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Abstract— One of the challenges of the hand rehabilitation 
device is to create a smooth interaction between the device and 
user.  The smooth interaction can be achieved by considering 
myoelectric signal generated by human's muscle. Therefore, the 
so-called myoelectric control system (MCS) has been developed 
since the 1940s. Various MCS's has been proposed, developed, 
tested, and implemented in various hand rehabilitation devices 
for different purposes. This article presents a review of MCS in 
the existing hand rehabilitation devices. The MCS can be 
grouped into main groups, the non-pattern recognition and 
pattern recognition ones. In term of implementation, it can be 
classified as MCS for prosthetic and exoskeleton hand. Main 
challenges for MCS today is the robustness issue that hampers 
the implementation of MCS on the clinical application. 

Keywords—myoelectric control system, hand rehabilitation 
device 

I. INTRODUCTION 
A myoelectric control system (MCS) is a control system 

that employs myoelectric signal from human muscle activity 
to create a smooth interaction between the machine and user. 
MCS empowers a rehabilitation device with an ability to 
predict the user intention so that the device works together 
along with human as if it is part of the human body. MCS has 
been implemented in many rehabilitation devices including 
hand rehabilitation device either for replacing a lost limb or 
recovering a limb functionality.   

The review on general myoelectric control system was 
conducted by Oskoei and Hu [1]. They provided a 
comprehensive discussion on MCS in general and did not 
focus on specific rehabilitation devices. Meanwhile, Heo, et 
al. [2] reviewed the hand exoskeleton for rehabilitation and 
assistive device. They provided detail discussion on the hand 
exoskeleton. However, the focus is much on the mechanical 
and electrical point of view. To the best of author’s 
knowledge, the review of the control system of hand 
rehabilitation device especially based on myoelectric signal 
does not exist yet. In fact, the well understanding of MCS on 
the hand rehabilitation device is needed to develop a 
rehabilitation device that can work together with the user 
seamlessly. 

This article provides a comprehensive review on the 
implementation of MCS on the hand rehabilitation devices. In 
addition, it covers two main rehabilitation devices, the 
prosthetic and the exoskeleton. The hand rehabilitation device 
considered in this thesis is a wearable robot including the 
prosthetic and orthotic hand devices. The prosthetic hand 

device is a wearable hand robot that can replace the missing 
hand and have the functionality of the hand replaced.  

Nowadays, few dexterous and commercial prosthetic 
hands are available such as i-limb ultra from Touch bionic [3] 
and a bebionic hand from Ottobock [4]. Furthermore, a few 
low-cost prosthetic hands are available as well, such as 
prosthetic hands from Open bionics [5]. In addition, very few 
orthotics also available. One of the example is “hand of hope”, 
a commercial exoskeleton hand by Rehab-robotics [6]. 

II. MYOELECTRIC CONTROL SYSTEM 

A. Myoelectric signal 
The muscles drive the limbs to generate electrical signals 

called electromyography (EMG) or myoelectric signal (MES). 
The EMG signal is a stochastic or random signal whose 
amplitude can range from 0 to 1.5 mV (root mean square) or 
0 to 10 mV (peak-to-peak). The energy above the electrical 
noise level is in the range of frequency 0 – 500 Hz. 
Meanwhile, in the range of 50-150 Hz, the energy of the noise 
is dominant [7]. The noise can come from different sources 
such as noises from the electronic components, motion 
artefacts, the inherent instability of the signal, and ambient 
noise. The energy under the noise level is not reasonable for 
analysis. 

The myoelectric signal may be collected in two ways, 
either invasive or non-invasive. Hargrove, et al. [8] shows that 
the control system using surface EMG is not too much 
different from invasive one. For further discussion, this article 
considers only surface EMG. Surface EMG electrodes are 
located on the subject’s skin. Meanwhile, Fig. 1 describes the 
stages in the acquisition of the EMG signal. The source of 
EMG or myoelectric signal is the action potential generated 
by each of the motor units activated during a contraction. It is 
called a motor unit action potential (MUAP). The populations 
of motor units activated are asynchronous to allow smooth 
movements. The electrodes pick up the conducted signals 
generated by all activities involved. 

B. Myoelectric control system 
The EMG signal can be employed in the control system of 

the hand rehabilitation devices either in EMG-based pattern 
recognition or non-pattern recognition system. The EMG-
based pattern recognition (EMG-PR) or myoelectric pattern 
recognition (M-PR) consists of several steps from the pre-
processing until the post-processing. The goal of M-PR is to 
recognise and classify the EMG patterns into classes or limb 
movements. On the other hand, the EMG-based non-pattern 
recognition (EMG-non-PR) system does not classify any limb 
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movement. It may estimate human physical parameters such 
as the angle of the elbow or the force exerted by the hand 
according to the EMG signals collected. Moreover, the EMG-
non-PR may use EMG signals as a threshold control system 
or proportional control system. The following sections will 
explain M-PR and EMG-non-PR in detail. 

C. Myoelectric pattern recognition (M-PR) 
This section addresses the stages of myoelectric pattern 

recognition (M-PR) in detail by describing each component of 
M-PR as presented in Fig. 1. 

 
Fig. 1. Myoelectric pattern recognition system   

1) Filtering 
The aim of filtering is to reduce the unwanted noises 

between 20 – 500Hz. A band-pass filter with upper bandwidth 
cut-off of 400 Hz was applied. The power line noise 50 Hz or 
60 Hz may be removed using a notch filter of 50 or 60 Hz.  

2) Data segmentation 
The classification process lasts for a certain period called 

a window. In this window, the system extracts valuable 
information from the row of myoelectric signals. This 
information is called a feature. The quality of features greatly 
determines the performance of the system [8]. The feature is 
extracted in a data sequence bounded in this time slot or 
window. Based on the data in this window, the whole stages 
of the recognition system are performed. 

EMG signals can be segmented either as an overlapped or 
disjoint windowing [9]. In the overlapped windowing, the 
segmented data is overlapped one another depending on the 
window increment. On the other hand, in the disjoint 
segmentation, no overlapped data.  

3)  Feature extraction 
The next step of the myoelectric pattern recognition is a 

feature extraction.  The feature extraction is a process that 
converts patterns to features. In the case of EMG signals, it 
means a process that converts the pattern of EMG signals, in 
particular, segments to a set of features that contains salient 
features of the signals [10].  

In general, the feature extraction in EMG signal consists 
of time domain and frequency domain features. Time domain 
features have been used widely in EMG pattern recognition 
system [11]. The advantages of the TD features are quick, easy 
implementation, low computational complexity and having 
good performance in low noise environment [12]. However, it 
has a major disadvantage in dealing with non-stationary 
signals such EMG signals. The examples of these features are 
root mean square (RMS), mean absolute value slopes 
(MAVS) and mean absolute value (MAV). Other features 
such as slope sign changes (SSC), zero crossing (ZC), and 
waveform length (WL) can be added. Moreover, model 
parameters of Hjorth time domain (HTD) and autoregressive 
(AR) parameters may be utilized. 

Beside time domain feature, frequency domain (FD) 
features that are mostly obtained from power spectral density 
(PSD) can be employed. Other FD features are median (MDF) 
and mean frequency (MNF). Furthermore, time and frequency 
domain feature can be combined to form time-frequency 
domain (TFD) features. TFD features provide more accurate 

description of the physical phenomenon than the time domain 
and frequency domain features separately [13]. However, the 
TFD transformation needs heavy computation; somehow, it 
will not be reasonable for clinical application.  

4) Dimensionality Reduction 
The extracted features from the previous step are joined to 

form a set of features. However, this process increases the 
feature dimension. Therefore, the size should be reduced 
without compromising the main features. The feature 
reduction can be made either using feature selection (FS) or 
feature projection (FP) [13]. The FS selects a subset of best 
features that give the best performance of the system. On the 
other hand, the FP transforms the original feature space to a 
new feature space with smaller dimension. In the EMG signals 
cases, the feature projection is more favourable than the 
feature selection due to the characteristic of the EMG signals, 
i.e. whose variance is large [13].  

The feature projection can be classified into an 
unsupervised and supervised method. In the unsupervised 
method, the feature space is projected into a new space with 
smaller size and without compromising the class information. 
Principle component analysis (PCA) [14] is an example. On 
the other hand, the supervised method includes the class 
knowledge into the projection. Linear discriminant analysis 
(LDA) [15] is as an instance. Inevitably, the class inclusion 
can enhance the accuracy of the myoelectric pattern 
recognition. One of the drawbacks of the LDA is a singularity 
problem that happens when the number of samples is smaller 
than the number of classes. Some methods can be used to 
overcome this singularity problem such as uncorrelated LDA 
(ULDA) [16] and orthogonal fuzzy neighbourhood 
discriminant analysis (OFNDA) [17]. 

Furthermore, the feature projection can also be grouped 
into linear and non-linear feature projection. PCA and LDA 
are examples of the linear feature projection.  As for the non-
linear method, the non-linear version of PCA is as an example. 
It is a kernel PCA that employ a kernel instead of a linear 
function in the process. Another example of the non-linear 
method is a neural-network based feature projection such as  
unsupervised extreme learning machine (USELM) and 
Autoencoder [18].  

5) Classification  
The classifier is one of the main components of the M-PR 

system. It classifies the features into particular classes. The 
predicted class will be delivered to the robot to produce a 
certain hand posture accordingly. In the early stage of the M-
PR system, multilayer perceptron (MLP) [19] or feed-forward 
neural networks (FNN) was frequently used [20]. The FNNs 
is a powerful classifier, but the training process is time-
consuming. Therefore, some researchers preferred using 
linear discriminant analysis (LDA) than MLP because LDA is 
fast and performs as accurately as FNNs. In addition to MLP 
and LDA, a few researchers employed hidden markov model 
(HMM) [21] and k-nearest neighbour (kNN) [22]. 

Recently, support vector machine (SVM), which is used in 
many applications, promises better performance than LDA, 
FNNs, k-nearest neighbour (kNN) as long as the SVM 
parameters are optimized properly [23]. However, SVM is 
originally developed for binary classification. The recognition 
system should use several SVMs to deal with multi-class 
classification. Recently, a new machine learning originated 
from the artificial neural network was proposed and called 
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extreme learning machine (ELM) [24]. Not like FNNs, ELM 
omits iterative learning and does not need to tune the hidden-
node parameters. Most recent classifier employed is 
convolutional neural network, a kind of deep learning neural 
network [25]. 

6) Post-processing 
The aim of this stage is to smoothen the classification 

results. A majority vote is one of most common method that 
is employed by many researchers [26]. It makes a new result 
based on the output that appears most frequently from the 
current state and n previous states. This process yields a 
system that removes fake misclassifications.  

D. Myoelectric non-pattern recognition (M-non- PR) 
system 
The M-non-PR system has similar steps as the M-PR 

except in the classification stage. The M-non-PR does not 
have it. Instead, it has different processes, as depicted in Fig. 
2.  

 
Fig. 2. The EMG-based non-pattern recognition 

Among examples of EMG-based non-pattern recognition 
are the threshold myoelectric control, proportional 
myoelectric control, simultaneous and propositional 
myoelectric control and finite state machine (FSM) control 
[1]. 

a) The threshold myoelectric control 

The threshold myoelectric control is a control system that 
utilizes a threshold value from the contraction level of EMG 
signal as a control source to activate or deactivate an action. It 
is also known as a binary on/off myoelectric control because 
the threshold value determines the on or off state of the 
assistive device [27]. The early stage of EMG controller in the 
prosthetic device employed this controller [28]. Besides, the 
majority of the current exoskeleton hands utilize the threshold 
controller instead of EMG based pattern recognition [29, 30].  

b) Finite state machine 

Finite state machine control consists of some states that the 
device should perform. The switching between states can be 
triggered by a timer or based on the level contraction of the 
EMG signals [1].  

c) The proportional myoelectric control (PMC) 

The PMC gives a more advanced control scheme than the 
threshold myoelectric control. In this control system, the 
control signal for the rehabilitation device is proportional to 
the contraction level of the EMG signal. The control system 
utilizes the EMG signal to estimate a specific physical 
parameter such as force or angle. Afterward, the control 
system treats those biofeedback values as the target that the 
device should achieve.   

d) The simultaneous and proportional myoelectric control 
(SPMC) 

The simultaneous and propositional myoelectric control is 
more advanced than the proportional one. This control system 
controls all joints proportionally and simultaneously from the 
EMG signal. To train the system, the amputees need a help 

form their healthy hand to produce target movement. The 
control system should estimate all physical parameters 
recorded from the raw EMG signal. Therefore, this control 
system is also known as regression based myoelectric system 
[31]. 

III. MCS ON HAND REHABILITATION DEVICES 

A. EMG-based prosthetic hand 
This sub-section provides a review of prosthetic hands 

controlled by EMG signal. The discussion is focused on the 
hand movement excluding the arm movements such as 
shoulder, elbow and wrist movements.   

1) The Russian EMG controlled hand 
Historically, Rieter was the first person who developed an 

EMG controlled hand in 1948 [32]. In 1957, B Popov, a 
Russian researcher, began to develop a bioelectricity 
controlled prosthetic hand [28]. This prosthetic is designated 
for the upper extremity. The electrodes were located in the 
stump. There are two movements: grasp and release. The 
EMG signals were acquired from two contradictory muscles. 
The hand will grasp if the exerted voltage of the flexion 
muscle exceeds 30-40 mV. To release or open the hand, the 
system will detect the opposing flexing muscle. If the recorded 
voltage was more than the threshold value, then the hand will 
open. The prosthetic hand is controlled with a threshold 
control system. This is a very basic myoelectric control system 
because it considered the one degree of freedom (DOF) only.  

2) Suzuki ‘s system [33] 
In 1969, Suzuki and Suematsu [33] developed a more 

complex control system using EMG signals. They called it 
pattern recognition of multichannel myoelectric signals. The 
system classified seven kinds of hand motions using a spatial 
pattern collected from three EMG channels on the forearm. 
The system learned the pattern or the classes using the 
learning discrimination mechanism [33]. Compared to the 
Russian EMG controller, the EMG controller is more 
advanced. The indication is shown by involving more motions 
and employing a learning mechanism to learn the pattern of 
EMG signals. Even though it considered multi DOFs, there is 
no information about the clinical application. 

3) Uchida’s system [34] 
Hiraiwa, et al. [20] employed a single channel EMG to 

classify five hand motions. They utilized the neural network 
to analyse and classify the EMG pattern to control a prosthetic 
hand. The work of Hiraiwa was continued and developed by 
Uchida, et al. [34] to deal with multichannel EMG. In their 
work, the electrodes were located on the forearm especially on 
the flexor digitorium superficialis (FDS) muscle. Five motions 
involved were the flexion of all fingers (A), the flexion of the 
index finger (B), the flexion of the middle finger (M), the 
flexion of the thumb (T) and relaxation of all fingers (N). 
Using two EMG channels, they extracted fast Fourier 
transform (FFT) features. The FFT of the EMG signals 
became the inputs of the feed-forward neural networks (FF-
NN). The experimental results showed that the system able to 
classify five-finger movements and attain an accuracy of 67%. 
In the case of 2 EMG channels, they could improve the 
accuracy up to 86%. All experiments were conducted in the 
laboratory. 

4) Tsenov’s system [19] 
Similar to Uchida, et al. [34], Tsenov, et al. [19] developed 

a recognition system of finger movement using multilayer 
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perceptron (MLP). MLP classified four finger movements: 
thumb, pointer, middle and hand closure. The electrodes were 
located on two groups of muscles, planaris longus (PL) and 
extensor digitorum (ED). They extracted time-domain (TD) 
features from EMG signals and put them on the input of the 
MLP. In the offline experiment, they achieved an accuracy of 
93% and 98% using two and four EMG channels, 
respectively. Meanwhile, in the online classification, the 
system showed a promising performance by making 30 errors 
of 250 tested movements. These promising results were 
obtained in the laboratory environment. 

5) Tenore’s system [35] 
Tenore, et al. [35], researchers from John Hopkins 

University developed a pattern recognition system using EMG 
signals to decode individual finger movements. The 
movements consisted of the flexion and extension of all 
individual fingers and the middle, ring, little fingers as a 
group. There are 12 classes involved in the experiment. The 
work involved five able-bodied subjects and one trans radial 
amputee. The experiments results show that the system 
achieved a high level of classification accuracy 
(approximately 90 %).  

6) Cipriani 
Cipriani, et al. [22] developed EMG pattern recognition 

for a prosthetic hand. Different from the previous researcher 
who employed MLPs or ANN, they utilized k-nearest 
neighbour (kNN). Features were extracted from nine EMG 
channels using time domain features. Moreover, they were 
acquired from five able-bodied and amputee subjects. There 
are seven hand movements classified including thumb flexion 
(A), index finger flexion (B), thumb opposition (C) middle, 
ring, and little finger flexion (D), long fingers flexion (E), tri-
digital grasp (F) and lateral grip/key grip (G).  

The experiment involved 10 participants, five trans-radial 
amputees, and five able-bodied subjects. Eight bipolar EMG 
electrodes were placed on the right arm of participants or the 
residual limbs. The recognition system was implemented 
online and able to classify seven finger movements with the 
accuracy of around 79 % and 89% on the amputee subjects 
and non-amputee subjects, respectively. 

7) Khushaba 
Khushaba, et al. [23] developed a new MPR system for 

finger movements using support vector machine (SVM). 
There were six time-domain features involved, i.e. ZC, WL, 
SSC, HTD, SS, and AR model parameters. Then, the size of 
the features was reduced using LDA. The experimental results 
indicated that the system achieved an accuracy of 
approximately 92% and about 90% in the offline classification 
and online classification, respectively. Regarding accuracy, 
Khushaba et al.’s recognition system was promising, but the 
system contains a natural shortcoming of SVM in dealing with 
the multi-classification problem. At least, the recognition 
system should use m SVMs to deal with m movement classes. 
Inevitably, this will add to the processing time of the system. 

8) Al-Timemy 
The most recent study of a pattern-recognition system on 

finger movement classification was undertaken by Al-
Timemy, et al. [11]. They investigated several schemes for the 
EMG pattern recognition. The developed system extracted 
features from six up to twelve EMG signal using AR and TD 
features. There were four combinations of dimensionality 
reductions and classifiers employed. They are PCA-LDA, 

PCA-SVM, orthogonal fuzzy neighbourhood discriminant 
analysis [17] (OFNDA)-LDA and OFNDA-SVM. Those 
systems classified 12 classes on six amputees. Meanwhile, it 
worked on and 15 classes on ten healthy subjects. The most 
accurate of the four combinations was the system with 
OFNDA-LDA. The experimental results showed that the 
proposed system achieved an accuracy of around 98% on the 
non-amputees and 90% on the amputees. 

9) SPMC for MPR 
The researchers realized that the existing MPRs did not 

consider many DOFs. SPMC is a solution that is being popular 
utilized nowadays. Jiang, et al. [36] employed SPMC to 
control 3-DOFs of the wrist. MLP was used to estimate the 
three joint angles of the wrist and send it to SPMC. The 
experimental results showed that the joint angle estimation 
from non-amputees was more consistent than the amputees. 
Other publications regarding the implementation of SPMC 
can be found in [37, 38]. 

10) Muscle synergy 
The robustness issue of MPR, especially in clinical 

application, is the current problem of MCS. Muscle synergy 
was proposed to produce a robust feature to result in a robust 
MPR. The success of the implementation of the muscle 
synergy will lead to the success of SPMC. Ison and 
Artemiadis [39] evaluated the role of muscle synergy in the 
MCS. This publication has trigged other researchers 
implementing the muscle synergy on MCS [40] [41]. The 
experiments did not involve the amputee. However, the results 
indicate the big hope for the success of the muscle synergy on 
the clinical application. 

B. EMG-based exoskeleton hand 
This section presents a review on the current EMG-based 

exoskeleton hand. 

1) Mulas’s exoskeleton [29] 
Mulas’s exoskeleton is an exoskeleton hand that is 

designed for the hand recovery of a patient following stroke. 
The EMG electrodes were located on the subject’s forearm. 
The signal was used to predict the user’s intention to do a 
specific task or activity. The exoskeleton is composed of a 
glove with plastic support to guide the fingers to accomplish a 
natural movement and avoid getting an excessive load on the 
tips. It is actuated by two electric motors that are Hitec servos 
HS-8-5BB. One actuator is employed to move the thumb 
while the other were utilized to flex the four fingers 
simultaneously. Two springs on the dorsal side were put in to 
allow extension movements. 

The main controller runs on the personal computer (PC) 
using MALTAB. The PC obtains the user’s intention from the 
EMG signals acquired from two electrodes that capture the 
signals from the flexor digitorum superficialis and the Flexor 
flexor pollicis Longus. Then the output control from the PC 
was fed to the microcontroller to control the finger movements 
according to the intended position. In the hierarchical 
structure, the microcontroller behaves as a low-level 
controller while the PC behaves as a high-level controller. The 
controller utilized the threshold value of EMG to flex the 
fingers. 

2) Wege’s exoskeleton hand [42] 
This exoskeleton hand was developed to support the 

rehabilitation process for the patient after a stroke or hand 
injuries. It has four degrees of freedom in each finger. 
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Therefore, in total, it supports up to 20 finger joints. The 
system is equipped with some sensors such as hall sensors, 
optical encoders, and force sensors. Other sensors are surface 
(EMG) sensors at the forearm. This exoskeleton hand 
employed the blind source separation to separate the 
information contained in the high-density surface EMG 
signals at the forearm into several signals related to specific 
finger movement. Ten electrodes were located in the forearm 

3) Tong’s exoskeleton [30] 
This exoskeleton was designed as a hand robotic training 

device to help stroke patient in recovering the impaired hand 
function. This device is able to detect the user’s intention from 
the user’s muscles in the hand opening and closing training. 
The exoskeleton’s structure fits the different finger lengths 
and aligns the virtual centre of rotation of the 
metacarpophalangeal (MCP) and the proximal 
interphalangeal (PIP).  

The embedded controller is built to accompany the hand 
robot that drives the linear actuator and detect the user’s 
intention by interpreting the EMG signals that are acquired 
from the abductor pollicis brevis (APB) and the extensor 
digitorum (ED. These signals were used to predict the hand 
closing and hand opening, respectively. The embedded 
controller was equipped with a wireless module to enable the 
therapist to configure the exoskeleton and the training module. 

4) Ngeo’s finger exoskeleton [43] 
This finger exoskeleton is constructed of a four-bar 

linkage structure that is able to actuate the movement of finger 
joints. The Arduino Mega micro-controller was used to 
control the movement of the exoskeleton based on the motor 
command obtained from the processed EMG signals. The 
surface EMG from the flexor digitorum Superficialis (FDS), 
flexor digitorum profundus (FDP), extensor digitorium (ed) 
and extensor indicies (EI) muscles were acquired and 
processed to predict the motor intention of the continuously 
moving fingers. 

Each surface EMG signal was converted to a muscle 
activation by using the so-called EMG-to-muscle activation 
model. The muscle activations from each muscle were fed to 
the artificial neural network (ANN) to predict the intended 
finger joint angle. The experimental result was good and 
promising even though it was only tested on a healthy subject. 
The drawback of this system is obviously working on one 
finger only. The complexity and density of the muscles in the 
forearm have not been considered yet. Another example of 
EMG controller for index finger was proposed by Anam, et al. 
[44] 

IV. DISCUSSION 
Myoelectric pattern recognition (M-PR) is used in most 

current prosthetic hands. On the other hand, myoelectric non-
pattern recognition (M-non-PR) is widely used for 
exoskeleton hand, instead of M-PR. Furthermore, among M-
non-PR, a myoelectric threshold controller is the most 
controller for the exoskeleton hands. As a result, the hand or 
finger actions involved are very limited. Most of them are the 
hand opening and hand closing only. In reality, the finger 
movements are not limited to two of those actions only. 
Therefore, the exoskeleton hand should consider more finger 
motions instead of just two fingers. This the main issue in the 
M-non-PR controller. 

Different from the M-non-PR, the major issue emerging in 
the M-PR is the big gap between success of the laboratory 
experiments and the clinical applications. Farina, et al. [31] 
found that this is due to robustness of M-PR. The robustness 
issue can be overcome by following ways (Ning, et al. [45]). 
Firstly, the M-PR should be able to handle multi-degrees of 
freedom by suing a simultaneous and proportional controller. 
Secondly, M-PR has to utilize sensors for movement 
feedback. Thirdly, M-PR should have adaptation mechanism 
on the changes of EMG signal characteristic. Finally, M-PR 
should integrate EMG with sensors to allow complex actions. 
To the best of author’s knowledge, all reviewed system has 
not considered this gap properly. 

The main metric to measure the success of the M-PR in 
the laboratory and clinical application is either an error or 
accuracy of the classification result. These measurements 
(error or accuracy) is used to judge the efficacy of the 
proposed M-PR as an attempt to reduce the gap between the 
laboratory experiment and clinical application. To the best of 
the author’s knowledge, the majority of researchers have used 
this metric for years. Nevertheless, there is little improvement 
in the error metric by proposing incorrect active decisions 
instead of using wrong decision only, as proposed by Scheme, 
et al. [46]. Therefore, the error or accuracy are the primary 
measurement used to verify the efficacy of the M-PR. 

V. CONCLUSION  
This paper provides the review of the myoelectric control 

system (MCS) on the rehabilitation devices. MCS has been 
developed since the 1940s. This article has emerged some 
issues that should be considered in developing MCS for the 
hand rehabilitation devices. The main issue is the robustness 
of myoelectric signal. This issue should be addressed properly 
to achieve a reliable control system for hand rehabilitation 
device. 
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