
July 3, 2019 14:49 JOIN S0219265919500038 page 1

Journal of Interconnection Networks
Vol. 19, No. 2 (2019) 1950003 (13 pages)
c©World Scientific Publishing Company

DOI: 10.1142/S0219265919500038

Non-Isolated Resolving Number of Graph with Pendant Edges

RIDHO ALFARISI∗

Department of Elementary School Teacher Education,
University of Jember, Jember, Indonesia

alfarisi.fkip@unej.ac.id

DAFIK
Department of Mathematics Education, University of Jember, Jember, Indonesia

ARIKA INDAH KRISTIANA
Department of Mathematics Education, University of Jember, Jember, Indonesia

IKA HESTI AGUSTIN
Department of Mathematics, University of Jember, Jember, Indonesia

Received 20 December 2017
Accepted 5 April 2019

We consider V,E are respectively vertex and edge sets of a simple, nontrivial and connected graph
G. For an ordered set W = {w1, w2, w3, . . . , wk} of vertices and a vertex v ∈ G, the ordered
r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)) of k-vector is representations of v with respect to W ,
where d(v, w) is the distance between the vertices v and w. The set W is called a resolving set for
G if distinct vertices of G have distinct representations with respect to W . The metric dimension,
denoted by dim(G) is min of |W |. Furthermore, the resolving set W of graph G is called non-
isolated resolving set if there is no ∀v ∈ W induced by non-isolated vertex. While a non-isolated
resolving number, denoted by nr(G), is the minimum cardinality of non-isolated resolving set in
graph. In this paper, we study the non isolated resolving number of graph with any pendant edges.

Keywords: Non isolated resolving number; non isolated resolving set; graph with pendant edges.

1. Introduction

In this paper, we consider that a graph G = (V,E) is a connected graph, for more detail
definition of graph in Refs. 1 and 2. The concept of metric dimension was independently
introduced by Slater3 and Harary and Melter.4 In his paper, Slater called this concept as a
locating set.

The metric dimension have been used to describe navigation in networks. In a network,
each place represented as vertices and edges denote the connections between vertices. The
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vertices of a network where we place the machines (robots) are called landmarks. The
minimum number of machines required to locate each and vertex of the network is termed
as metric dimension and the set of all minimum possible number of landmarks constitute
metric basis, for more detail this application in Ref. 5.

The distance d(u, v) is the length of a shortest path between two vertices u and v

in connected graph G. For an ordered set W = {w1, w2, ..., wk} subset of vertex set
V (G). The representation r(v|W ) of v with respect to W is the ordered k-tuple r(v|W ) =

(d(v, w1), d(v, w2), ..., d(v, wk)). The set W is called resolving set of G if every vertices
of G have distinct representation respect to W , let u and v be two any vertices in G if
r(u|W ) = r(v|W ) implies that u = v. Hence if W is a resolving set of cardinality k

for a graph G, then the representation set r(v|W ), v ∈ V (G) consists of |V (G)| distinct k-
vector. A resolving set of minimum cardinality for a graph G is called a minimum resolving
set for G and this cardinality is the metric dimension of G, denoted by dim(G).

Saenpholphat and Zhang8 introduced the concept of connected resolving set. A resolv-
ing set W of graph G is connected if each subgraph 〈W 〉 induced by W has no isolated
vertices in G. The minimum cardinality of a non-isolated set in a graph G is the non-
isolated resolving number, denoted by nr(G). For more detail notation of nr(G) please see
in Chitra and Arumugam.6

Until today, Chartrand et al.7 determined the bounds of the metric dimensions for any
connected graphs and determined the metric dimensions of some well known families of
graphs such as tree, path, and complete graph. Saenpholphat et al. in Ref. 8 studied the
connected partition dimension of graphs. On the other hand, Chitra and Arumugam6 deter-
mined resolving Sets without Isolated vertices of some special graph and graph resulting of
cartesian product. Furthermore, Baca et al.9 showed the metric dimension of regular bipar-
tite graphs, while Iswadi et al.10 studied the metric dimension of corona product of graphs.
Moreover Rodriguez-Velazquez et al.11 showed the metric dimension of corona and strong
product graph, Simanjuntak et al.12 showed metric dimension of amalgamation of graphs,
Saputro et al. in Ref. 13 described the metric dimension of a graph composition products
with star. The last, Yero et al. in Ref. 14 obtained the metric dimension number of corona
product graphs. Dafik et al.15 studied non-isolated resolving number of special graphs and
their operations and Alfarisi et al.16,17 showed non-isolated resolving number of k-corona
product of graphs and graphs with homogeneous pendant edges. We present some known
results as follows.

Theorem 1.1 (Chitra and Arumugam).6 Let T be a tree which is not a path. Let s denote
the number of vertices v of T and lv is a leaf in T with lv > 1. Then nr(T ) = dim(T ) + s.

The results of non-isolated resolving number of well known graph are as follows.

Proposition 1.2 (Chitra and Arumugam).6 Let G be a connected graph of order n ≥ 2

• For the path Pn, n ≥ 2, nr(Pn) = 2.
• For the complete graph Kn, n ≥ 3, nr(Kn) = n− 1.
• For the complete bipartite graph Km,n, m,n ≥ 2, nr(Km,n) = m + n− 2.
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• For the friendship graph G with k-triangles, k ≥ 2, nr(G) = k + 1.
• For the graph Pn + K1, n ≥ 2, nr(Pn + K1) = bn/2c.

Let G be a connected graph of order n and H (not necessarily connected) be a graph of
order m. A graph G corona product H , G � H , is defined as a graph obtained by taking
one copy of G and |V (G)| copies of graph H1, H2, ....,Hn of H and connecting i-th vertex
of G to the vertices of Hi, 1 ≤ i ≤ n. By definition of corona product, we can say that

V (G�H) = V (G) ∪
⋃

i∈V (G)

V (Hi),

E(G�H) = E(G) ∪
⋃

i∈V (G)

(E(Hi) ∪ {iui|ui ∈ V (Hi)}),

where Hi
∼= H , for all i ∈ V (G). If H ∼= K1, G � H is equal to the graph produced

by adding one pendant edge to every vertex of G. Generally, if H ∼= mK1 where mK1 is
union of trivial graph K1, G�H is equal to the graph produced by adding one m pendant
edge to every vertex of G. We determine the metric dimension with non-isolated resolving
set of graphs with pendant edges.

2. Main Results

In this section, we will determine the non-isolated resolving number of graph with pendant
edges. Next, we will use the idea of Saenpholphat and Zhang in Ref. 8 have introduced the
concept of distance similar in a graph G. The open neighbourhood N(v) of a vertex v in a
graph G is all of vertices in graph G which adjacent to v and the close neighbourhood N [v]

of a vertex v in a graph G is N(v)∪{v}. For two any vertices u and v of a connected graph
G are defined to be distance similar if d(u, x) = d(v, x) for all x ∈ V (G) − {u, v}. They
can be found some of their properties in the following observation.

Observation 2.1 (Saenpholphat and Zhang).8 Two vertices u and v of a connected graph
G are distance similar if and only if

(1) uv /∈ E(G) and N(u) = N(v) or
(2) uv ∈ E(G) and N [u] = N [v]

Observation 2.2 (Saenpholphat and Zhang).8 Distance similarity in a connected graph
G is an equivalence relation on V (G).

Observation 2.3 (Saenpholphat and Zhang).8 If U is a distance similar equivalence class
of a connected graph G, then U is either independent in G or in Ḡ.

Observation 2.4 (Saenpholphat and Zhang).8 If U is a distance similar equivalence class
of a connected graph G with |U | = p ≥ 2, then every resolving set of G contains at least
p− 1 vertices from U .
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The following theorem determine the non-isolated resolving number of a graphs H ,
where H is a graph with pendant edges more general that of corona product G�mK1. Every
i-th vertex in G is joining with mi number of pendant edges with mi ≥ 2, 1 ≤ i ≤ |V (G)|.

Theorem 2.1. Let G be a connected graph, H be a graph with mi pendant edges, mi ≥ 2

and 1 ≤ i ≤ |V (G)|, then non-isolated resolving number of H is

nr(H) ≥ |V (G)|+ Σ
|V (G)|
i=1 (mi − 1)

Proof: Let G be a graph of order n ≥ 2 and vertex set V (G) = {ui : 1 ≤ i ≤ n} and
V ((miK1)i) = {vi,1, vi,2, . . . , vi,mi} with 1 ≤ i ≤ n m1 6= m2 6= · · · 6= mn is copy of
miK1 by joining with ui and |V (G)| is the cardinality of vertices G. Let H be a connected
graph with vertex set V (H) = V (G) ∪ {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} and the edge set
E(H) = E(G) ∪ {uivi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.

For every i ∈ {1, 2, . . . , n}, every pair vertices u, v ∈ (miK1)i holds d(u, x) = d(v, x)

where x ∈ V (H) = {u, v}. Thus, every subgraph (miK1)i are a distance similar equiva-
lence class of H . Based on Observation 2.4, we have resolving set Wi for every subgraph
(miK1)i at least (mi − 1), 1 ≤ i ≤ n where W =

⋃
i∈V (G)(Wi), Wi ⊂ V ((miK1)i).

There is isolated vertex in W such that W is not resolving set with non-isolated vertex. If
we will show that W is resolving set with non-isolated vertex, then we need to show that
every vertices v ∈Wi ⊂ V ((miK1)i) connected to each i-th vertex in graph G by edge set
{uivi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} such that

|W | ≥ |
⋃

i∈V (G)

(Wi)|+ |V (G)|

≥ Σ
|V (G)|
i=1 (mi − 1) + |V (G)|

It is easy to see that non-isolated resolving set W at least Σ
|V (G)|
i=1 (mi − 1) + |V (G)| or

the lower bound of non-isolated resolving number is nr(H) ≥ Σ
|V (G)|
i=1 (mi − 1) + |V (G)|.

(a) (b)

Fig. 1. (a) Example of graph with pendant edges; (b) Example of non-isolated resolving set.

In the next theorem, we will determine the exact value of non isolated resolving number
of G � mK1 where G is a special family of graphs. The families are the path and cycle
graphs, the complete graphs, and the star graph and wheel graphs.
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Furthermore, non-isolated resolving number will be discussed with G ∼= Pn, G � K1

is isomorphic to a caterpillar Cn,1. For n = 1, then P1 � K1 isomorphic with P2. Based
on Proposition 1.2, we have nr(P2) = 1 and for n = 2, then P2 � K1 isomorphic with
P3. Based on Proposition 1.2, we have nr(P3) = 1. For n ≥ 3, the non-isolated resolving
number of Pn �K1 in the following.

Theorem 2.2. Consider the path graph Pn for n ≥ 3. Then

nr(Pn �K1) = n

Proof: Let Pn � K1 be a connected graph with vertex set V (Pn � K1) = {ui; 1 ≤ i ≤
n} ∪ {vj ; 1 ≤ j ≤ n} and edge set E(Pn �K1) = {uiui+1; 1 ≤ i ≤ n− 1} ∪ {uivj ; i =

j, 1 ≤ i ≤ n} where ui is vertex in path Pn and vj is a pendant vertex of ui. The cardinality
of vertices |V (Pn �K1)| = 2n and the cardinality of edges |E(Pn �K1)| = 2n− 1.

We will show that the lower bound of the non-isolated resolving number of Pn � K1

is nr(Pn � K1) ≥ n. We assume that non-isolated resolving set W of Pn � K1 with
|W | < n. Without loss of generality, we choose W = {u1, u2, . . . , un−1} then there are
at least two vertices vn−1 and un ∈ V (Pn � K1) such that have the same representation,
namely r(vn−1|W ) = (n− 1, n− 2, . . . , 2, 1︸ ︷︷ ︸

n−1 times

) = r(un|W ), it is a contradiction. Hence,

the lower bound of the non-isolated resolving number of Pn �K1 is nr(Pn �K1) ≥ n.
Furthermore, we will show that the upper bound of the non-isolated resolving number of

Pn�K1 is nr(Pn�K1) ≤ n. We Choose W ⊂ V (Pn�K1) with W = {u1, u2, . . . , un}
as a non-isolated resolving set of Pn �K1. The cardinality of non-isolated resolving set is
|W | = |{u1, u2, . . . , un}| = n. Thus, the representation of vertices v ∈ V (Pn �K1)−W

respect to W are as follows.

r(vj |W ) = (t′j−1, ..., t
′
1, 1, t1, ..., tn−j) for tk = k + 1, 1 ≤ k ≤ n − j and t′l = l + 1,

1 ≤ l ≤ j − 1, 1 ≤ j ≤ n.

It is clear that every vertex v ∈ V (Pn � K1) −W has a distinct representation with
respect to W . Furthermore, we need to shown that all vertices in W without isolated ver-
tex. All vertices in vertex set W = {u1, u2, . . . , un} are connected with the edge set
{uiui+1; 1 ≤ i ≤ n − 1} which all vertices in W induces subgraph Pn. Hence, 〈W 〉
has no isolated vertices. Thus, the upper bound of the non-isolated resolving number of
Pn �K1 is nr(Pn �K1) ≤ n.

Hence, we obtain that n ≤ nr(Pn �K1) ≤ n, then it concludes that the non-isolated
resolving number of Pn �K1 is nr(Pn �K1) = n

The star graph Sn is a tree with one central vertex and n leaves, for n = 1, then S1�K1

isomorphic with P4. Based on Proposition 1.2, we have nr(P4) = 1 and for n = 2, then
S2�K1 isomorphic with P3�K1. Based on Theorem 2.2, we have nr(P3�K1) = 3 such
that nr(S2 � K1) = 3. For n ≥ 3, the non-isolated resolving number of Sn � K1 in the
following.
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Theorem 2.3. Consider the star graph Sn for n ≥ 3. Then

nr(Sn �K1) = n + 1

Proof: Let Sn �K1 be a connected graph with vertex set V (Sn �K1) = {u, v, ui, vj ; 1 ≤
i ≤ n} and edge set E(Pn�K1) = {uv, uui, uivi; 1 ≤ i ≤ n} where u is central vertex of
star Sn and v, vi is a pendant vertex of u, ui with the cardinality of vertices |V (Sn�K1)| =
2n + 2 and the cardinality of edges |E(Pn �K1)| = 2n + 1.

We will show that the lower bound of the non-isolated resolving number of Sn � K1

is nr(Sn �K1) ≥ n + 1. We assume that non-isolated resolving set W of Sn �K1 with
|W | < n + 1. Without loss of generality, we can describe the reasons as follows:

(a) If we choose W = {u1, u2, . . . , un}, then all vertices u′ ∈ V (Sn �K1)−W has
the distinct representation. Based on edge set uui for 1 ≤ i ≤ n such that there is
isolated vertex in W . Hence, 〈W 〉 has isolated vertices, it is a contradiction.

(b) If we choose W = {u1, u2, . . . , un−1} ∪ {u}, then based on edge set uui for
1 ≤ i ≤ n such that every vertices in W are connected. Hence, 〈W 〉 has no
isolated vertices but there are at least two vertices un and v ∈ V (Sn �K1) which
have the same representation, namely r(un|W ) = ( 2, ..., 2︸ ︷︷ ︸

n−1 times

) = r(v|W ), it is a

contradiction.

Furthermore, we will show that the upper bound of the non-isolated resolving num-
ber of Sn � K1 is nr(Sn � K1) ≤ n + 1. We choose W ⊂ V (Sn � K1) with
W = {u1, u2, . . . , un} ∪ {u} is a non-isolated resolving set of Sn � K1 and the cardi-
nality of non-isolated resolving set is |W | = |{u1, u2, . . . , un}|+ |{u}| = n+ 1. Thus, the
representation of vertices v ∈ V (Sn �K1)−W respect to W are as follows.

r(v|W ) = (2, ..., 2︸ ︷︷ ︸
n times

, 1)

r(vi|W ) = ( 3, ..., 3︸ ︷︷ ︸
i−1 times

, 1, 3, ..., 3︸ ︷︷ ︸
n−i times

, 2) : 1 ≤ i ≤ n

It can be seen that all representation of every vertices v ∈ V (Sn � K1) −W respect
to W are distinct. Furthermore, we need to shown that all vertices in W without isolated
vertex. All vertices in vertex set W = {u1, u2, . . . , un} ∪ {u} are connected by the edge
set {uui; 1 ≤ i ≤ n} which all vertices in W induces subgraph Sn. Hence, 〈W 〉 has
no isolated vertices. So, the upper bound non-isolated resolving number of Sn � K1 is
nr(Sn �K1) ≤ n + 1.

Thus, the lower bound and upper bound of the non-isolated resolving number of Sn�K1

are n + 1 ≤ nr(Sn �K1) ≤ n + 1. It concludes that the non-isolated resolving number of
Sn �K1 is nr(Sn �K1) = n + 1.

Let G ∼= Kn be a complete graph, for n = 1, then K1�K1 isomorphic with P2. Based
on Proposition 1.2, we have nr(P2) = 1 and for n = 2, then K2 � K1 isomorphic with
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P2 � K1. Based on Proposition 1.2, we have nr(P4) = 1. For n ≥ 3, the non-isolated
resolving number of Kn �K1 in the following.

Theorem 2.4. Consider the complete graph Kn for n ≥ 3. Then

nr(Kn �K1) = n− 1

Proof: Let Kn � K1 be a connected graph with vertex set V (Kn � K1) = {ui, vi; 1 ≤
i ≤ n} and edge set E(Kn �K1) = {uiui+k; 1 ≤ i ≤ n, 1 ≤ k ≤ n − i} ∪ {uivi; 1 ≤
i ≤ n} where ui is a vertex of complete graph Kn and vi is a pendant vertex of ui with the
cardinality of vertices |V (Kn �K1)| = 2n and the cardinality of edges |E(Kn �K1)| =
n(n−1)

2 + n.
We will show that the lower bound of the non-isolated resolving number of Kn�K1 is

nr(Kn�K1) ≥ n−1. We assume that non-isolated resolving set W of Kn�K1 with |W | <
n−1. Without loss of generality, If we choose W = {u1, u2, . . . , un−2} then based on edge
set uiui+k for 1 ≤ i ≤ n and 1 ≤ k ≤ n− i then every vertices in W are connected. Hence,
〈W 〉 has non-isolated vertex but there are at least two vertices un and un−1 ∈ V (Kn�K1)

which have the same representation, namely r(un|W ) = ( 1, ..., 1︸ ︷︷ ︸
n−2 times

) = r(un−1|W ) or two

vertices in pendant edges namely vn and vn−1 ∈ V (Kn�K1) have the same representation,
namely r(vn|W ) = ( 2, ..., 2︸ ︷︷ ︸

n−2 times

) = r(vn−1|W ), it is a contradiction.

Furthermore, we will show that the upper bound of the non-isolated resolving number
of Kn � K1 is nr(Kn � K1) ≤ n − 1. We choose W ⊂ V (Kn � K1) with W =

{u1, u2, . . . , un−1} is a non-isolated resolving set of Kn �K1 and the cardinality of non-
isolated resolving set is |W | = |{u1, u2, . . . , un−1} = n − 1. Thus, the representation of
vertices v ∈ V (Kn �K1)−W respect to W are as follows.

r(vi|W ) = ( 2, ..., 2︸ ︷︷ ︸
i−1 times

, 1, 2, ..., 2︸ ︷︷ ︸
n−i−1 times

); 1 ≤ i ≤ n− 1

r(un|W ) = ( 1, ..., 1︸ ︷︷ ︸
n−1 times

)

r(vn|W ) = ( 2, ..., 2︸ ︷︷ ︸
n−1 times

)

It is clear that all representation of every vertex v ∈ V (Kn � K1) − W respect to
W are distinct. Furthermore, we need to shown that all vertices in W without isolated
vertex. All vertices in vertex set W = {u1, u2, . . . , un−1} are connected by the edge set
{uiui+k; 1 ≤ i ≤ n, 1 ≤ k ≤ n − i} which all vertices in W induces subgraph Kn.
Hence, 〈W 〉 has no isolated vertices. So, the upper bound non-isolated resolving number of
Kn �K1 is nr(Kn �K1) ≤ n− 1.

Thus, the lower bound and upper bound of the non-isolated resolving number of Kn �
K1 are n−1 ≤ nr(Kn�K1) ≤ n−1. It concludes that the non-isolated resolving number
of Kn �K1 is nr(Kn �K1) = n− 1.
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Let G ∼= Cn be a cycle graph, for n = 1, then K1 � K1 isomorphic with P2. Based
on Proposition 1.2, we have nr(P2) = 1, for n = 2, C2 is not simple graph so we do not
consider the n = 2 case computing nr(Cn�K1). For n = 3, then C3�K1 isomorphic with
K3 �K1. Based on Theorem 2.4, we have nr(K3 �K1) = 2 such that nr(C3 �K1) = 2.
For n ≥ 4, the non-isolated resolving number of Kn �K1 in the following.

Theorem 2.5. Consider the cycle graph Cn for n ≥ 4. Then

nr(Cn �K1) =

{
n+1
2 if n odd

n+2
2 if n even

Proof: Let Cn � K1 be a connected graph with vertex set V (Cn � K1) = {ui; 1 ≤ i ≤
n} ∪ {vi; 1 ≤ i ≤ n} and edge set E(Cn �K1) = {uiui+1; 1 ≤ i ≤ n− 1} ∪ {uivi; 1 ≤
i ≤ n} ∪ {u1un} where ui is vertex in cycle Cn and vi is a pendant vertex of ui with the
cardinality of vertices |V (Cn�K1)| = 2n and the cardinality of edges |E(Cn�K1)| = 2n.

Case 1. For n odd, we will show that the lower bound of the non-isolated resolving number
of Cn�K1 is nr(Cn�K1) ≥ n+1

2 . We assume that non-isolated resolving set W of Cn�K1

with |W | < n+1
2 . Without loss of generality, we choose W = {u1, u2, . . . , un+1

2
−1} then

there are at least two vertices vn+1
2
−1 and un+1

2
∈ V (Cn � K1) which have the same

representation, namely r(vn+1
2
−1|W ) = (t′n−3

2

, ..., t′1, 1) = r(un+1
2
|W ) with t′l = l + 1,

1 ≤ l ≤ n−3
2 , it is a contradiction. Hence, the lower bound of the non-isolated resolving

number of Cn �K1 is nr(Cn �K1) ≥ n+1
2 .

Furthermore, we will show that the upper bound of the non-isolated resolving num-
ber of Cn � K1 is nr(Cn � K1) ≤ n+1

2 . We choose W ⊂ V (Cn � K1) with W =

{u1, u2, . . . , un+1
2
} is a non-isolated resolving set of Cn �K1 and the cardinality of non-

isolated resolving set is |W | = |{u1, u2, . . . , un+1
2
}| = n+1

2 . Thus, the representation of
vertices v ∈ V (Cn �K1)−W respect to W are as follows.

r(vi|W ) = (t′i−1, ..., t
′
1, 1, t1, ..., tn+1

2
−i) for tk = k + 1, 1 ≤ k ≤ n+1

2 − i and t′l = l + 1,

1 ≤ l ≤ i− 1, 1 ≤ i ≤ n+1
2 ,

r(ui|W ) = (t′
i−n+3

2

, ..., t′1,
n−1
2 , n−12 , t1, ..., tn−i) for tk = n−1

2 − k, 1 ≤ k ≤ n − i and

t′l = n−1
2 − l, 1 ≤ l ≤ i− n+3

2 , n+3
2 ≤ i ≤ n,

r(vi|W ) = (t′
i−n+3

2

, ..., t′1,
n+1
2 , n+1

2 , t1, ..., tn−i) for tk = n−1
2 −k+ 1, 1 ≤ k ≤ n− i and

t′l = n−1
2 − l + 1, 1 ≤ l ≤ i− n+3

2 , n+3
2 ≤ i ≤ n.

It is clear that every vertex v ∈ V (Cn � K1) −W has a distinct representation with
respect to W . Furthermore, we need to shown that all vertices in W without isolated ver-
tex. All vertices in vertex set W = {u1, u2, . . . , un+1

2
} are connected by the edge set

{uiui+1; 1 ≤ i ≤ n+1
2 − 1} which all vertices in W induces subgraph Pn+1

2
. Hence, 〈W 〉

has no isolated vertices. So, the upper bound non-isolated resolving number of Cn � K1

1950003-8

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


July 3, 2019 14:49 JOIN S0219265919500038 page 9

Non-Isolated Resolving Number of Graph with Pendant Edges

is nr(Cn �K1) ≤ n+1
2 for n odd. It concludes that the non-isolated resolving number of

Cn �K1 is nr(Cn �K1) = n+1
2 .

Case 2. For n even, we will show that the lower bound of the non-isolated resolving number
of Cn�K1 is nr(Cn�K1) ≥ n+2

2 . We assume that non-isolated resolving set W of Cn�K1

with |W | < n+2
2 . Without loss of generality, we choose W = {u1, u2, . . . , un

2
} then there

are at least two vertices vn
2

and un+2
2
∈ V (Cn�K1) such that have the same representation,

namely r(vn
2
|W ) = (t′n−2

2

, ..., t′1, 1) = r(un+2
2
|W ) with t′l = l + 1, 1 ≤ l ≤ n−2

2 , a

contradiction. Hence, the lower bound of the non-isolated resolving number of Cn �K1 is
nr(Cn �K1) ≥ n+2

2 .
Furthermore, we will show that the upper bound of the non-isolated resolving num-

ber of Cn � K1 is nr(Cn � K1) ≤ n+2
2 . We choose W ⊂ V (Cn � K1) with W =

{u1, u2, . . . , un+2
2
} is a non-isolated resolving set of Cn �K1 and the cardinality of non-

isolated resolving set is |W | = |{u1, u2, . . . , un+2
2
}| = n+2

2 . Thus, the representation of
vertices v ∈ V (Cn �K1)−W respect to W are as follows.

r(vi|W ) = (t′i−1, ..., t
′
1, 1, t1, ..., tn+2

2
−i) for tk = k + 1, 1 ≤ k ≤ n+2

2 − i and t′l = l + 1,

1 ≤ l ≤ i− 1, 1 ≤ i ≤ n+2
2 ,

r(ui|W ) = (t′
i−n+2

2

, ..., t′1,
n
2 ,

n−2
2 , t1, ..., tn−i) for tk = n−2

2 − k, 1 ≤ k ≤ n − i and

t′l = n−2
2 − l + 1, 1 ≤ l ≤ i− n+2

2 , n+4
2 ≤ i ≤ n,

r(ui|W ) = (t′
i−n+2

2

, ..., t′1,
n+2
2 , n2 , t1, ..., tn−i) for tk = n−2

2 − k + 1, 1 ≤ k ≤ n − i and

t′l = n−2
2 − l + 2, 1 ≤ l ≤ i− n+2

2 , n+4
2 ≤ i ≤ n.

It is clear that every vertex v ∈ V (Cn � K1) −W has a distinct representation with
respect to W . Furthermore, we need to shown that all vertices in W without isolated ver-
tex. All vertices in vertex set W = {u1, u2, . . . , un+2

2
} are connected by the edge set

{uiui+1; 1 ≤ i ≤ n
2 } which all vertices in W induces subgraph Pn+2

2
. Hence, 〈W 〉 has

no isolated vertices. So, the upper bound non-isolated resolving number of Cn � K1 is
nr(Cn � K1) ≤ n+2

2 for n even. It concludes that the non-isolated resolving number of
Cn �K1 is nr(Cn �K1) = n+2

2 for n even.
In both cases, the non-isolated resolving number of Cn �K1 is nr(Cn �K1) = n+1

2

for n odd and nr(Cn �K1) = n+2
2 for n even. It concludes the proof.

The wheel graph Wn can be defined as the graph K1 + Cn for n ≥ 3, the non-isolated
resolving number of Wn �K1 in the following.

Theorem 2.6. Consider the wheel graph Wn for n ≥ 3. Then

nr(Wn �K1) =

{
n−1
2 + 1 if n odd and n 6= 3

n
2 + 1 if n even

Proof: Let Wn �K1 be a connected graph with vertex set V (Wn �K1) = {u, ui; 1 ≤ i ≤
n}∪{v, vi; 1 ≤ i ≤ n} and edge set E(Wn�K1) = {uiui+1; 1 ≤ i ≤ n− 1}∪{u1un}∪
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{uui; 1 ≤ i ≤ n} ∪ {uv, uivi; 1 ≤ i ≤ n} where u, ui is vertex in wheel graph Wn and
v, vi is a pendant vertices of u, ui with the cardinality of vertices |V (Wn �K1)| = 2n + 2

and the cardinality of edges |E(Wn �K1)| = 3n + 1.

Case 1: For n odd, we will show that the lower bound of the non-isolated resolving number
of Wn �K1 is nr(Wn �K1) ≥ n−1

2 + 1. We assume that non-isolated resolving set W of
Wn �K1 with |W | < n−1

2 + 1. Without loss of generality, we can describe the reasons as
follows:

(a) If we choose W = {ui; 1 ≤ i ≤ n−1, i odd} then all vertices u′ ∈ V (Wn�K1)−
W has the distinct representation but based on edge set uui for 1 ≤ i ≤ n − 1, i
odd then every vertices in W are not connected. Hence, 〈W 〉 has isolated vertices,
it is a contradiction.

(b) If we choose W = {ui; 1 ≤ i ≤ n−3, i odd}∪{u} then based on edge set uui for
1 ≤ i ≤ n− 1 then every vertices in W are connected. Hence, 〈W 〉 has no isolated
vertices but there are at least two vertices un−1 and vn−1 ∈ V (Wn�K1) such that
have the same representation, namely r(un−1|W ) = ( 2, ..., 2︸ ︷︷ ︸

n−3
2

times

) = r(un−2|W ), it

is a contradiction.

Furthermore, we will show that the upper bound of the non-isolated resolving number
of Wn�K1 is nr(Wn�K1) ≤ n−1

2 +1. We choose W ⊂ V (Wn�K1) with W = {ui; 1 ≤
i ≤ n− 1, i odd} ∪ {u} is a non-isolated resolving set of Wn �K1 and the cardinality of
non-isolated resolving set is |W | = |{ui; 1 ≤ i ≤ n− 1, i odd} ∪ {u}| = n−1

2 + 1. Thus,
the representation of vertices v ∈ V (Wn �K1)−W respect to W are as follows.

r(ui|W ) = ( 2, ..., 2︸ ︷︷ ︸
i−2
2

times

, 1, 1, 2, ..., 2︸ ︷︷ ︸
n−i−3

2
times

, 1) for 1 ≤ i ≤ n− 3, i even.

r(vi|W ) = ( 3, ..., 3︸ ︷︷ ︸
i−2
2

times

, 2, 2, 3, ..., 3︸ ︷︷ ︸
n−i−3

2
times

, 2) for 1 ≤ i ≤ n− 3, i even.

r(vi|W ) = ( 3, ..., 3︸ ︷︷ ︸
i−1
2

times

, 1, 3, ..., 3︸ ︷︷ ︸
n−i−2

2
times

, 2) for 1 ≤ i ≤ n− 1, i odd.

r(un−1|W ) = ( 2, ..., 2︸ ︷︷ ︸
n−3
2

times

, 1, 1)

r(vn−1|W ) = ( 3, ..., 3︸ ︷︷ ︸
n−3
2

times

, 2, 2)

r(un|W ) = (1, 2, ..., 2︸ ︷︷ ︸
n−3
2

times

, 1)

r(vn|W ) = (2, 3, ..., 3︸ ︷︷ ︸
n−3
2

times

, 2)
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r(v|W ) = ( 2, ..., 2︸ ︷︷ ︸
n−1
2

times

, 1)

It is clear that every vertex v ∈ V (Wn � K1) −W has a distinct representation with
respect to W . Furthermore, we need to shown that all vertices in W without isolated vertex.
All vertices in vertex set W = {ui; 1 ≤ i ≤ n − 1, i odd} ∪ {u} are connected by the
edge set {uui; 1 ≤ i ≤ n} which all vertices in W induces subgraph Sn. Hence, 〈W 〉 has
no isolated vertices. So, the upper bound non-isolated resolving number of Wn � K1 is
nr(Wn �K1) ≤ n−1

2 + 1.
Thus, the lower bound and upper bound of the non-isolated resolving number of Wn �

K1 are n−1
2 + 1 ≤ nr(Wn �K1) ≤ n−1

2 + 1. It concludes that the non-isolated resolving
number of Wn �K1 is nr(Wn �K1) = n−1

2 + 1.

Case 2: For n even, we will show that the lower bound of the non-isolated resolving number
of Wn �K1 is nr(Wn �K1) ≥ n

2 + 1. We assume that non-isolated resolving set W of
Wn � K1 with |W | < n

2 + 1. Without loss of generality, we can describe the reasons as
follows:

(a) If we choose W = {ui; 1 ≤ i ≤ n−1, i odd} then all vertices u′ ∈ V (Wn�K1)−
W has the distinct representation but based on edge set uui for 1 ≤ i ≤ n − 1, i
odd then there is a isolated vertex in W . Hence, 〈W 〉 has isolated vertices, it is a
contradiction.

(b) If we choose W = {ui; 1 ≤ i ≤ n−3, i odd}∪{u} then based on edge set uui for
1 ≤ i ≤ n− 1 then every vertices in W are connected. Hence, 〈W 〉 has no isolated
vertices but there are at least two vertices un−1 and vn−1 ∈ V (Wn�K1) such that
have the same representation, namely r(un−1|W ) = ( 2, ..., 2︸ ︷︷ ︸

n−2
2

times

, 1) = r(v|W ), it is

a contradiction.

Furthermore, we will show that the upper bound of the non-isolated resolving number
of Wn�K1 is nr(Wn�K1) ≤ n

2 + 1. We Choose W ⊂ V (Wn�K1) with W = {ui; 1 ≤
i ≤ n− 1, i odd} ∪ {u} is a non-isolated resolving set of Wn �K1 and the cardinality of
non-isolated resolving set is |W | = |{ui; 1 ≤ i ≤ n− 1, i odd} ∪ {u}| = n

2 + 1. Thus, the
representation of vertices v ∈ V (Wn �K1)−W respect to W are as follows.

r(ui|W ) = ( 2, ..., 2︸ ︷︷ ︸
i−2
2

times

, 1, 1, 2, ..., 2︸ ︷︷ ︸
n−i−3

2
times

, 1) for 1 ≤ i ≤ n− 2, i even.

r(vi|W ) = ( 3, ..., 3︸ ︷︷ ︸
i−2
2

times

, 2, 2, 3, ..., 3︸ ︷︷ ︸
n−i−3

2
times

, 2) for 1 ≤ i ≤ n− 2, i even.

r(vi|W ) = ( 3, ..., 3︸ ︷︷ ︸
i−1
2

times

, 1, 3, ..., 3︸ ︷︷ ︸
n−i−1

2
times

, 2) for 1 ≤ i ≤ n− 1, i odd.
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r(un|W ) = (1, 2, ..., 2︸ ︷︷ ︸
n−4
2

times

, 1, 1)

r(vn|W ) = (2, 3, ..., 3︸ ︷︷ ︸
n−4
2

times

, 2, 2)

r(v|W ) = (2, ..., 2︸ ︷︷ ︸
n
2

times

, 1)

It is clear that every vertex v ∈ V (Wn � K1) −W has a distinct representation with
respect to W . Furthermore, we need to shown that all vertices in W without isolated vertex.
All vertices in vertex set W = {ui; 1 ≤ i ≤ n − 1, i odd} ∪ {u} are connected by the
edge set {uui; 1 ≤ i ≤ n} which all vertices in W induces subgraph Sn. Hence, 〈W 〉 has
no isolated vertices. So, the upper bound non-isolated resolving number of Wn � K1 is
nr(Wn �K1) ≤ n

2 + 1.
Thus, the lower bound and upper bound of the non-isolated resolving number of Wn �

K1 are nr(Wn � K1) ≥ n
2 + 1. It concludes that the non-isolated resolving number of

Wn �K1 is nr(Wn �K1) = n
2 + 1.

3. Conclusion

We have shown the non-isolated resolving number of graph with pendant edges. The results
show that the non-isolated resolving number attain the best lower bound. However we have
not found the sharpest lower bound for any connected graph, therefore we proposed the
following open problem.

Open Problem 3.1. Find the non-isolated resolving number of G �mK1, with G is con-
nected graph of order n and m ≥ 2.

Open Problem 3.2. Find the non-isolated resolving number of H , where H is a graph with
pendant edge more general that of corona product G�mK1 with G is connected graph of
order n and m ≥ 1.
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