas dan reliabilitas) uji ini digunakan untuk mengetahui data yang diperoleh apakah valid dan reliabel. Jika tidak valid dan reliabel maka dilakukan perbaikan ulang.
- 4. Analisis diskriminan digunakan untuk mengetahui mana variabel independen yang secara nyata mempengaruhi variabel dependen dan mana yang tidak.
- 5. Uji signifikasi analisis diskriminan digunakan untuk melihat apakah data tiap grup mendekati sama atau tidak berbeda. Uji signifikansi variabel analisis diskriminan dilihat melalui *Wilk's Lambda* atau *Chi Square*.
- 6. Pembahasan merupakan tahap melakukan pembahasan mengenai hasil yang diperoleh dari penelitian.
- 7. Kesimpulan adalah mengambil kesimpulan dari data-data yang diperoleh dari pembahasan hasil analisis data.
- 8. Stop adalah penyelesaian atau berakhirnya penelitian dilakukan dengan pemberian hasil penelitian.

Digital Repository Universitas Jember

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil dan paparan yang telah dijelaskan di atas maka dapat ditarik kesimpulan bahwa terdapat perbedaan antara konsumen puas dan konsumen tidak puas atas variabel bukti fisik, kehandalan, daya tanggap, jaminan, dan empati pada Oriskin *Skin Care* Jember adalah sebagai berikut:

- a. Terdapat variabel yang membedakan antara konsumen puas dan konsumen tidak puas yaitu kehandalan, daya tanggap, jaminan, bukti fisik, dan empati.
- b. Kehandalan merupakan variabel dominan pertama dapat yang membedakan antara konsumen puas dan konsumen tidak puas pada Oriskin Skin Care. Daya tanggap merupakan variabel dominan kedua yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin Skin Care. Jaminan merupakan variabel dominan ketiga yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin Skin Care. Bukti fisik merupakan variabel yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin Skin Care. Empati adalah salah satu variabel yang dapat membedakan konsumen puas dan konsumen tidak puas pada Oriskin Skin Care yang memiliki discriminating power paling rendah diantara variabel lainnya.

5.2 Saran

a. Bagi akademisi

Peneliti selanjutnya sebaiknya menambahkan variabel lain yang mampu mengukur kualitas layanan pada objek yang akan diteliti agar mendapatkan hasil yang lebih rinci.

b. Bagi Oriskin Skin Care

Perusahaan sebaiknya memperhatikan bukti fisik, kehandalan, daya tanggap, jaminan dan empati tersebut untuk memperbaiki kualitas layanan terutama memperhatikan kehandalan pada perusahaan yang merupakan variabel pembentuk perbedaan yang paling dominan agar tujuan utama perusahaan yaitu mendapatkan kepuasan konsumen dapat tercapai.

Digital Repository Universitas Jember

DAFTAR PUSTAKA

- Abbas Tashakkori & Charles Teddlie. "Mixed Methodology". Yogyakarta : Pustaka Belajar.
- Afni Amalia. Harapan, Tua R.F.S. Zaili Rusli. 2017. Daya Tanggap, Jaminan, Bukti Fisik, Kehandalan, dan Kepuasan Pasien. *Jurnal Ilmu Administrasi Negara*, Vol. 14, No. 3: 356-363.
- Albert Caruana. 2002. Service Loyalty the Effects of Service Quality and The Mediating Role of Customer Satisfaction. European Journal of Marketing, Vol. 36 No. 7/8.
- Alfin Rosita Wilujeng, Sudaryanto, N. Ari Subagio. 2017. Pengaruh Brand Image, Kualitas Layanan, dan Harga Terhadap Loyalitas Melalui Kepuasan Konsumen Pada Jasa J&T Express di Kabupaten Jember. Forum manajemen indonesia (fmi): 1-10.
- Daryanto. 2011. Manajemen Pemasaran. "Sari Kuliah". Bandung: Satu Nusa.
- Dunia Industri. http://duniaindustri.com/downloads/riset-pasar-dan-data-outlook-kosmetik-2009-2017-top-10-perusahaan-kosmetik-di-indonesia/
- Etta Mamang Sangadji dan Sopiah. 2013. "Perilaku Konsumen". Yogyakarta : Andi
- Fandy Tjiptono. Gregorius Chandra. 2011. "Service, Quality, & Satisfaction". Yogyakarta: Andi.
- Febriana Purwasih. 2016. Pengaruh Kualitas Layanan Terhadap Kepuasan Konsumen. *eJournal Ilmu Administrasi Bisnis*, 4 (3): 882-896.
- Ghozali, Imam dan John Castellan, Jr. "Statistik Non Parametrik". 2002. Semarang: Undip
- Hidayah dan Imron. 2014. Gaya Hidup Konsumtif Mahasiswi Pengguna Perawatan Wajah di Klinik Kecantikan Surabaya. *Jurnal Paardigma*. Vol: 02 No.03.
- Ida Ayu Inten Surya Utami dan I Made Jatra. 2015. Pengaruh Kualitas Layanan Terhadap Kepuasan Pelanggan Restoran Baruna Sanur. *E-Jurnal Manajemen Unud*, Vol:4, No. 7: 1984-2000.
- J, Supranto. 2001. "Pengukuran Tingkat Kepuasan Pelanggan untuk Menaikkan Pangsa Pasar". Rineka Cipta: Jakarta.

- J, Supranto. 2004. "Analisis Multivariat Arti & Interpretasi". Jakarta: Rineka Cipta.
- Kiky Jenitha Rosalia dan Ni Ketut Purnawati. 2018. Pengaruh Kualitas Pelayanan Terhadap Kepuasan Konsumen Pasien RSU Surya Husadha di Denpasar. *E-Jurnal Manajemen Unud*, Vol 7, No. 5: 2442-2469.
- Kotler Philip. 2001. "Manajemen Pemasaran di Indonesia : Analisis, Perencanaan, Implementasi dan Pengendalian". Salemba Empat. Jakarta.
- Kotler Phillip. 2002. "Manajemen Pemasaran". Edisi Milenium, Jilid 2. PT Prenhallindo. Jakarta.
- Kotler, Philip dan Kevin Lane Keller. 2007. "Manajemen Pemasaran". Edisi Kedua Belas. Jakarta: Indeks.
- Kotler, Phillip. 2009. "Manajemen Pemasaran". Edisi 13. Jakarta: Erlangga.
- Lupiyoadi, Rambat. Hamdani, A. 2006. "Manajemen Pemasaran Jasa". Jakarta : Salemba Empat.
- Nur Laili Farida. 2017. Pengaruh Bukti Fisik, Kehandalan, dan Ketanggapan, Terhadap Kepuasan Konsumen Pelanggan Salon Magani di Desa Cerme Kabupaten Nganjuk. *Simki-Economic*. Vol. 01 No. 07.
- Ruth Amryyanti. I Putu Gede Sukaatmadja. 2013. Pengaruh Kualitas Layanan, Produk,dan Kewajaran Harga Terhadap Kepuasan dan Loyalitas Pelanggan Pada LnC Skin Care Singaraja. *E-Jurnal Ekonomi dan Bisnis Universitas Udayana* Volume.02.No.01.
- Santoso, Singgih. 2010. "Statistik Multivariat, Konsep dan Aplikasi Dengan SPSS" Jakarta: Elex Media Kompotindo
- Sudaryanto, 2012. Analisis Diskriminan Marketing Mix Terhadap Keputusan Pembelian Harian Pagi Radar Jember. *Jurnal Bisnis dan Manajemen* Vol 6. No. 1.
- Sugiyono. 2010. "Statistik untuk Penelitian". Bandung: Alfabeta.
- Sukestiyarno, 2014. "Statistika Dasar". Yogyakarta : Andi
- T, Stevan A. L, Thomas. 1994. "An Assessment of the Relationship Between Service Quality and Customer Satisfaction in the Formation of Consumer's Purchase Intentions". Journal of Retailing Volume 70, Issue 2, Pages 163-178.

Kuo, Ying. Wu, Chi-Ming. Deng, Wei-Jaw. 2009. "The Relationship Among Service Quality, Perceived Value, Customer Satisfaction, And Post-Purchase Intention In Mobile Value-Added Service". Computers in Human Behavior 25: 887–896.

Zeithaml, Valarie A and Bitner, M.J. 2003. "Service Marketing". Tata McGraw-Hill.

59

Lampiran 1. Kuesioner Penelitian

KUESIONER PENELITIAN

Kepada Yth

Saudara Responden Penelitian

Dengan Hormat.

Sehubungan dengan penulisan skripsi mahasiswa Fakultas Ekonomi dan Bisnis Universitas Jember yang berjudul "Analisis Diskriminan Kepuasan Konsumen Atas Variabel Kualitas Layanan Pada Oriskin *Skin Care* Jember" saya mohon dengan hormat Bapak/Ibu/Saudara untuk mengisi kuisioner yang terdiri dari beberapa pertanyaan dan pernyataan berikut. Kuesioner di bawah ini merupakan salah satu metode pengumpulan data primer yang sangat berguna untuk bahan penyusunan skripsi.

Mengingat penelitian ini semata-mata dimaksudkan untuk kepentingan akademik, maka saya sangat mengharapkan jawaban yang sejujur-jujurnya sesuai dengan pendapat Anda. Saya menjamin kerahasiaan identitas responden dan hasil kuesioner tersebut sesuai dengan kode etik.

Atas kerjasama dan bantuan Bapak/Ibu/Saudara, saya mengucapkan terimakasih.

Yashita Yuni Safitri

DAFTAR PERNYATAAN

PETUNJUK PENGISIAN

e. 5 = Sangat Puas

Bernal	n tanda (X) atau <i>checklist</i>	(🗸) pada jawaban ya	ing paling sesuai.
IDEN'	TITAS RESPONDEN		
1.	Nomor Responden	:(0	liisi oleh peneliti)
2.	Umur		
	☐ 17- 20 Tahun	21-29 Tahun	□≥30 Tahun
3.	Pendidikan Terakhir		
	\square SD \square SMP \square S	SMA Diploma	Sarjana Pascasarjana
4.	Status Perkawinan	:	
	Menikah	Belum Menika	ıh
5.	Status Perkejaan	: 17/	
	☐ Bekerja	Belum Bekerja	
6.	Banyaknya Kunjungan		
	☐ 2-3 Kali	4-5 Kali	□≥5 Kali
7.	Status Kepuasan:		
	Puas	☐ Tidak Puas	
PETU	NJUK PENGISIAN		
1. Beri	ilah tanda (X) atau <i>checkli</i>	st (✓) pada salah sat	u kolom setiap pernyataan
sesuai	dengan yang anda alami d	lan rasakan selama ii	ni. Terdapat 5 pilihan
jawaba	an untuk bukti fisik, kehan	dalan, daya tanggap	, jaminan, dan empati yaitu:
a.	1 = Sangat Tidak Puas		
b.	2 = Tidak Puas		
c.	3 = Cukup Puas		
d.	4 = Puas		

A. Bukti Fisik (X1)

		Jawaban								
No	Pernyataan	STP	TP	CP	P	SP				
		1	2	3	4	5				
1	Karyawan Oriskin <i>Skin Care</i> berpenampilan rapi.									
2	Gedung Oriskin <i>Skin Care</i> memiliki suasana yang nyaman									
3	Oriskin <i>Skin Care</i> memiliki peralatan yang lengkap									
4	Bahan yang digunakan saat <i>treatment</i> memiliki kualitas yang baik.									

B. Kehandalan (X2)

N		Jawaban									
No	Pernyataan	STP	TP	CP	P	SP					
		1	2	3	4	5					
1	Oriskin <i>Skin Care</i> memberikan pelayanan sesuai dengan yang dijanjikan		4								
2	Karyawan Oriskin <i>Skin Care</i> tepat waktu dalam melayani kebutuhan dari konsumen.	4									
3	Karyawan Oriskin <i>Skin Care</i> memberikan informasi dengan jelas			/							

C. Daya Tanggap (X3)

		Jawaban									
No	Pernyataan	STP	TP	CP	P	SP					
		1	2	3	4	5					
1	Karyawan Oriskin <i>Skin Care</i> tanggap dalam menanggapi kritik dan saran										
2	Karyawan Oriskin <i>Skin Care</i> sigap dalam melayani konsumen										
3	Karyawan Oriskin <i>Skin Care</i> mudah dihubungi.										

D. Jaminan (X4)

		Jawaban									
No	Pernyataan	STP	TP	CP	P	SP					
		1	2	3	4	5					
1	Oriskin <i>Skin Care</i> memberikan jaminan ganti rugi saat terjadi kesalahan selama proses pelayanan										
2	Karyawan Oriskin <i>Skin Care</i> memiliki <i>skill</i> yang baik										

E. Empati (X5)

		Jawaban									
No	Pernyataan	STP	TP	CP	P	SP					
		1	2	3	4	5					
1	Karyawan Oriskin <i>Skin Care</i> memberikan perhatian yang sungguh-sungguh										
2	Karyawan Oriskin <i>Skin Care</i> mampu memahami kebutuhan Anda										
3	Karyawan Oriskin <i>Skin Care</i> menjalin komunikasi dengan baik										

Lampiran 2. Karakteristik Responden

1	Lampiran 2. Karakteristik Responden											
No	Umur	Pendidikan Terakhir	Status Perkawinan	Status Pekerjaan Pekerjaan	Banyaknya Kunjungan							
1	17-20 tahun	SMA	Menikah	Bekerja	2-3 Kali							
2	17-20 tahun	SMA	Menikah	Belum Bekerja	2-3 Kali							
3	≥ 30 tahun	SMA	Belum Menikah	Bekerja	≥ 5 Kali							
4	17-20 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali							
5	17-20 tahun	SMA	Menikah	Bekerja	4-5 Kali							
6	≥ 30 tahun	SMA	Belum Menikah	Belum Bekerja	2-3 Kali							
7	17-20 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali							
8	17-20 tahun	SMA	Menikah	Belum Bekerja	4-5 Kali							
9	21-29 tahun	SMA	Menikah	Bekerja	4-5 Kali							
10	≥ 30 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali							
11	≥ 30 tahun	SMA	Belum Menikah	Bekerja	≥ 5 Kali							
12	17-20 tahun	SMA	Menikah	Belum Bekerja	2-3 Kali							
13	17-20 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali							
14	17-20 tahun	SMA	Belum Menikah	Bekerja	≥ 5 Kali							
15	17-20 tahun	Sarjana	Menikah	Bekerja	4-5 Kali							
16	17-20 tahun	SMA	Belum Menikah	Belum Bekerja	4-5 Kali							
17	17-20 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali							
18	17-20 tahun	Sarjana	Menikah	Belum Bekerja	2-3 Kali							
19	17-20 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali							
20	17-20 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali							
21	21-29 tahun	SMA	Menikah	Bekerja	2-3 Kali							
22	≥ 30 tahun	SMA	Menikah	Belum Bekerja	≥ 5 Kali							
23	17-20 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali							
24	17-20 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali							
25	17-20 tahun	SMA	Menikah	Bekerja	≥ 5 Kali							
26	17-20 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali							
27	17-20 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali							
28	21-29 tahun	SMA	Belum Menikah	Belum Bekerja	2-3 Kali							
29	≥ 30 tahun	Sarjana	Menikah	Bekerja	2-3 Kali							
30	21-29 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali							
31	21-29 tahun	Diploma	Belum Menikah	Bekerja	4-5 Kali							
32	21-29 tahun	Diploma	Menikah	Belum Bekerja	2-3 Kali							
33	21-29 tahun	Diploma	Belum Menikah	Bekerja	≥ 5 Kali							
34	21-29 tahun	Diploma	Belum Menikah	Belum Bekerja	2-3 Kali							
35	21-29 tahun	Diploma	Menikah	Bekerja	2-3 Kali							

No	Umur	Pendidikan Terakhir	Status Perkawinan	Status Pekerjaan Pekerjaan	Banyaknya Kunjungan
36	21-29 tahun	Diploma	Belum Menikah	Bekerja	≥ 5 Kali
37	21-29 tahun	Diploma	Belum Menikah	Bekerja	4-5 Kali
38	21-29 tahun	Diploma	Menikah	Belum Bekerja	4-5 Kali
39	21-29 tahun	SMA	Menikah	Bekerja	2-3 Kali
40	21-29 tahun	SMA	Belum Menikah	Belum Bekerja	2-3 Kali
41	21-29 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali
42	\geq 30 tahun	SMA	Menikah	Bekerja	4-5 Kali
43	≥ 30 tahun	SMA	Menikah	Bekerja	2-3 Kali
44	≥ 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	≥ 5 Kali
45	≥ 30 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali
46	≥ 30 tahun	Sarjana	Menikah	Bekerja	2-3 Kali
47	21-29 tahun	Sarjana	Belum Menikah	Bekerja	≥ 5 Kali
48	21-29 tahun	Sarjana	Belum Menikah	Belum Bekerja	4-5 Kali
49	21-29 tahun	SMA	Menikah	Bekerja	4-5 Kali
50	21-29 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali
51	21-29 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
52	21-29 tahun	SMA	Menikah	Bekerja	4-5 Kali
53	21-29 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali
54	21-29 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali
55	21-29 tahun	Sarjana	Menikah	Bekerja	≥ 5 Kali
56	21-29 tahun	Sarjana	Menikah	Belum Bekerja	2-3 Kali
57	21-29 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
58	21-29 tahun	SMA	Belum Menikah	Bekerja	≥ 5 Kali
59	21-29 tahun	Pasca Sarjana	Menikah	Bekerja	4-5 Kali
60	21-29 tahun	SMA	Belum Menikah	Belum Bekerja	4-5 Kali
61	21-29 tahun	Pasca Sarjana	Belum Menikah	Bekerja	2-3 Kali
62	21-29 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali
63	21-29 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali
64	21-29 tahun	SMA	Menikah	Belum Bekerja	4-5 Kali
65	21-29 tahun	Pasca Sarjana	Belum Menikah	Bekerja	2-3 Kali
66	21-29 tahun	SMA	Belum Menikah	Belum Bekerja	≥ 5 Kali
67	17-20 tahun	SMA	Menikah	Bekerja	2-3 Kali
68	17-20 tahun	Pasca Sarjana	Belum Menikah	Bekerja	2-3 Kali
69	17-20 tahun	SMA	Belum Menikah	Bekerja	≥ 5 Kali
70	17-20 tahun	SMA	Menikah	Belum Bekerja	4-5 Kali
71	17-20 tahun	Sarjana	Menikah	Bekerja	4-5 Kali
72	17-20 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali

No	Umur	Pendidikan Terakhir	Status Perkawinan	Status Pekerjaan Pekerjaan	Banyaknya Kunjungan		
73	17-20 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali		
74	17-20 tahun	SMA	Menikah	Bekerja	4-5 Kali		
75	17-20 tahun	Pasca Sarjana	Menikah	Bekerja	4-5 Kali		
76	17-20 tahun	SMA	Belum Menikah	Belum Bekerja	2-3 Kali		
77	17-20 tahun	Pasca Sarjana	Belum Menikah	Bekerja	≥ 5 Kali		
78	17-20 tahun	SMA	Menikah	Bekerja	2-3 Kali		
79	17-20 tahun	Pasca Sarjana	Belum Menikah	Bekerja	2-3 Kali		
80	17-20 tahun	SMA	Belum Menikah	Belum Bekerja	≥ 5 Kali		
81	≥ 30 tahun	Sarjana	Menikah	Bekerja	4-5 Kali		
82	≥ 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	4-5 Kali		
83	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali		
84	17-20 tahun	Sarjana	Menikah	Bekerja	2-3 Kali		
85	17-20 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali		
86	17-20 tahun	Sarjana	Belum Menikah	Belum Bekerja	4-5 Kali		
87	17-20 tahun	Sarjana	Menikah	Bekerja	2-3 Kali		
88	≥ 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	≥ 5 Kali		
89	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali		
90	≥ 30 tahun	Sarjana	Menikah	Bekerja	2-3 Kali		
91	≥ 30 tahun	Sarjana	Menikah	Bekerja	≥ 5 Kali		
92	≥ 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	4-5 Kali		
93	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali		
94	≥ 30 tahun	Sarjana	Menikah	Bekerja	2-3 Kali		
95	17-20 tahun	Sarjana	Menikah	Bekerja	2-3 Kali		
96	17-20 tahun	Sarjana	Belum Menikah	Belum Bekerja	4-5 Kali		
97	17-20 tahun	SMP	Belum Menikah	Bekerja	4-5 Kali		
98	17-20 tahun	Sarjana	Menikah	Belum Bekerja	2-3 Kali		
99	17-20 tahun	Sarjana	Belum Menikah	Bekerja	≥ 5 Kali		
100	17-20 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali		
101	17-20 tahun	Sarjana	Menikah	Bekerja	2-3 Kali		
102	≥ 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	≥ 5 Kali		
103	\geq 30 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali		
104	≥ 30 tahun	SMA	Menikah	Belum Bekerja	4-5 Kali		
105	≥ 30 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali		
106	≥ 30 tahun	Sarjana	Belum Menikah	Belum Menikah Bekerja 2-3			
107	≥ 30 tahun	Sarjana	Menikah	Bekerja	4-5 Kali		
108	17-20 tahun	SD	Belum Menikah	elum Menikah Belum Bekerja			
109	17-20 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali		

No	Umur	Pendidikan Terakhir	Status Perkawinan	Status Pekerjaan Pekerjaan	Banyaknya Kunjungan
110	17-20 tahun	Sarjana	Menikah	Bekerja	≥ 5 Kali
111	\geq 30 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
112	\geq 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali
113	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	≥ 5 Kali
114	≥ 30 tahun	Sarjana	Menikah	Belum Bekerja	4-5 Kali
115	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali
116	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
117	≥ 30 tahun	SMP	Menikah	Bekerja	2-3 Kali
118	≥ 30 tahun	Sarjana	Belum Menikah	Belum Bekerja	4-5 Kali
119	≥ 30 tahun	Sarjana	Belum Menikah	Bekerja	4-5 Kali
120	≥ 30 tahun	Sarjana	Menikah	Belum Bekerja	2-3 Kali
121	> 44 tahun	SMP	Belum Menikah	Bekerja	≥ 5 Kali
122	17-20 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
123	17-20 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
124	17-20 tahun	Sarjana	Belum Menikah	Belum Bekerja	≥ 5 Kali
125	17-20 tahun	Sarjana	Menikah	Bekerja	4-5 Kali
126	17-20 tahun	Sarjana	Menikah	Bekerja	4-5 Kali
127	17-20 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali
128	21-29 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali
129	21-29 tahun	SMA	Menikah	Bekerja	4-5 Kali
130	21-29 tahun	SMA	Menikah	Belum Bekerja	4-5 Kali
131	21-29 tahun	Sarjana	Belum Menikah	Bekerja	2-3 Kali
132	21-29 tahun	Pasca Sarjana	Belum Menikah	Bekerja	≥ 5 Kali
133	21-29 tahun	Sarjana	Menikah	Bekerja	2-3 Kali
134	21-29 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali
135	21-29 tahun	Sarjana	Belum Menikah	Bekerja	≥ 5 Kali
136	21-29 tahun	Pasca Sarjana	Menikah	Belum Bekerja	4-5 Kali
137	21-29 tahun	Diploma	Belum Menikah	Bekerja	4-5 Kali
138	21-29 tahun	SMA	Belum Menikah	Bekerja	2-3 Kali
139	17-20 tahun	Diploma	Menikah	Bekerja	2-3 Kali
140	17-20 tahun	SMA	Belum Menikah	Belum Bekerja	4-5 Kali
141	17-20 tahun	SMA	Belum Menikah	Bekerja	4-5 Kali
142	17-20 tahun	Sarjana	Menikah	Bekerja	2-3 Kali
143	17-20 tahun	SMA	Belum Menikah	Bekerja	≥ 5 Kali
144	21-29 tahun	Sarjana	Belum Menikah	Belum Bekerja	2-3 Kali
145	≥ 30 tahun	SMA	Menikah	Belum Bekerja	4-5 Kali
146	17-20 tahun	Pasca Sarjana	Belum Menikah	Bekerja	4-5 Kali

No	Umur	Pendidikan Terakhir	Status Perkawinan	Status Pekerjaan Pekerjaan	Banyaknya Kunjungan
147	21-29 tahun	Pasca Sarjana	Belum Menikah	Bekerja	2-3 Kali
148	≥ 30 tahun	Pasca Sarjana	Belum Menikah	Bekerja	≥ 5 Kali
149	≥ 30 tahun	Pasca Sarjana	Menikah	Belum Bekerja	≥ 5 Kali
150	\geq 30 tahun	Pasca Sarjana	Belum Menikah	Bekerja	≥ 5 Kali

Lampiran 3. Rekapitulasi Jawaban Responden

										l .											
Resp.			kti Fisik				Keanda				Daya Tar				ıminan X			_	ati X5		Kode
	X1.1	X1.2	X1.3	X1.4	Total	X2.1	X2.2	X2.3	Total	X3.1	X3.2	X3.3	Total	X4.1	X4.2	Total	X5.1	X5.2	X5.3	Total	
1	4	3	4	4	15	3	5	4	12	4	4	3	11	4	4	8	4	4	4	12	1
2	4	3	3	3	13	4	4	3	11	3	3	4	10	4	4	8	4	3	3	10	1
3	4	4	3	4	15	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
4	5	5	4	4	18	4	4	3	11	3	4	4	11	4	4	8	4	4	3	11	1
5	3	3	3	3	12	3	3	3	9	3	3	3	9	3	3	6	3	3	3	9	1
6	4	4	3	4	15	3	4	5	12	4	2	5	11	3	3	6	4	3	4	11	1
7	3	3	5	3	14	4	4	3	11	5	5	4	14	3	4	7	4	3	4	11	1
8	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	4	3	4	11	1
9	4	4	4	5	17	4	3	4	11	4	3	3	10	4	3	7	3	3	3	9	1
10	4	3	1	2	10	5	4	4	13	5	4	3	12	4	5	9	5	5	3	13	1
11	4	3	4	4	15	3	5	4	12	4	4	3	11	4	4	8	4	4	4	12	1
12	4	5	1	4	14	4	4	4	12	4	4	4	12	4	4	8	4	3	4	11	1
13	4	4	3	5	16	4	4	4	12	4	3	3	10	4	3	7	3	3	3	9	1
14	4	3	4	2	13	5	4	4	13	5	4	3	12	4	5	9	5	5	3	13	1
15	4	3	4	4	15	3	4	4	11	4	4	3	11	4	4	8	4	4	4	12	1
16	4	4	4	4	16	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
17	4	4	4	4	16	4	4	4	12	4	4	4	12	4	3	7	4	4	4	12	1
18	4	4	4	4	16	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
19	4	4	4	3	15	4	4	4	12	3	3	3	9	4	4	8	4	3	3	10	1
20	4	4	4	4	16	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
21	4	3	4	4	15	4	4	4	12	4	4	4	12	4	3	7	4	4	3	11	1
22	4	4	4	4	16	4	4	3	11	4	4	4	12	4	4	8	3	3	3	9	1
23	4	3	3	3	13	3	4	4	11	4	4	4	12	4	3	7	4	3	3	10	1
24	4	4	4	4	16	5	4	5	14	5	3	5	13	4	4	8	4	4	3	11	1
25	3	3	5	3	14	4	4	5	13	4	4	3	11	3	3	6	3	4	4	11	1
26	4	4	4	4	16	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1

27	4	4	4	4	16	4	4	4	12	4	4	4	12	4	3	7	4	4	4	12	1
28	4	4	4	4	16	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
29	5	5	4	4	18	5	4	5	14	4	5	4	13	4	4	8	4	3	3	10	1
30	4	4	3	4	15	4	4	5	13	5	4	4	13	4	4	8	4	4	4	12	1
31	5	5	4	4	18	4	4	4	12	4	5	4	13	4	4	8	4	4	4	12	1
32	5	5	4	4	18	4	4	5	13	5	4	4	13	4	4	8	4	4	4	12	1
33	5	4	5	5	19	5	4	4	13	4	4	4	12	4	4	- 8	4	4	5	13	1
34	4	4	4	4	16	4	4	3	11	4	4	4	12	4	4	8	4	3	3	10	1
35	4	4	4	4	16	4	4	3	11	4	4	4	12	3	4	7	4	4	4	12	1
36	4	3	4	4	15	4	4	4	12	3	3	4	10	3	3	6	3	4	3	10	1
37	4	4	5	3	16	3	4	4	11	4	4	3	11	4	4	8	4	4	3	11	1
38	4	4	4	4	16	4	4	4	12	3	4	4	11	5	4	9	4	3	3	10	1
39	5	5	4	4	18	5	4	5	14	4	5	4	13	4	4	8	4	3	3	10	1
40	4	4	3	4	15	4	4	5	13	5	4	4	13	4	4	8	4	4	4	12	1
41	4	3	4	2	13	5	4	4	13	5	4	3	12	4	5	9	5	5	3	13	1
42	4	3	4	4	15	3	4	4	11	4	4	3	11	4	4	8	4	4	4	12	1
43	4	3	3	3	13	4	4	3	11	3	3	4	10	4	4	8	4	3	3	10	1
44	4	4	3	4	15	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
45	5	5	4	4	18	4	4	3	11	3	4	4	11	4	4	8	4	4	3	11	1
46	3	3	3	3	12	3	4	3	10	3	3	3	9	3	3	6	3	3	3	9	1
47	4	4	3	4	15	3	4	5	12	4	2	5	11	3	3	6	4	3	4	11	1
48	3	3	5	3	14	4	4	3	11	5	5	4	14	3	4	7	4	3	4	11	1
49	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	4	3	4	11	1
50	4	4	4	5	17	4	4	4	12	4	3	3	10	4	3	7	3	3	3	9	1
51	4	4	3	4	15	3	4	5	12	4	2	5	11	3	3	6	3	3	3	9	1
52	3	3	5	3	14	4	4	3	11	5	5	4	14	3	4	7	4	5	3	12	1
53	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	5	5	4	14	1
54	4	4	3	3	14	3	3	3	9	3	3	4	10	4	4	8	3	3	3	9	1
55	4	4	4	4	16	4	4	4	12	4	3	4	11	3	4	7	3	3	4	10	1

56	3	4	3	4	14	4	4	4	12	4	3	4	11	3	3	6	5	5	5	15	1
57	4	4	3	4	15	4	4	4	12	4	4	4	12	4	4	8	4	4	3	11	1
58	4	4	4	4	16	5	5	4	14	4	4	4	12	4	4	8	4	4	4	12	1
59	4	4	4	3	15	4	4	4	12	3	4	4	11	4	4	8	4	4	4	12	1
60	4	4	3	4	15	3	4	5	12	4	2	5	11	3	3	6	3	3	3	9	1
61	4	4	4	3	15	3	3	3	9	3	2	2	7	2	3	5	5	4	4	13	1
62	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	5	5	4	14	1
63	4	4	3	3	14	3	3	3	9	3	3	4	10	4	4	8	3	3	3	9	1
64	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	5	5	4	14	1
65	4	4	3	3	14	3	3	3	9	3	3	4	10	4	4	8	3	3	3	9	1
66	4	4	3	4	15	3	4	5	12	4	2	5	11	3	3	6	4	4	4	12	1
67	5	3	5	3	16	4	4	3	11	5	3	4	12	4	4	8	4	5	4	13	1
68	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	5	5	4	14	1
69	3	4	4	5	16	3	3	4	10	4	3	3	10	4	3	7	4	4	4	12	1
70	4	3	4	2	13	5	4	4	13	5	4	3	12	4	3	7	4	4	4	12	1
71	4	3	4	4	15	3	5	4	12	4	4	3	11	4	4	8	4	4	4	12	1
72	4	3	3	3	13	4	4	3	11	3	3	4	10	4	4	8	2	2	5	9	1
73	4	4	3	4	15	4	4	4	12	4	4	4	12	4	4	8	4	4	4	12	1
74	3	3	4	4	14	4	4	5	13	5	4	4	13	4	4	8	5	4	4	13	1
75	5	5	5	5	20	5	5	5	15	5	5	5	15	5	5	10	4	4	4	12	1
76	4	4	5	4	17	5	4	5	14	4	2	5	11	5	5	10	4	4	4	12	1
77	5	5	5	5	20	4	4	5	13	5	5	4	14	5	4	9	4	5	4	13	1
78	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	5	5	4	14	1
79	4	4	5	5	18	5	5	5	15	5	5	4	14	4	4	8	4	4	4	12	1
80	4	4	5	4	17	4	4	4	12	4	5	4	13	5	5	10	4	4	4	12	1
81	4	5	4	4	17	4	4	4	12	4	4	4	12	5	4	9	4	4	4	12	1
82	4	4	4	4	16	4	4	5	13	5	5	5	15	4	4	8	4	4	4	12	1
83	4	5	5	5	19	4	4	4	12	5	5	4	14	5	5	10	4	4	4	12	1
84	4	5	4	4	17	5	4	4	13	4	4	4	12	4	4	8	4	4	4	12	1

85	4	4	5	4	17	5	4	4	13	4	4	4	12	4	4	8	4	4	4	12	1
86	4	4	5	5	18	5	5	5	15	5	5	4	14	4	4	8	4	4	4	12	1
87	4	4	4	4	16	4	4	4	12	4	5	4	13	5	4	9	4	4	4	12	1
88	5	4	5	4	18	4	4	4	12	4	5	4	13	5	5	10	5	5	5	15	1
89	4	5	4	5	18	4	5	4	13	5	5	5	15	5	5	10	4	2	4	10	1
90	4	5	4	4	17	5	4	4	13	4	4	4	12	4	4	8	4	4	4	12	1
91	3	5	5	3	16	4	4	4	12	4	3	4	11	4	4	- 8	3	3	3	9	1
92	4	4	3	4	15	3	4	5	12	4	2	5	11	3	3	6	3	3	3	9	1
93	3	3	5	3	14	4	4	3	11	5	5	4	14	3	4	7	4	5	3	12	1
94	4	5	4	4	17	4	4	4	12	4	4	4	12	4	4	8	5	5	4	14	1
95	4	4	3	3	14	3	3	3	9	3	3	4	10	4	4	8	3	3	3	9	1
96	4	4	4	4	16	4	4	4	12	4	3	1	8	3	1	4	3	3	4	10	1
97	3	4	3	4	14	4	4	4	12	4	3	4	11	3	3	6	5	5	5	15	1
98	4	4	3	4	15	4	4	4	12	4	4	4	12	4	4	8	4	4	3	11	1
99	4	4	4	4	16	5	5	1	11	4	4	1	9	4	4	8	4	4	4	12	1
100	4	4	4	3	15	4	4	4	12	3	4	1	8	4	1	5	4	4	4	12	1
101	3	4	3	2	12	1	2	2	5	2	2	3	7	2	3	5	3	2	2	7	2
102	4	3	4	2	13	1	3	3	7	2	3	3	8	1	4	5	3	4	3	10	2
103	3	3	4	3	13	2	1	3	6	1	1	2	4	2	1	3	4	3	3	10	2
104	4	1	3	1	9	1	3	3	7	2	3	2	7	1	2	3	3	3	4	10	2
105	3	1	2	2	8	2	4	3	9	1	3	4	8	1	3	4	4	4	4	12	2
106	3	2	3	3	11	1	3	2	6	2	4	3	9	2	3	5	4	3	4	11	2
107	4	4	4	3	15	3	2	4	9	1	4	4	9	3	4	7	3	3	3	9	2
108	4	4	5	1	14	1	3	3	7	2	3	3	8	2	3	5	3	2	2	7	2
109	4	1	5	2	12	2	3	3	8	1	4	3	8	2	3	5	4	3	4	11	2
110	4	3	3	3	13	1	2	3	6	2	4	4	10	1	4	5	4	4	4	12	2
111	3	2	2	3	10	2	4	3	9	3	3	3	9	3	4	7	5	4	3	12	2
112	4	2	3	3	12	3	4	4	11	2	3	4	9	1	4	5	2	3	4	9	2
113	3	3	4	4	14	3	3	1	7	2	3	2	7	2	3	5	4	3	2	9	2

114	2																				
	2	2	2	3	9	1	4	3	8	4	3	3	10	1	1	2	4	3	3	10	2
115	3	1	3	3	10	2	3	3	8	1	3	2	6	1	3	4	4	3	2	9	2
116	3	2	2	2	9	2	2	3	7	1	2	2	5	3	3	6	4	3	2	9	2
117	3	4	3	3	13	3	2	3	8	3	3	3	9	1	3	4	3	4	2	9	2
118	4	3	3	2	12	1	3	3	7	2	1	3	6	2	3	5	3	4	3	10	2
119	3	3	4	1	11	2	1	2	5	1	3	3	7	3	2	5	3	3	3	9	2
120	4	4	4	2	14	2	3	2	7	1	4	3	8	4	4	8	4	2	2	8	2
121	4	3	4	3	14	3	3	4	10	1	3	2	6	4	3	7	2	3	3	8	2
122	3	3	3	4	13	3	4	3	10	2	2	4	8	1	3	4	4	4	3	11	2
123	3	2	2	4	11	4	4	4	12	3	3	3	9	1	3	4	4	5	4	13	2
124	4	3	4	3	14	2	3	3	8	4	3	3	10	2	3	5	3	5	2	10	2
125	4	4	4	1	13	3	4	3	10	4	2	3	9	3	4	7	3	3	3	9	2
126	5	4	3	2	14	2	4	4	10	1	4	3	8	3	3	6	2	2	3	7	2
127	1	3	4	2	10	3	3	3	9	1	4	4	9	1	3	4	2	3	3	8	2
128	4	3	2	2	11	1	3	4	8	2	3	3	8	1	3	4	1	1	4	6	2
129	1	3	3	1	8	1	3	2	6	3	4	3	10	2	3	5	2	2	3	7	2
130	3	2	3	4	12	2	3	3	8	3	3	3	9	2	3	5	4	3	3	10	2
131	3	4	3	2	12	2	3	2	7	1	2	3	6	1	2	3	2	2	2	6	2
132	3	4	3	3	13	4	3	3	10	1	3	2	6	2	3	5	4	3	3	10	2
133	3	4	3	2	12	3	4	3	10	2	2	4	8	2	3	5	3	3	2	8	2
134	1	4	3	2	10	4	3	4	11	2	3	3	8	3	4	7	3	4	1	8	2
135	4	3	4	2	13	3	3	2	8	1	3	3	7	3	4	7	4	4	3	11	2
136	3	3	4	3	13	2	3	3	8	3	2	3	8	4	4	8	4	3	2	9	2
137	3	3	3	3	12	2	3	2	7	4	4	3	11	2	3	5	3	4	3	10	2
138	1	4	2	2	9	1	3	2	6	2	4	4	10	3	2	5	3	2	3	8	2
139	3	2	3	3	11	2	4	2	8	2	3	3	8	2	4	6	1	3	2	6	2
140	4	4	4	3	15	3	4	3	10	1	4	3	8	3	4	7	3	2	4	9	2
141	3	4	5	4	16	2	3	3	8	1	3	3	7	1	3	4	3	2	4	9	2
142	3	3	5	2	13	3	2	2	7	2	2	3	7	1	4	5	4	2	3	9	2

_	1
	~

143	3	3	3	3	12	4	3	3	10	1	2	3	6	3	2	5	4	3	4	11	2
144	3	2	2	3	10	2	4	3	9	2	3	3	8	2	3	5	3	3	3	9	2
145	4	2	3	3	12	1	5	4	10	2	1	2	5	1	3	4	2	2	2	6	2
146	3	3	4	4	14	2	5	2	9	3	3	2	8	1	2	3	1	1	3	5	2
147	4	4	4	4	16	2	3	3	8	1	3	4	8	1	3	4	4	3	2	9	2
148	3	2	3	3	11	2	2	3	7	1	4	3	8	2	3	5	5	1	3	9	2
149	2	4	3	2	11	1	3	3	7	2	4	4	10	3	4	7	2	3	3	8	2
150	1	4	4	2	11	1	4	4	9	3	3	3	9	4	3	7	2	2	2	6	2

Lampiran 4. Distribusi Karakteristik Responden

PendidikanTerakhir

		Frequency	Percent	Valid Percent	Cumulative Percent
	SD	1	.7	.7	.7
	SMP	3	2.0	2.0	2.7
	SMA	55	36.7	36.7	39.3
Valid	Diploma	10	6.7	6.7	46.0
	Sarjana	66	44.0	44.0	90.0
	Pascasarjana	15	10.0	10.0	100.0
	Total	150	100.0	100.0	

Status Perkawinan

		Frequency	Percent	Valid Percent	Cumulative
					Percent
	Menikah	56	37,3	37,3	37,3
Valid	Belum Menikah	94	62,7	62,7	100,0
	Total	150	100,0	100,0	

Status Pekerjaan

		Frequency	Percent	Valid Percent	Cumulative
					Percent
	Bekerja	103	68,7	68,7	68,7
Valid	Belum Bekerja	47	31,3	31,3	100,0
	Total	150	100,0	100,0	

Banyaknya Kunjungan

		, .	ikirya italij	9	
		Frequency	Percent	Valid Percent	Cumulative Percent
	2-3 Kali	67	44,7	44,7	44,7
Volid	4-5 Kali	54	36,0	36,0	80,7
Valid	≥ 5 Kali	29	19,3	19,3	100,0
	Total	150	100,0	100,0	

Umur

		Frequency	Percent	Valid Percent	Cumulative
					Percent
	17-20 tahun	60	40,0	40,0	40,0
Valid	21-29 tahun	48	32,0	32,0	72,0
	>30 tahun	42	28,0	28,0	100,0
	Total	150	100,0	100,0	

Kepuasan Konsumen

		Ropud	saii itoiisu	111011	
		Frequency	Percent	Valid Percent	Cumulative
					Percent
	Puas	100	66,6	66,6	66,6
Valid	Tidak Puas	50	33,4	33,4	100,0
	Total	150	100,0	100,0	

Lampiran 5. Distribusi Statistik Jawaban Responden

X1.1

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	5	3,3	3,3	3,3
	Tidak Puas	2	1,3	1,3	4,7
\	Cukup Puas	37	24,7	24,7	29,3
Valid	Puas	94	62,7	62,7	92,0
	Sangat Puas	12	8,0	8,0	100,0
	Total	150	100,0	100,0	

X1.2

	7.12					
		Frequency	Percent	Valid Percent	Cumulative	
					Percent	
	Sangat Tidak Puas	4	2,7	2,7	2,7	
	Tidak Puas	11	7,3	7,3	10,0	
Valid	Cukup Puas	42	28,0	28,0	38,0	
valid	Puas	70	46,7	46,7	84,7	
	Sangat Puas	23	15,3	15,3	100,0	
	Total	150	100,0	100,0	//	

X1.3

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	2	1,3	1,3	1,3
	Tidak Puas	8	5,3	5,3	6,7
\	Cukup Puas	48	32,0	32,0	38,7
Valid	Puas	71	47,3	47,3	86,0
	Sangat Puas	21	14,0	14,0	100,0
	Total	150	100,0	100,0	

X1.4

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	5	3,3	3,3	3,3
	Tidak Puas	22	14,7	14,7	18,0
\	Cukup Puas	42	28,0	28,0	46,0
Valid	Puas	70	46,7	46,7	92,7
	Sangat Puas	11	7,3	7,3	100,0
	Total	150	100,0	100,0	

X2.1

	AZ. I						
		Frequency	Percent	Valid Percent	Cumulative Percent		
	Sangat Tidak Puas	14	9,3	9,3	9,3		
	Tidak Puas	20	13,3	13,3	22,7		
Valid	Cukup Puas	33	22,0	22,0	44,7		
Valid	Puas	66	44,0	44,0	88,7		
	Sangat Puas	17	11,3	11,3	100,0		
	Total	150	100,0	100,0	//		

X2.2

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	2	1,3	1,3	1,3
	Tidak Puas	7	4,7	4,7	6,0
Malia	Cukup Puas	34	22,7	22,7	28,7
Valid	Puas	96	64,0	64,0	92,7
	Sangat Puas	11	7,3	7,3	100,0
	Total	150	100,0	100,0	

X2.3

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	2	1,3	1,3	1,3
	Tidak Puas	8	5,3	5,3	6,7
Malial	Cukup Puas	48	32,0	32,0	38,7
Valid	Puas	70	46,7	46,7	85,3
	Sangat Puas	22	14,7	14,7	100,0
	Total	150	100,0	100,0	

X3.1

	A3.1						
		Frequency	Percent	Valid Percent	Cumulative Percent		
	Sangat Tidak Puas	19	12,7	12,7	12,7		
	Tidak Puas	19	12,7	12,7	25,3		
Valid	Cukup Puas	25	16,7	16,7	42,0		
Valid	Puas	66	44,0	44,0	86,0		
	Sangat Puas	21	14,0	14,0	100,0		
	Total	150	100,0	100,0	//		

X3.2

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	3	2,0	2,0	2,0
	Tidak Puas	17	11,3	11,3	13,3
\/alial	Cukup Puas	47	31,3	31,3	44,7
Valid	Puas	66	44,0	44,0	88,7
	Sangat Puas	17	11,3	11,3	100,0
	Total	150	100,0	100,0	

X3.3

		Frequency	Percent	Valid Percent	Cumulative	
					Percent	
	Sangat Tidak Puas	3	2,0	2,0	2,0	
	Tidak Puas	10	6,7	6,7	8,7	
امانما	Cukup Puas	49	32,7	32,7	41,3	
Valid	Puas	77	51,3	51,3	92,7	
	Sangat Puas	11	7,3	7,3	100,0	
	Total	150	100,0	100,0		

X4.1

	Λ4.1						
		Frequency	Percent	Valid Percent	Cumulative Percent		
	Sangat Tidak Puas	18	12,0	12,0	12,0		
	Tidak Puas	17	11,3	11,3	23,3		
Valid	Cukup Puas	31	20,7	20,7	44,0		
Valid	Puas	74	49,3	49,3	93,3		
	Sangat Puas	10	6,7	6,7	100,0		
	Total	150	100,0	100,0	//		

X4.2

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	4	2,7	2,7	2,7
	Tidak Puas	6	4,0	4,0	6,7
\	Cukup Puas	50	33,3	33,3	40,0
Valid	Puas	81	54,0	54,0	94,0
	Sangat Puas	9	6,0	6,0	100,0
	Total	150	100,0	100,0	

X5.1

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	3	2,0	2,0	2,0
	Tidak Puas	10	6,7	6,7	8,7
Valid	Cukup Puas	35	23,3	23,3	32,0
	Puas	86	57,3	57,3	89,3
	Sangat Puas	16	10,7	10,7	100,0
	Total	150	100,0	100,0	×

X5.2

A3.2							
		Frequency	Percent	Valid Percent	Cumulative Percent		
	Sangat Tidak Puas	3	2,0	2,0	2,0		
	Tidak Puas	14	9,3	9,3	11,3		
Valid	Cukup Puas	54	36,0	36,0	47,3		
Valid	Puas	61	40,7	40,7	88,0		
	Sangat Puas	18	12,0	12,0	100,0		
	Total	150	100,0	100,0	//		

X5.3

		Frequency	Percent	Valid Percent	Cumulative Percent
	Sangat Tidak Puas	1	,7	,7	,7
	Tidak Puas	15	10,0	10,0	10,7
Valid	Cukup Puas	58	38,7	38,7	49,3
	Puas	71	47,3	47,3	96,7
	Sangat Puas	5	3,3	3,3	100,0
	Total	150	100,0	100,0	

Lampiran 6. Uji Validitas

Correlations

	Bukti Fisik	X1.1	X1.2	X1.3	X1.4	Total
	Pearson Correlation	1	,446**	,308**	,390**	,702**
X1.1	Sig. (2-tailed)		,000	,000	,000	,000
	N	150	150	150	150	150
	Pearson Correlation	,446**	1	,328**	,427**	,766**
X1.2	Sig. (2-tailed)	,000		,000	,000	,000
	N	150	150	150	150	150
	Pearson Correlation	,308**	,328**	1	,289**	,662**
X1.3	Sig. (2-tailed)	,000	,000		,000	,000
	N	150	150	150	150	150
	Pearson Correlation	,390**	,427**	,289**	1	,759**
X1.4	Sig. (2-tailed)	,000	,000	,000		,000
	N	150	150	150	150	150
	Pearson Correlation	,702**	,766**	,662**	,759**	1
Total	Sig. (2-tailed)	,000	,000	,000	,000	
** Corr	N	150	150	150	150	150

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

Correlations						
	Kehandalan	X2.1	X2.2	X2.3	Total	
	Pearson Correlation	1	,528**	,578 ^{**}	,886**	
X2.1	Sig. (2-tailed)		,000	,000	,000	
	N	150	150	150	150	
	Pearson Correlation	,528**	1	,532**	,783**	
X2.2	Sig. (2-tailed)	,000		,000	,000	
	N	150	150	150	150	
M = M + M	Pearson Correlation	,578**	,532**	1	,826**	
X2.3	Sig. (2-tailed)	,000	,000		,000	
	N	150	150	150	150	
	Pearson Correlation	,886**	,783**	,826**	1	
Total	Sig. (2-tailed)	,000	,000	,000		
	N	150	150	150	150	

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

	Daya Tanggap	X3.1	X3.2	X3.3	Total
	Pearson Correlation	1	,470**	,510 ^{**}	,887**
X3.1	Sig. (2-tailed)		,000	,000	,000
	N	150	150	150	150
	Pearson Correlation	,470**	1	,304**	,747**
X3.2	Sig. (2-tailed)	,000		,000	,000
	N	150	150	150	150
	Pearson Correlation	,510**	,304**	1	,711 ^{**}
X3.3	Sig. (2-tailed)	,000	,000		,000
	N	150	150	150	150
	Pearson Correlation	,887**	,747**	,711 ^{**}	1
Total	Sig. (2-tailed)	,000	,000	,000	
	N	150	150	150	150

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

	Jaminan	X4.1	X4.2	Total
	Pearson Correlation	1	,619 ^{**}	,948**
X4.1	Sig. (2-tailed)		,000	,000
	N	150	150	150
	Pearson Correlation	,619 ^{**}	1	,837**
X4.2	Sig. (2-tailed)	,000		,000
	N	150	150	150
	Pearson Correlation	,948**	,837**	1
Total	Sig. (2-tailed)	,000	,000	
M	N	150	150	150

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

	Empati	X5.1	X5.2	X5.3	Total
	Pearson Correlation	1	,646 ^{**}	,399**	,839**
X5.1	Sig. (2-tailed)		,000	,000	,000
	N	150	150	150	150
	Pearson Correlation	,646**	1	,402**	,855**
X5.2	Sig. (2-tailed)	,000		,000	,000
	N	150	150	150	150
	Pearson Correlation	,399**	,402**	1	,733**
X5.3	Sig. (2-tailed)	,000	,000		,000
	N	150	150	150	150
	Pearson Correlation	,839**	,855**	,733**	1
Total	Sig. (2-tailed)	,000	,000	,000	
	N	150	150	150	150

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Lampiran 7. Uji Reliabilitas

a. Bukti Fisik (X1)

Reliability Statistics					
Cronbach's	N of Items				
Alpha					
,690	4				

Item-Total Statistics

	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's		
	Item Deleted	if Item Deleted	Total	Alpha if Item		
			Correlation	Deleted		
X1.1	10,8667	3,526	,508	,616		
X1.2	10,9133	2,992	,535	,583		
X1.3	10,9067	3,427	,392	,675		
X1.4	11,1933	2,868	,486	,622		

b. Kehandalan (X2)

Reliability Statistics

Cronbach's	N of Items
Alpha	
,781	3

Item-Total Statistics

	Scale Mean if	Scale Variance	Corrected Item-	Cronbach's
	Item Deleted	if Item Deleted	Total	Alpha if Item
			Correlation	Deleted
X2.1	7,3533	1,814	,647	,716
X2.2	7,0667	2,828	,624	,719
X2.3	7,1000	2,560	,650	,678

c. Daya Tanggap (X3)

Reliability Statistics

Cronbach's	N of Items
Alpha	
,677	3

Item-Total Statistics

	nom retai etanones				
	Scale Mean if Scale Variance Item Deleted if Item Deleted		Corrected Item- Total	Cronbach's Alpha if Item	
	item Deleted	ii itelii Deleted	Correlation	Deleted	
			Corrolation	Bolotod	
X3.1	7,1267	1,749	,602	,457	
X3.2	6,9533	2,958	,466	,615	
X3.3	6,8533	3,415	,491	,620	

d. Jaminan (X4)

Reliability Statistics

rtonasinty o	tationio
Cronbach's	N of Items
Alpha	
,700	2

Item-Total Statistics

	Scale Mean if	Scale Variance if Item Deleted	Corrected Item- Total	Cronbach's Alpha if Item
			Correlation	Deleted
X4.1	3,6333	,435	,619	
X4.2	3,2733	1,287	,619	

e. Empati (X5)

Reliability Statistics

Cronbach's	N of Items
Alpha	
,737	3

Item-Total Statistics

	nom rotal ottalionor				
	Scale Mean if	Scale Variance	Corrected Item- Total	Cronbach's Alpha if Item	
			Correlation	Deleted	
X5.1	6,9933	1,725	,631	,572	
X5.2	7,1467	1,549	,626	,571	
X5.3	7,2867	2,018	,442	,782	

Lampiran 8. Output Analisis Diskriminan

Analysis Case Processing Summary

	Unweighted Cases		Percent
	Valid	150	100.0
	Missing or out-of-range group codes	0	.0
Excluded	At least one missing discriminating variable	0	.0
Excluded	Both missing or out-of-range group codes and at least one missing discriminating variable	0	.0
Total		0	.0
	Total	150	100.0

Group Statistics

Kepuas	Kepuasan Konsumen		Std. Deviation	Valid N (listwise)	
				Unweighted	Weighted
	Bukti Fisik	3.9125	.43574	100	100.000
	Kehandalan	3.9902	.38852	100	100.000
1.00	Daya Tanggap	3.8936	.48996	100	100.000
	Jaminan	3.8700	.55332	100	100.000
\	Empati	3.8167	.50478	100	100.000
\\	Bukti Fisik	3.0000	.48445	50	50.000
	Kehandalan	2.7130	.53435	50	50.000
2.00	Daya Tanggap	2.6404	.49398	50	50.000
	Jaminan	2.5600	.68243	50	50.000
	Empati	2.9866	.59438	50	50.000
	Bukti Fisik	3.6083	.62419	150	150.000
	Kehandalan	3.5645	.74775	150	150.000
Total	Daya Tanggap	3.4759	.76883	150	150.000
	Jaminan	3.4333	.86052	150	150.000
	Empati	3.5400	.66305	150	150.000

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Bukti Fisik	.522	135.584	1	148	.000
Kehandalan	.347	278.121	1	148	.000
Daya Tanggap	.406	216.885	1	148	.000
Jaminan	.482	159.347	1	148	.000
Empati	.649	79.917	1	148	.000

Log Determinants

Kepuasan Konsumen	Rank	Log Determinant		
1.00	5	-8.540		
2.00	5	-6.060		
Pooled within-groups	5	-7.377		

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Test	Results
1631	1163uits

Box's M		50.534
	Approx.	3.225
F	df1	15
F	df2	40127.772
	Sig.	.000

Tests null hypothesis of equal population covariance matrices.

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation	
1	3.122 ^a	100.0	100.0	.870	

a. First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.243	206.073	5	.000

Standardized Canonical Discriminant Function

Coefficients

	Function
	1
Bukti Fisik	.258
Kehandalan	.504
Daya Tanggap	.327
Jaminan	.281
Empati	.194

Structure Matrix

Ott Worten O Interest							
	Function						
	1						
Kehandalan	.776						
Daya Tanggap	.685						
Jaminan	.587						
Bukti Fisik	.542						
Empati	.416						

Pooled within-groups
correlations between
discriminating variables and
standardized canonical
discriminant functions
Variables ordered by absolute
size of correlation within
function.

Canonical Discriminant

Function Coefficients

	Function
	1
Bukti Fisik	.571
Kehandalan	1.140
Daya Tanggap	.665
Jaminan	.469
Empati	.361
(Constant)	-11.320

Unstandardized coefficients

Functions at Group Centroids

Kepuasan Konsumen	Function
	1
1.00	1.241
2.00	-2.482

Unstandardized canonical discriminant functions evaluated at group means

Classification Processing Summary

		,
	Processed	150
	Missing or out-of-range group	0
Excluded	codes	O
LXCIdded	At least one missing	0
	discriminating variable	O
	Used in Output	150

Prior Probabilities for Groups

Kepuasan Konsumen	Prior	Cases Used in Analysis							
		Unweighted	Weighted						
1.00	.500	100	100.000						
2.00	.500	50	50.000						
Total	1.000	150	150.000						

Casewise Statistics

Case	Actual			Highe	st Group	15		Second High	nest Group	Discriminant Scores
Number	Group	Predicte _	P(D>d	I G=g)	P(G=g D=d)	Squared Mahalanobis	Group	P(G=g	Squared Mahalanobis	Function 1
		d Group	р	df		Distance to Centroid		D=d)	Distance to Centroid	
1	1	1	.918	1	.999	.011	2	.001	13.104	1.138
2	1	1	.218	1	.912	1.519	2	.088	6.203	.008
3	1	1	.907	1	.999	.014	2	.001	14.741	1.357
4	1	1	.865	1	.998	.029	2	.002	12.621	1.071
5	1	1	.838	1	.998	.042	2	.002	12.381	1.037
6	1	1	.490	1	.987	.477	2	.013	9.194	.550
7	1	1	.756	1	.997	.096	2	.003	11.646	.931
8	1	1	.778	1	1.000	.080	2	.000	16.044	1.523
9	1	1	.310	1	.959	1.031	2	.041	7.331	.226
10	1	1	.895	1	.999	.018	2	.001	14.866	1.374
11	1	1	.918	1	.999	.011	2	.001	13.104	1.138
12	1	1	.884	1	.998	.021	2	.002	12.798	1.095
13	1	1	.434	1	.982	.612	2	.018	8.650	.459
14	1	1	.575	1	1.000	.314	2	.000	18.349	1.802
15	1	1	.632	1	.994	.230	2	.006	10.523	.762
16	1	1	.796	1	1.000	.067	2	.000	15.857	1.500
17	1	1	.980	1	.999	.001	2	.001	14.046	1.266
18	1	1	.796	1	1.000	.067	2	.000	15.857	1.500

Case Number	Actual Group	Highest Group	Second Highest Group	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest Group	Discriminant Scores	Case Number
19	1	1	.429	1	.982	.625	2	.018	8.600	.450
20	1	1	.796	1	1.000	.067	2	.000	15.857	1.500
21	1	1	.813	1	.998	.056	2	.002	12.151	1.004
22	1	1	.632	1	.994	.229	2	.006	10.528	.763
23	1	1	.307	1	.958	1.043	2	.042	7.299	.220
24	1	1	.262	1	1.000	1.260	2	.000	23.481	2.364
25	1	1	.647	1	.995	.209	2	.005	10.664	.784
26	1	1	.796	1	1.000	.067	2	.000	15.857	1.500
27	1	1	.980	1	.999	.001	2	.001	14.046	1.266
28	1	1	.796	1	1.000	.067	2	.000	15.857	1.500
29	1	1	.199	1	1.000	1.652	2	.000	25.082	2.526
30	1	1	.477	1	1.000	.507	2	.000	19.668	1.953
31	1	1	.445	1	1.000	.583	2	.000	20.131	2.005
32	1	1	.254	1	1.000	1.299	2	.000	23.647	2.381
33	1	1	.237	1	1.000	1.398	2	.000	24.062	2.423
34	1	1	.719	1	.996	.129	2	.004	11.316	.882
35	1	1	.725	1	.996	.123	2	.004	11.368	.890
36	1	1	.298	1	.955	1.081	2	.045	7.200	.201
37	1	1	.649	1	.995	.208	2	.005	10.676	.785
38	1	1	.975	1	.999	.001	2	.001	14.099	1.273
39	1	1	.199	1	1.000	1.652	2	.000	25.082	2.526

Case Number	Actual Group	Highest Group	Second Highest Group	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest Group	Discriminant Scores	Case Number
40	1	1	.477	1	1.000	.507	2	.000	19.668	1.953
41	1	1	.575	1	1.000	.314	2	.000	18.349	1.802
42	1	1	.632	1	.994	.230	2	.006	10.523	.762
43	1	1	.218	1	.912	1.519	2	.088	6.203	.008
44	1	1	.907	1	.999	.014	2	.001	14.741	1.357
45	1	1	.865	1	.998	.029	2	.002	12.621	1.071
46	1	2**	.249	1	.933	1.330	1	.067	6.604	-1.329
47	1	1	.490	1	.987	.477	2	.013	9.194	.550
48	1	1	.756	1	.997	.096	2	.003	11.646	.931
49	1	1	.778	1	1.000	.080	2	.000	16.044	1.523
50	1	1	.523	1	.990	.409	2	.010	9.509	.602
51	1	1	.351	1	.969	.870	2	.031	7.785	.308
52	1	1	.848	1	.998	.037	2	.002	12.474	1.050
53	1	1	.520	1	1.000	.414	2	.000	19.068	1.885
54	1	2**	.080	1	.602	3.064	1	.398	3.891	732
55	1	1	.662	1	.995	.191	2	.005	10.800	.804
56	1	1	.724	1	.996	.125	2	.004	11.357	.888
57	1	1	.998	1	.999	.000	2	.001	13.840	1.238
58	1	1	.307	1	1.000	1.046	2	.000	22.521	2.264
59	1	1	.918	1	.999	.011	2	.001	13.104	1.138
60	1	1	.351	1	.969	.870	2	.031	7.785	.308

Case Number	Actual Group	Highest Group	Second Highest Group	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest Group	Discriminant Scores	Case Number
61	1	2**	.314	1	.960	1.012	1	.040	7.383	-1.476
62	1	1	.520	1	1.000	.414	2	.000	19.068	1.885
63	1	2**	.080	1	.602	3.064	1	.398	3.891	-1.327
64	1	1	.520	1	1.000	.414	2	.000	19.068	1.885
65	1	2**	.080	1	.602	3.064	1	.398	3.891	-1.422
66	1	1	.568	1	.992	.327	2	.008	9.932	.669
67	1	1	.998	1	.999	.000	2	.001	13.877	1.243
68	1	1	.520	1	1.000	.414	2	.000	19.068	1.885
69	1	1	.236	1	.926	1.403	2	.074	6.445	.057
70	1	1	.978	1	.999	.001	2	.001	13.659	1.214
71	1	1	.918	1	.999	.011	2	.001	13.104	1.138
72	1	1	.176	1	.870	1.827	2	.130	5.623	111
73	1	1	.907	1	.999	.014	2	.001	14.741	1.357
74	1	1	.491	1	1.000	.474	2	.000	19.460	1.929
75	1	1	.002	1	1.000	9.626	2	.000	46.589	4.344
76	1	1	.157	1	1.000	2.000	2	.000	26.393	2.655
77	1	1	.045	1	1.000	4.018	2	.000	32.806	3.246
78	1	1	.520	1	1.000	.414	2	.000	19.068	1.885
79	1	1	.033	1	1.000	4.534	2	.000	34.251	3.370
80	1	1	.276	1	1.000	1.187	2	.000	23.161	2.331
81	1	1	.525	1	1.000	.404	2	.000	19.001	1.877

Case Number	Actual Group	Highest Group	Second Highest Group	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest Group	Discriminant Scores	Case Number
82	1	1	.194	1	1.000	1.690	2	.000	25.230	2.541
83	1	1	.109	1	1.000	2.563	2	.000	28.345	2.842
84	1	1	.437	1	1.000	.605	2	.000	20.257	2.019
85	1	1	.437	1	1.000	.605	2	.000	20.257	2.019
86	1	1	.033	1	1.000	4.534	2	.000	34.251	3.370
87	1	1	.476	1	1.000	.508	2	.000	19.675	1.954
88	1	1	.111	1	1.000	2.539	2	.000	28.266	2.835
89	1	1	.070	1	1.000	3.282	2	.000	30.633	3.053
90	1	1	.437	1	1.000	.605	2	.000	20.257	2.019
91	1	1	.748	1	.997	.103	2	.003	11.569	.919
92	1	1	.351	1	.969	.870	2	.031	7.785	.308
93	1	1	.848	1	.998	.037	2	.002	12.474	1.050
94	1	1	.520	1	1.000	.414	2	.000	19.068	1.885
95	1	2**	.080	1	.602	3.064	1	.398	3.891	-1.732
96	1	1	.071	1	.553	3.256	2	.447	3.681	563
97	1	1	.724	1	.996	.125	2	.004	11.357	.888
98	1	1	.998	1	.999	.000	2	.001	13.840	1.238
99	1	1	.434	1	.982	.611	2	.018	8.650	.459
100	1	1	.141	1	.811	2.163	2	.189	5.073	230
101	2	2	.097	1	1.000	2.757	1	.000	28.981	-4.142
102	2	2	.859	1	.999	.032	1	.001	15.220	-2.660

Case Number	Actual Group	Highest Group	Second Highest Group	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest Group	Discriminant Scores	Case Number
103	2	2	.056	1	1.000	3.662	1	.000	31.773	-4.396
104	2	2	.149	1	1.000	2.083	1	.000	26.692	-3.925
105	2	2	.904	1	.999	.014	1	.001	14.770	-2.602
106	2	2	.619	1	1.000	.247	1	.000	17.812	-2.979
107	2	2	.150	1	.828	2.072	1	.172	5.215	-1.043
108	2	2	.692	1	1.000	.157	1	.000	16.973	-2.879
109	2	2	.850	1	.998	.036	1	.002	12.486	-2.293
110	2	2	.899	1	.998	.016	1	.002	12.935	-2.355
111	2	2	.277	1	.947	1.182	1	.053	6.947	-1.395
112	2	2	.191	1	.888	1.707	1	.112	5.840	-1.176
113	2	2	.703	1	1.000	.145	1	.000	16.842	-2.863
114	2	2	.532	1	1.000	.391	1	.000	18.909	-3.107
115	2	2	.309	1	1.000	1.036	1	.000	22.474	-3.500
116	2	2	.194	1	1.000	1.686	1	.000	25.217	-3.781
117	2	2	.940	1	.999	.006	1	.001	13.307	-2.407
118	2	2	.444	1	1.000	.587	1	.000	20.154	-3.248
119	2	2	.119	1	1.000	2.436	1	.000	27.921	-4.043
120	2	2	.668	1	.995	.184	1	.005	10.852	-2.053
121	2	2	.374	1	.974	.790	1	.026	8.033	-1.593
122	2	2	.395	1	.977	.723	1	.023	8.254	-1.632
123	2	2	.074	1	.570	3.190	1	.430	3.752	696

Case Number	Actual Group	Highest Group	Second Highest Group	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest Group	Discriminant Scores	Case Number
124	2	2	.429	1	.982	.625	1	.018	8.599	-1.691
125	2	2	.126	1	.774	2.341	1	.226	4.809	952
126	2	2	.329	1	.964	.955	1	.036	7.540	-1.505
127	2	2	.924	1	.999	.009	1	.001	14.585	-2.578
128	2	2	.429	1	1.000	.625	1	.000	20.375	-3.273
129	2	2	.234	1	1.000	1.416	1	.000	24.139	-3.672
130	2	2	.775	1	.997	.082	1	.003	11.813	-2.196
131	2	2	.086	1	1.000	2.942	1	.000	29.576	-4.197
132	2	2	.606	1	.993	.266	1	.007	10.285	-1.966
133	2	2	.562	1	.992	.337	1	.008	9.877	-1.902
134	2	2	.250	1	.934	1.325	1	.066	6.615	-1.331
135	2	2	.566	1	.992	.330	1	.008	9.913	-1.907
136	2	2	.428	1	.982	.629	1	.018	8.586	-1.689
137	2	2	.731	1	.996	.118	1	.004	11.418	-2.138
138	2	2	.355	1	1.000	.855	1	.000	21.601	-3.407
139	2	2	.747	1	1.000	.104	1	.000	16.365	-2.804
140	2	2	.110	1	.729	2.547	1	.271	4.524	886
141	2	2	.954	1	.999	.003	1	.001	13.435	-2.424
142	2	2	.601	1	1.000	.274	1	.000	18.033	-3.005
143	2	2	.620	1	.994	.246	1	.006	10.413	-1.986
144	2	2	.970	1	.999	.001	1	.001	13.578	-2.444

Case Number	Actual Group	Highest Group	Second Highest	Discriminan t Scores	Case Number	Actual Group	Highest Group	Second Highest	Discriminant Scores	Case Number
	Crosp		Group					Group		
145	2	2	.575	1	1.000	.314	1	.000	18.351	-3.043
146	2	2	.734	1	1.000	.116	1	.000	16.510	-2.822
147	2	2	.777	1	.997	.081	1	.003	11.829	-2.198
148	2	2	.560	1	1.000	.340	1	.000	18.540	-3.065
149	2	2	.837	1	.998	.042	1	.002	12.374	-2.277
150	2	2	.612	1	.994	.258	1	.006	10.340	-1.975

^{**.} Misclassified case

Classification Results^a

		Kepuasan Konsumen	Predicted Grou	Total	
			1.00	2.00	
	0	1.00	94	6	100
Original	Count	2.00	0	50	50
Original	0/	1.00	94.0	6.0	100.0
	%	2.00	.0	100.0	100.0

a. 96.0% of original grouped cases correctly classified.

Lampiran 9. Hasil Uji Beda Sample t test

Group Statistics

	KepuasanKonsumen	N	Mean	Std. Deviation	Std. Error Mean	
Score	Puas	100	3,8167	,50478	,05048	
	Tidak Puas	50	2,9866	,59438	,08406	

Independent Samples Test

	Equa	s Test for ality of ances						<i>l</i> leans		
	F	Sig.	t	df	Sig. (2- tailed)	Mean Differen ce	Std. Error Difference	95% Confidence Ir Lower	nterval of the Difference Upper	
Equal variances assumed	,436	,510	8,940	148	,000	,83010	,09286	,64661	1,01359	
Equal variances not assumed			8,466	85,226	,000	,83010	,09805	,63516	1,02504	

Lampiran 10. R Tabel

N		1		•	1	1	•	1				
2 0.95 42 0.297 82 0.215 122 0.176 162 0.153 202 0.137 3 0.878 43 0.294 83 0.213 123 0.176 163 0.153 203 0.137 4 0.811 44 0.291 84 0.212 124 0.175 164 0.152 204 0.137 5 0.754 45 0.288 85 0.211 125 0.174 166 0.151 205 0.136 6 0.707 46 0.282 87 0.208 127 0.173 167 0.151 207 0.136 8 0.632 48 0.279 88 0.207 128 0.172 169 0.15 209 0.135 9 0.602 49 0.276 89 0.206 129 0.172 169 0.15 209 0.135 10 0.552 50 0.271	N	r	N	R	N	R	N	r	N	r	N	r
3 0.878 43 0.294 83 0.213 123 0.176 163 0.153 203 0.137 4 0.811 44 0.291 84 0.212 124 0.175 164 0.152 204 0.137 5 0.754 45 0.288 85 0.211 125 0.174 165 0.151 206 0.136 6 0.707 46 0.282 87 0.208 127 0.173 167 0.151 206 0.136 7 0.666 47 0.282 87 0.208 127 0.173 167 0.151 209 0.136 8 0.632 48 0.276 89 0.206 129 0.172 169 0.15 209 0.135 9 0.602 49 0.271 91 0.204 131 0.17 170 0.15 209 0.135 10 0.575 50 0.273	1	0.997	41	0.301	81	0.216	121	0.177	161	0.154	201	0.138
4 0.811 44 0.291 84 0.212 124 0.175 164 0.152 204 0.137 5 0.754 45 0.288 85 0.211 125 0.174 165 0.152 205 0.136 6 0.707 46 0.282 87 0.208 127 0.173 166 0.151 206 0.136 7 0.666 47 0.282 87 0.208 127 0.173 166 0.151 208 0.135 9 0.602 49 0.276 89 0.206 129 0.172 169 0.15 209 0.135 10 0.576 50 0.273 90 0.205 130 0.171 170 0.15 210 0.135 11 0.553 51 0.271 91 0.204 131 0.17 171 0.149 212 0.135 11 0.532 52 0.268 <td>2</td> <td>0.95</td> <td>42</td> <td>0.297</td> <td>82</td> <td></td> <td>122</td> <td>0.176</td> <td>162</td> <td>0.153</td> <td>202</td> <td>0.137</td>	2	0.95	42	0.297	82		122	0.176	162	0.153	202	0.137
5 0.754 45 0.288 85 0.211 125 0.174 165 0.152 205 0.136 6 0.707 46 0.285 86 0.21 126 0.174 166 0.151 206 0.136 7 0.666 47 0.282 87 0.208 127 0.173 167 0.151 207 0.136 8 0.632 48 0.279 88 0.207 128 0.172 168 0.151 208 0.135 10 0.576 50 0.273 90 0.206 129 0.171 170 0.15 210 0.135 11 0.553 51 0.271 91 0.204 131 0.17 170 0.15 210 0.135 11 0.553 51 0.271 91 0.204 131 0.17 170 0.147 212 0.135 11 0.553 52 0.268 <td>3</td> <td>0.878</td> <td>43</td> <td></td> <td>83</td> <td>0.213</td> <td>123</td> <td>0.176</td> <td>163</td> <td>0.153</td> <td>203</td> <td>0.137</td>	3	0.878	43		83	0.213	123	0.176	163	0.153	203	0.137
6 0.707 46 0.285 86 0.21 126 0.174 166 0.151 206 0.136 7 0.666 47 0.282 87 0.208 127 0.173 167 0.151 207 0.136 8 0.632 48 0.276 89 0.206 129 0.172 169 0.15 209 0.135 9 0.602 49 0.276 89 0.206 129 0.172 169 0.15 209 0.135 10 0.576 50 0.273 90 0.204 131 0.17 170 0.149 211 0.134 11 0.553 51 0.271 91 0.204 131 0.17 172 0.149 212 0.134 12 0.532 52 0.268 92 0.203 132 0.17 172 0.149 212 0.134 13 0.546 53 0.261		0.811	44	0.291	84	0.212	124	0.175	164	0.152	204	0.137
7 0.666 47 0.282 87 0.208 127 0.173 167 0.151 207 0.136 8 0.632 48 0.279 88 0.207 128 0.172 168 0.151 208 0.135 9 0.602 49 0.276 89 0.206 129 0.172 169 0.15 209 0.135 10 0.576 50 0.273 90 0.205 130 0.171 170 0.149 211 0.135 11 0.553 51 0.271 91 0.204 131 0.171 172 0.149 212 0.134 12 0.532 52 0.268 92 0.203 132 0.171 170 0.149 212 0.134 13 0.514 53 0.266 93 0.201 133 0.168 174 0.148 214 0.134 15 0.482 55 0.26	5	0.754	45	0.288	85	0.211	125	0.174	165	0.152	205	0.136
8 0.632 48 0.279 88 0.207 128 0.172 168 0.151 208 0.135 9 0.602 49 0.276 89 0.206 129 0.172 169 0.15 209 0.135 10 0.576 50 0.273 90 0.205 130 0.171 170 0.15 210 0.135 11 0.553 51 0.271 91 0.204 131 0.17 171 0.149 211 0.134 12 0.532 52 0.268 92 0.203 132 0.17 77 0.149 212 0.134 13 0.514 53 0.266 93 0.202 133 0.169 173 0.148 213 0.134 14 0.497 54 0.263 94 0.201 133 0.168 175 0.148 214 0.134 15 0.482 55 0.261 </td <td>6</td> <td>0.707</td> <td>46</td> <td>0.285</td> <td>86</td> <td>0.21</td> <td>126</td> <td>0.174</td> <td>166</td> <td>0.151</td> <td>206</td> <td>0.136</td>	6	0.707	46	0.285	86	0.21	126	0.174	166	0.151	206	0.136
9 0.602 49 0.276 89 0.206 129 0.172 169 0.15 209 0.135 10 0.576 50 0.273 90 0.205 130 0.171 170 0.15 210 0.135 11 0.553 51 0.271 91 0.204 131 0.17 171 0.149 211 0.134 12 0.532 52 0.268 92 0.203 132 0.17 172 0.149 212 0.134 13 0.514 53 0.266 93 0.202 133 0.169 173 0.148 213 0.134 14 0.497 54 0.261 95 0.2 135 0.168 174 0.148 215 0.134 15 0.482 55 0.261 95 0.2 135 0.168 177 0.147 216 0.133 16 0.482 50 0.254 <td></td> <td>0.666</td> <td>47</td> <td>0.282</td> <td></td> <td>0.208</td> <td>127</td> <td>0.173</td> <td>167</td> <td></td> <td>207</td> <td>0.136</td>		0.666	47	0.282		0.208	127	0.173	167		207	0.136
10 0.576 50 0.273 90 0.205 130 0.171 170 0.15 210 0.131 11 0.553 51 0.271 91 0.204 131 0.17 171 0.149 211 0.134 12 0.532 52 0.268 92 0.203 132 0.17 172 0.149 212 0.134 13 0.514 53 0.266 93 0.202 133 0.169 173 0.148 213 0.134 14 0.497 54 0.263 94 0.201 134 0.168 174 0.148 215 0.134 15 0.486 56 0.259 96 0.199 136 0.167 177 0.147 216 0.133 16 0.468 56 0.259 96 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.2	8	0.632			88	0.207	128		168	0.151	208	0.135
11 0.553 51 0.271 91 0.204 131 0.17 171 0.149 211 0.134 12 0.532 52 0.268 92 0.203 132 0.17 172 0.149 212 0.134 13 0.514 53 0.266 93 0.202 133 0.169 173 0.148 213 0.134 14 0.497 54 0.263 94 0.201 134 0.168 174 0.148 214 0.134 15 0.482 55 0.261 95 0.2 135 0.168 175 0.148 215 0.133 16 0.482 56 0.259 96 0.199 136 0.167 176 0.147 216 0.133 17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.25	9	0.602	49	0.276	89	0.206	129	0.172	169	0.15		0.135
12 0.532 52 0.268 92 0.203 132 0.17 172 0.149 212 0.134 13 0.514 53 0.266 93 0.202 133 0.169 173 0.148 213 0.134 14 0.497 54 0.263 94 0.201 134 0.168 174 0.148 214 0.134 15 0.482 55 0.261 95 0.2 135 0.168 175 0.148 215 0.133 16 0.468 56 0.259 96 0.199 136 0.167 176 0.147 216 0.133 17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.2	10	0.576	50	0.273		0.205	130	0.171	170	0.15	210	0.135
13 0.514 53 0.266 93 0.202 133 0.169 173 0.148 213 0.134 14 0.497 54 0.263 94 0.201 134 0.168 174 0.148 214 0.134 15 0.482 55 0.261 95 0.2 135 0.168 175 0.148 215 0.133 16 0.468 56 0.259 96 0.199 136 0.167 176 0.147 216 0.133 17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.254 98 0.197 138 0.166 178 0.146 218 0.132 19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.	11	0.553	51	0.271	91	0.204	131	0.17	171	0.149	211	0.134
14 0.497 54 0.263 94 0.201 134 0.168 174 0.148 214 0.134 15 0.482 55 0.261 95 0.2 135 0.168 175 0.148 215 0.133 16 0.468 56 0.259 96 0.199 136 0.167 176 0.147 216 0.133 17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.254 98 0.197 138 0.166 178 0.146 218 0.132 19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.	12		52	0.268	92	0.203	132	0.17	172	0.149	212	0.134
15 0.482 55 0.261 95 0.2 135 0.168 175 0.148 215 0.133 16 0.468 56 0.259 96 0.199 136 0.167 176 0.147 216 0.133 17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.254 98 0.197 138 0.166 178 0.146 218 0.132 19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.248 101 0.194 141 0.164 181 0.145 221 0.131 22 0.404 62 0	13	0.514	53	0.266	93	0.202	133	0.169	173	0.148	213	0.134
16 0.468 56 0.259 96 0.199 136 0.167 176 0.147 216 0.133 17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.254 98 0.197 138 0.166 178 0.146 218 0.132 19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.248 101 0.194 141 0.164 181 0.146 220 0.132 21 0.404 62 0.246 102 0.193 142 0.164 182 0.144 223 0.131 22 0.404 62 <t< td=""><td>14</td><td>0.497</td><td>54</td><td>0.263</td><td>94</td><td>0.201</td><td>134</td><td>0.168</td><td>174</td><td>0.148</td><td>214</td><td>0.134</td></t<>	14	0.497	54	0.263	94	0.201	134	0.168	174	0.148	214	0.134
17 0.456 57 0.256 97 0.198 137 0.167 177 0.147 217 0.133 18 0.444 58 0.254 98 0.197 138 0.166 178 0.146 218 0.132 19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.248 101 0.194 141 0.164 181 0.145 221 0.131 22 0.404 62 0.246 102 0.193 142 0.164 182 0.145 222 0.131 23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 <	15	0.482	55	0.261	95	0.2	135	0.168	175	0.148	215	0.133
18 0.444 58 0.254 98 0.197 138 0.166 178 0.146 218 0.132 19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.248 101 0.194 141 0.164 181 0.145 221 0.131 22 0.404 62 0.246 102 0.193 142 0.164 182 0.145 222 0.131 23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65	16	0.468	56	0.259	96	0.199	136	0.167	176	0.147	216	0.133
19 0.433 59 0.252 99 0.196 139 0.165 179 0.146 219 0.132 20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.248 101 0.194 141 0.164 181 0.145 221 0.131 22 0.404 62 0.246 102 0.193 142 0.164 182 0.145 222 0.131 23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 <t< td=""><td>17</td><td>0.456</td><td>57</td><td>0.256</td><td>97</td><td>0.198</td><td>137</td><td>0.167</td><td>177</td><td>0.147</td><td>217</td><td>0.133</td></t<>	17	0.456	57	0.256	97	0.198	137	0.167	177	0.147	217	0.133
20 0.423 60 0.25 100 0.195 140 0.165 180 0.146 220 0.132 21 0.413 61 0.248 101 0.194 141 0.164 181 0.145 221 0.131 22 0.404 62 0.246 102 0.193 142 0.164 182 0.145 222 0.131 23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 <t< td=""><td>18</td><td>0.444</td><td>58</td><td>0.254</td><td>98</td><td>0.197</td><td>138</td><td>0.166</td><td>178</td><td>0.146</td><td>218</td><td>0.132</td></t<>	18	0.444	58	0.254	98	0.197	138	0.166	178	0.146	218	0.132
21 0.413 61 0.248 101 0.194 141 0.164 181 0.145 221 0.131 22 0.404 62 0.246 102 0.193 142 0.164 182 0.145 222 0.131 23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 0.237 107 0.188 147 0.161 188 0.142 228 0.129 29 0.355 69 <	19	0.433	59	0.252	99	0.196	139	0.165	179	0.146	219	0.132
22 0.404 62 0.246 102 0.193 142 0.164 182 0.145 222 0.131 23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 0.237 107 0.188 147 0.161 187 0.143 226 0.13 28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 30 0.349 70 <td< td=""><td>20</td><td>0.423</td><td>60</td><td>0.25</td><td>100</td><td>0.195</td><td>140</td><td>0.165</td><td>180</td><td>0.146</td><td>220</td><td>0.132</td></td<>	20	0.423	60	0.25	100	0.195	140	0.165	180	0.146	220	0.132
23 0.396 63 0.244 103 0.192 143 0.163 183 0.144 223 0.131 24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 0.237 107 0.188 147 0.161 187 0.143 226 0.13 28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 31 0.344 71	21	0.413	61	0.248	101	0.194	141	0.164	181	0.145	221	0.131
24 0.388 64 0.242 104 0.191 144 0.163 184 0.144 224 0.131 25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 0.237 107 0.188 147 0.161 187 0.143 227 0.13 28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71	22	0.404	62	0.246	102	0.193	142	0.164	182	0.145	222	0.131
25 0.381 65 0.24 105 0.19 145 0.162 185 0.144 225 0.13 26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 0.237 107 0.188 147 0.161 187 0.143 227 0.13 28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71 0.23 111 0.185 151 0.159 191 0.141 231 0.129 32 0.339 72 0	23	0.396	63	0.244	103	0.192	143	0.163	183	0.144	223	0.131
26 0.374 66 0.239 106 0.189 146 0.161 186 0.143 226 0.13 27 0.367 67 0.237 107 0.188 147 0.161 187 0.143 227 0.13 28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71 0.23 111 0.186 150 0.159 190 0.141 231 0.129 32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 <t< td=""><td>24</td><td>0.388</td><td>64</td><td>0.242</td><td>104</td><td>0.191</td><td>144</td><td>0.163</td><td>184</td><td>0.144</td><td>224</td><td>0.131</td></t<>	24	0.388	64	0.242	104	0.191	144	0.163	184	0.144	224	0.131
27 0.367 67 0.237 107 0.188 147 0.161 187 0.143 227 0.13 28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71 0.23 111 0.185 151 0.159 191 0.141 231 0.129 32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 <	25	0.381	65	0.24	105	0.19	145	0.162	185	0.144	225	0.13
28 0.361 68 0.235 108 0.187 148 0.16 188 0.142 228 0.129 29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71 0.23 111 0.185 151 0.159 191 0.141 231 0.129 32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 <	26	0.374	66	0.239	106	0.189	146	0.161	186	0.143	226	0.13
29 0.355 69 0.234 109 0.187 149 0.16 189 0.142 229 0.129 30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71 0.23 111 0.185 151 0.159 191 0.141 231 0.129 32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 <t< td=""><td>27</td><td>0.367</td><td>67</td><td>0.237</td><td>107</td><td>0.188</td><td>147</td><td>0.161</td><td>187</td><td>0.143</td><td>227</td><td>0.13</td></t<>	27	0.367	67	0.237	107	0.188	147	0.161	187	0.143	227	0.13
30 0.349 70 0.232 110 0.186 150 0.159 190 0.142 230 0.129 31 0.344 71 0.23 111 0.185 151 0.159 191 0.141 231 0.129 32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 <	28	0.361	68	0.235	108	0.187	148	0.16	188	0.142	228	0.129
31 0.344 71 0.23 111 0.185 151 0.159 191 0.141 231 0.129 32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 0.221 117 0.18 157 0.156 196 0.139 237 0.127 38 0.312 78 <t< td=""><td>29</td><td>0.355</td><td>69</td><td>0.234</td><td>109</td><td>0.187</td><td>149</td><td>0.16</td><td>189</td><td>0.142</td><td>229</td><td>0.129</td></t<>	29	0.355	69	0.234	109	0.187	149	0.16	189	0.142	229	0.129
32 0.339 72 0.229 112 0.184 152 0.158 192 0.141 232 0.128 33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 0.221 117 0.18 157 0.156 196 0.139 237 0.127 38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 <t< td=""><td>30</td><td>0.349</td><td>70</td><td>0.232</td><td>110</td><td>0.186</td><td>150</td><td>0.159</td><td>190</td><td>0.142</td><td>230</td><td>0.129</td></t<>	30	0.349	70	0.232	110	0.186	150	0.159	190	0.142	230	0.129
33 0.334 73 0.227 113 0.183 153 0.158 193 0.141 233 0.128 34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 0.221 117 0.18 157 0.156 196 0.139 236 0.127 38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	31	0.344	71	0.23	111	0.185	151	0.159	191	0.141	231	0.129
34 0.329 74 0.226 114 0.182 154 0.157 194 0.14 234 0.128 35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 0.221 117 0.18 157 0.156 197 0.139 237 0.127 38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	32	0.339	72	0.229	112	0.184	152	0.158	192	0.141	232	0.128
35 0.325 75 0.224 115 0.182 155 0.157 195 0.14 235 0.127 36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 0.221 117 0.18 157 0.156 197 0.139 237 0.127 38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	33	0.334	73	0.227	113	0.183	153	0.158	193	0.141	233	0.128
36 0.32 76 0.223 116 0.181 156 0.156 196 0.139 236 0.127 37 0.316 77 0.221 117 0.18 157 0.156 197 0.139 237 0.127 38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	34	0.329	74	0.226	114	0.182	154	0.157	194	0.14	234	0.128
37 0.316 77 0.221 117 0.18 157 0.156 197 0.139 237 0.127 38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	35	0.325	75	0.224	115	0.182	155	0.157	195	0.14	235	0.127
38 0.312 78 0.22 118 0.179 158 0.155 198 0.139 238 0.127 39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	36	0.32	76	0.223	116	0.181	156	0.156	196	0.139	236	0.127
39 0.308 79 0.219 119 0.179 159 0.155 199 0.138 239 0.126	37	0.316	77	0.221	117	0.18	157	0.156	197	0.139	237	0.127
	38	0.312	78	0.22	118	0.179	158	0.155	198	0.139	238	0.127
40 0.304 80 0.217 120 0.178 160 0.154 200 0.138 240 0.126	39	0.308	79	0.219	119	0.179	159	0.155	199	0.138	239	0.126
	40	0.304	80	0.217	120	0.178	160	0.154	200	0.138	240	0.126